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ABSTRACT
Detecting duplicate bug reports helps reduce triaging ef-
forts and save time for developers in fixing the same issues.
Among several automated detection approaches, text-based
information retrieval (IR) approaches have been shown to
outperform others in term of both accuracy and time effi-
ciency. However, those IR-based approaches do not detect
well the duplicate reports on the same technical issues writ-
ten in different descriptive terms.

This paper introduces DBTM, a duplicate bug report de-
tection approach that takes advantage of both IR-based fea-
tures and topic-based features. DBTM models a bug report
as a textual document describing certain technical issue(s),
and models duplicate bug reports as the ones about the same
technical issue(s). Trained with historical data including id-
entified duplicate reports, it is able to learn the sets of differ-
ent terms describing the same technical issues and to detect
other not-yet-identified duplicate ones. Our empirical eval-
uation on real-world systems shows that DBTM improves
the state-of-the-art approaches by up to 20% in accuracy.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Documentation, Management, Reliability

Keywords
Duplicate Bug Reports, Topic Model, Information Retrieval

1. INTRODUCTION
Bug fixing is vital in producing high-quality software prod-

ucts. Bug fixing happens in both development and post-
release time. In either case, the developers, testers, or end-
users run a system and find its incorrect behaviors that do
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not conform to their expectation and the system’s require-
ments. Then, they report such occurrences in a bug report,
which are recorded in an issue-tracking database.

Generally, there are many users interacting with a sys-
tem and reporting its issues. Thus, a bug is occasionally
reported by more than one reporters, resulting in duplicate
bug reports. Detecting whether a new bug report is a dupli-
cate one is crucial. It helps reduce the maintenance efforts
from developers (e.g. if the bug is already fixed). Moreover,
duplicate reports provide more information in the bug fixing
process for that bug (e.g. if the bug is not yet fixed) [4].

To automate the detection of duplicate bug reports, sev-
eral approaches have been introduced. Early approaches
have applied information retrieval (IR) to this problem with
Vector Space Model (VSM) in which a bug report is modeled
as a vector of textual features computed via Term Frequency-
Inverse Document Frequency (Tf-Idf) term weighting mea-
surement [14, 23]. To improve the detection accuracy, nat-
ural language processing (NLP) has been combined with
those IR methods [23]. Execution trace information on the
reported bugs in the bug reports is also used in combina-
tion with NLP [26]. However, execution traces might not
be available in all bug reports. Another predominant ap-
proach to this problem is machine learning (ML). Jalbert
and Weimer [16] use a binary classifier model and apply a
linear regression over textual features of bug reports com-
puted from their terms’ frequencies. Support Vector Ma-
chine (SVM) was utilized by Sun et al. [25]. To train an
SVM classifier, all pairs of duplicate bug reports are formed
and considered as the positive samples and all other pairs
of non-duplicate bug reports are used as the negative ones.
The key limitation of ML approaches is their low efficiency.

The recent work by Sun et al. has shown that REP [24],
an advanced IR approach, outperformed state-of-the-art ML
approaches in term of both accuracy and time efficiency. It
is customized from BM25F [22] to take into account the long
bug reports and the meta-data such as the reported prod-
uct, component, and version. The key assumption in REP
is based on high textual similarity between duplicate bug
reports. However, in practice, it is popular that the bug re-
ports can be filed by multiple reporters who could describe
about the same technical issue(s) in different phenomena via
different terms. With different input data, usage environ-
ments or scenarios, an erroneous behavior might be exposed
as different phenomena (e.g. different outputs, traces, or
screen views). Moreover, different reporters might use dif-
ferent terminologies and styles, or write about different phe-
nomena to describe the same issue(s). Thus, duplicate bug
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ID:000002; CreationDate:Wed Oct 10 20:34:00 CDT 2001; Re-
porter:Andre Weinand
Summary: Opening repository resources doesn’t honor type.
Description:Opening repository resource always open the default text
editor and doesn’t honor any mapping between resource types and
editors. As a result it is not possible to view the contents of an image
(*.gif file) in a sensible way.

Figure 1: Bug Report BR2 in Eclipse Project

reports might not be very textually similar. In those cases,
REP does not detect them well.

This paper introduces DBTM, a duplicate bug report de-
tection model that takes advantage of not only IR-based
features but also topic-based features from our novel topic
model, which is designed to address textual dissimilarity be-
tween duplicate reports. In DBTM, a bug report is consid-
ered as a textual document describing one or more technical
issues/topics in a system. Duplicate bug reports describe
the same technical issue(s) even though the issue(s) is re-
ported in different terms. In our topic model, we extend
Latent Dirichlet Allocation (LDA) [6] to represent the topic
structure for a bug report as well as the duplication rela-
tions among them. Two duplicate bug reports must de-
scribe about the shared technical issue(s)/topic(s) in addi-
tion to their own topics on different phenomena. The topic
selection of a bug report is affected not only by the topic
distribution of that report, but also by the buggy topic(s)
for which the report is intended. We also apply Ensemble
Averaging technique [11] to combine IR and topic model-
ing in DBTM. We use Gibbs sampling [13] to train DBTM
on historical data with identified duplicate bug reports and
then detect other not-yet-identified duplicate ones.

Our empirical evaluation results on large, real-world sys-
tems show that DBTM with both topic-based and textual
features can improve the state-of-the-art approach REP [24]
by up to 20% in accuracy. For a new-coming bug report B,
if it is a duplicate, in 57% of the time, DBTM can correctly
identify its duplicate bug report with only a single recom-
mendation. In 76% of the time, a developer just needs to
examine the resulting list of 5 recommended reports and
(s)he will be able to identify the duplicate one. The num-
ber is 82% if DBTM recommends 10 bug reports for B.
Importantly, DBTM is very efficient in both training and
predicting time. The contributions of this paper include:

1. DBTM, a combined model taking the strength of both
topic-based features from a novel topic model and textual
features from an IR model, BM25F. Our new topic model
captures semantically the technical issues in the bug reports
and formulates the semantic similarity measure among du-
plicate reports based on such topic structures;

2. Algorithms for training/detecting duplicate reports;
3. An evaluation on DBTM’s accuracy and efficiency.
Next section presents a motivating example. Section 3 de-

scribes the details of DBTM. Section 4 presents our training
and detection algorithms. Section 5 discusses our evalua-
tion. Related work is in Section 6. Conclusion appears last.

2. MOTIVATING EXAMPLE
Let us begin with an example of duplicate bug reports

that motivates our approach. Generally, a bug report is
a record in a bug-tracking database, containing several de-

ID:009779; CreationDate:Wed Feb 13 15:14:00 CST 2002; Re-
porter:Jeff Brown
Resolution:DUPLICATE
Summary: Opening a remote revision of a file should not always use
the default text editor.
Description: OpenRemoteFileAction hardwires the editor that is
used to open remote file to org.eclipse.ui.DefaultTextEditor instead
of trying to find an appropriate one given the file’s type.
You get the default text editor regardless of whether there are reg-
istered editors for files of that type – even if it’s binary. I think it
would make browsing the repository or resource history somewhat
nicer if the same mechanism was used here as when files are opened
from the navigator. We can ask the Workbench’s IEditorRegistry for
the default editor given the file name. Use text only as a last resort
(or perhaps because of a user preference).

Figure 2: Bug Report BR9779, a Duplicate of BR2

scriptive fields about the reported bug(s). Important fields
in a bug report include a unique identification number of
the report (ID), creation time (CreationDate), the reporting
person (Reporter), and most importantly, a short summary
(Summary) and a full description (Description) of the bug(s).

Observations on a bug report Figure 1 displays an ex-
ample of an already-fixed bug report in Eclipse project.
This bug report was assigned with ID 2 and reported on
10/10/2001 by Andre Weinand for a bug on Eclipse v2.0. It
described that the system always use the default text editor
to open and display any resource file (e.g. a GIF image)
stored in the repository despite its type. Analyzing the con-
tents of BR2, we have the following observations:

1. This bug report is about two technical functions in
Eclipse: artifact manipulation (MAN) and resource version-
ing (VCM). Consulting Eclipse’s documentation, we found
that MAN involves operations such as opening, viewing, edit-
ing, and saving files/resources. VCM involves operations
such as connecting, committing, updating to repositories, etc.

2. The bug occurred in the code implementing MAN.
That is, the operation opening a resource file in the repos-
itory was incorrectly implemented. We can consider MAN
as a technical issue reported in BR2. We can see that An-
dre Weinand reported that issue in the context of opening
version repository resource (VCM). He also described the
phenomenon in the context of opening an GIF image file.

3. In BR2, the technical function MAN can be recognized
in its contents via the words that are relevant to MAN such
as editor, view, content, resource, file, and text. Similarly, the
relevant terms to VCM in the report are repository, resource,
and file. Considering bug reports as textual documents, we
can view the described technical issues as their topics.

Observations on a duplicate bug report Figure 2 shows
bug report #9779, filed on 02/13/02 by a different person,
Jeff Brown. This report was determined by Eclipse’s devel-
opers as reporting the same bug as in BR2. Analyzing the
content of BR9779 and comparing it to BR2, we can see that

1. BR9779 also reported on the same bug in the technical
function MAN (i.e. file manipulation). Jeff Brown reported
the issue in the context of opening remote files with more de-
tailed information on the code realizing that function: Open-

RemoteFileAction, the class responsible for opening a remote
file, is directly associated with org.eclipse.ui.DefaultTextEditor,
i.e. it always uses the default editor to open a remote file.
He provided a suggestion for fixing by using Workbench’s
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Topic 1

editor        0.24

open          0.23

file            0.14

content      0.14

modify      0.12

view          0.10

Topic 2

repository 0.26

revision    0.18

remote      0.13

version     0.12

resource   0.10

history     0.03

Topic K

navigator   0.25

browser     0.23

display      0.12

image        0.11

text            0.11

graphic      0.10

...

...
... ...

Vocabulary of V words = {editor, open, file, content, ...}

φ1 φ2 φK

φi = word selection for topic i

... ...

Figure 3: Topic and Word Selection [6]

IEditorRegistry for the default editor given the filename. He
also suggested the same mechanism for browsing a resource
history in the context of a navigator.

2. In addition to the similar terms used to describe about
MAN in both reports (e.g. open, editor, file), there are differ-
ent terms expressing similar meaning such as honor, mapping,
resource type, sensible way in BR2, and appropriate, registered ed-

itor, file type in BR9779. The terms for VCM are different in
BR9779 and in BR2, e.g. remote, revision, history. Important-
ly, due to additional information, new terms/topics are used
in BR9779 (e.g. registered editor, user preference, navigator).

Implications Detecting duplicate bug reports has benefits
in software maintenance. Duplicate bug reports filed by peo-
ple with different points of view and experience could pro-
vide different kinds of information about the bug(s), thus,
help in the fixing process. Importantly, detecting such du-
plications will help avoid redundant bug fixing efforts.

Due to the different contexts and phenomena in which
the same bug were exposed and discovered by different re-
porters, the technical issue could be reported with different
terms. Duplicate reports describe the same technical issue.
However, reporters might discuss other relevant topics and
phenomena, and provide the insights on the bug including
suggested fixes and relevant technical functions. Those ob-
servations suggest that the detection of duplicate bug re-
ports could rely not only on the technical terms, but also
on the technical topics in the reports. Intuitively, topics
are latent, semantic features, while terms are visible, textual
features of the reports. They would complement each other,
and could be combined to achieve higher detection accuracy.

We develop Duplicate Bug report Topic Model, DBTM, a
duplicate bug report detection model that takes advantage
of both term-based and topic-based features. In DBTM, a
bug report is viewed as a textual document describing one
or more technical issues in a system. Duplicate bug reports
describe the same technical issues even though the issues
might be reported in different terms. We use Ensemble Av-
eraging [11] to combine IR and topic modeling in DBTM.

3. TOPIC MODELING OF DUPLICATE
BUG REPORTS

In our approach, a system is considered to have K tech-
nical aspects/functionality. Each aspect of the system is
considered as a topic, represented via certain words/terms.
Among them, some aspects are incorrectly implemented with
respect to the system’s requirements, thus, causing the bugs/
issues being reported. The bug database is considered as a
collection of bug reports. Each bug report is considered as
a textual document containing a number of words/terms to

Summary: Opening a remote revision of a file should not always use the 

default text editor.

Description: OpenRemoteFileAction hardwires the editor that is used to 

open remote file to org.eclipse.ui.DefaultTextEditor instead of trying to find 

an appropriate one given the file's type...

Bug Report b with N   wordsb

Topic

...

1 2 K

Topic proportion θb
(a vector of size K)

Topic assignment z   =  [             ,             ,            ,             ,...]
b

Topic 1 Topic 2 Topic 2 Topic 1

0.8

θ
b

b
z

b
w

observed 

words

Figure 4: Document Modeling [6]

report on one or multiple technical issues. From now on,
we use the terms “aspect” and “topic” interchangeably. The
same treatment is for “bug report” and “document”.

Our model, DBTM, is the combination of two compo-
nents: our novel topic model, T-Model, and BM25F model.
T-Model is an extension of LDA [6]. Let us first summarize
the idea of LDA and then present our extension to specialize
it to support the detection of duplicate bug reports.

3.1 Topic Modeling with LDA

3.1.1 Vocabulary, Topic, and Word Selection
In LDA, the words in all bug report documents under

consideration are collected into a common vocabulary V oc
of size V . To describe about a topic, one might use different
words drawn from that vocabulary. Thus, each word in V oc
has a different usage frequency in describing a topic k, and
a topic can be described via one or multiple words.

To capture that, LDA uses a word-selection vector ϕk

of size V for the topic k. Each element of the vector ϕk

represents the probability of the corresponding word at that
element’s position in V oc that is used to describe the topic k.
Each element v in ϕk has a value in [0-1]. For example, for
topic 1, ϕ1 = [0.24, 0.23, 0.14, ...] (Figure 3). That is, the
probability for the first word in V oc to be used in describing
the topic k is 24% while that for the second word is 23%, and
so on. A topic is represented as a set of words with their
probabilities (Figure 3). Putting together all vectors ϕks for
all K topics, we will have a K ×V matrix ϕ called per-topic
word distribution that represents the word selection for all
topics. Note that ϕ is meaningful for the entire collection of
all bug reports, rather than for an individual document.

3.1.2 Bug Report
All the texts from the descriptions and summaries in a

bug report are extracted to form the words of the textual
document b, which describe the technical issue(s) (Figure 4).
The document b contains Nb words. LDA associates to each
document b two key parameters:

a) Topic Assignment Vector zb. Each of the Nb posi-
tions in document b is considered to describe one technical
topic. Thus, topic assignment vector zb for b has the length
of Nb. Each element of the vector zb is an index to one topic.

b) Topic Proportion θb. A document b can describe
about multiple topics. Thus, LDA associates to each doc-
ument b a topic proportion θb to represent the significance
of all topics in b. θb for a document b is represented by
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a vector with K elements, each of which is a value within
[0-1] to model the proportion of one topic in document b.
Each value refers to one topic and the total of those values
is 100%. The higher the value θb[k] is, the more words on
topic k exist in the document b. For example, in the bug
report BR9779, if θb = [0.20, 0.24, 0.12, ...], 20% of all words
in b are about file editing, 24% are about file versioning, etc.

3.1.3 Generative Process
LDA belongs to a type of machine learning called genera-

tive model. From its generative perspective, a bug report b
is viewed as an “instance” generated by a “machine” with 3
aforementioned variables zb, θb, ϕ (Figure 4). Given a doc-
ument b of size Nb, the machine generates the vector zb de-
scribing the topic of every position in the document b based
on the topic proportion θb of b. For each position, it then
generates a word wb based on the topic assigned to that po-
sition and the per-topic word distribution ϕi corresponding
to that topic. This is called a generative process.

The words in the documents in a project’s history are the
observed data. One can train the LDA model with historical
data to derive those three parameters to fit the best with
the observed data. As a new document bnew comes, with
the learned parameters, LDA derives the topic assignment
zbnew and the proportion θbnew of those topics for bnew.

3.2 T-Model for Duplicate Bug Reports
To support the detection of duplicate bug reports, we

specifically develop a novel topic model, called T-Model.
Figure 5 shows the graphical notation of T-Model. Our idea
is as follows. Each bug report bi is modeled by a LDA,
which is represented via three parameters: topic proportion
θbi , topic assignment zbi , and the selected terms wbi . While
θbi and zbi are latent, the terms wbi are observable and de-
termined by the topic assignment zbi and word selection ϕ.

One or more technical functions in the system were incor-
rectly implemented and reported in multiple duplicate bug
reports. The shared technical issue(s) F in those reports
is considered as topic(s) and its topic distribution/propor-
tion is denoted by θF (Figure 5). Let us use b1,..., bM to
denote M duplicate bug reports for the shared technical is-
sue F . Those M reports must describe that technical topic.
However, in addition to that shared topic, they might also
describe other topics. The local topics for each bug report
bi are modeled by the topic proportion θbi . Examples of the
local topics are image files in BR2 and navigator in BR9779.

The topic assignment zbi in each bug report bi is affected
by both the topic proportions from itself (θbi) and from the
buggy topic (θF ). Thus, in Figure 5, there are dependencies
from θF to each of the topic assignment zbis of the duplicate
bug reports b1 to bM .

The combined topic proportion θ∗
bi

for a bug report bi

is a combination of its local topic proportion θbi and topic
proportion θF of the shared technical topic. In T-Model,
θ∗

bi
= θbi × θF (Hadamard product). If a topic k has high

proportion in both θbi and θF , it also has a high proportion
in θ∗

bi
. We use hyper parameters α and β as in LDA. α is the

parameter of the uniform Dirichlet prior on topic distribu-
tions θbi and θF . β is the parameter of the uniform Dirichlet
prior on the per-topic word selection distribution ϕ.

The parameters of the T-Model can be learned from train-
ing stage and then used in predicting stage to estimate the
topics of bug reports and to detect the duplicate ones.

θ
b

b
z

b
w

θ
b

b
z

b
w

θ
b

b
z

b
w

θ
F

α

...

φ

β

i

i

i

1

1

1

M

M

M

Figure 5: Topic Model for Duplicate Bug Reports

For training, DBTM will be trained from historical data
including bug reports and their duplication information. The
observed words of bug reports and duplicate relations among
them will be used to estimate the topic assignment vectors of
all bug reports, the topic proportion of the shared technical
issue(s), and the local topic proportions of the bug reports.
The variables will be trained to make the model fit most
with both the report contents and the duplicate relations.
Our training algorithm will be presented in Section 4.

For prediction, we apply DBTM to a new bug report bnew.
It uses the trained parameters to estimate the topic propor-
tion θbnew of bnew. θbnew is used to find groups of duplicate
bug reports which could share technical issue(s), i.e having
high topic proportion similarity, and therefore are poten-
tially duplicate of bnew. The topic proportion similarity be-
tween bnew and a duplicate report group G is measured as:

topicsim(bnew, G) = max
bi∈G

(topicsim(bnew, bi))

where topicsim(bnew, bi) is the topic proportion similarity be-
tween two bug reports bnew and bi. That is, the highest sim-
ilarity among topicsim(bnew, bi) for all bis will be selected as
the topic proportion similarity between bnew and group G.
Jensen-Shannon divergence, a technique to measure the sim-
ilarity between two distributions, is used to compute topic
proportion similarity. Finally, all duplicate report groups
Gjs are ranked, and the top-k most similar groups are shown
to bug triagers to check for potential duplications for bnew.

3.3 BM25F for Textual Similarity Measure
This section describes BM25F, an advanced document

similarity function based on weighted word vectors of docu-
ments [22, 29]. BM25F considers the retrieval of structured
documents which are composed of several fields. Each field
in turn corresponds to a word vector, aka. a bag of words.
Each field in a structure document could be assigned differ-
ent degrees of importance in the retrieval process. Notation-
wise, given a set D of N documents, every document d has
F fields, and the bag of words in the f th field is denoted
by d[f ], where 1 ≤ f ≤ F . Bug reports are structured doc-
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uments composed of summary and description fields; each
field corresponds to a bag of words that describe the report.

BM25F computes the similarity between a query and a
document based on the common words that are shared be-
tween them. BM25F introduces two word importance fac-
tors: global and local. To measure global importance of a
word, BM25F computes inverse document frequency (IDF):

IDF (t) = log
N

Nd
(1)

In (1), Nd is the number of documents containing the word t.
To measure local importance of a word t in a document d,
BM25F measures term frequency TFD which aggregates the
local importance of word t for every field in the document d:

TFD(d, t) =

F∑

f=1

wf × occurrences(d[f ], t)

1 − bf +
bf ×lengthf

average lengthf

(2)

In (2), wf is the weight of field f ; occurrences(d[f ], t) is the
number of times word t appears in field f of document d;
lengthf is the size of the bag of words corresponding to d[f ];
average lengthf is the average size of the bag of words of the
f th fields of all documents in D; and bf is a parameter (0 ≤
bf ≤ 1) that controls the normalization of field lengths: bf =
0 and bf = 1 mean no and full normalization, respectively.

Based on the global and local importance, the BM25F
score for a document d and a query q is computed as follows:

BM25F (d, q) =
∑

t∈d∩q

IDF (t) × TFD(d, t)

c + TFD(d, t)
(3)

In (3), t is the word that appears in both d and q, and c
(c ≥ 0) is a parameter that controls the relative contribution
of TFD(d, t) to the final score.

From Equations (2) and (3), there are a number of free
parameters to be specified – these are wf and bf for each
field f , and c. Thus, with F fields, we need to specify the
value of (2F + 1) parameters. These parameters can be
automatically determined based on a set of training data
following a gradient descent approach as proposed in [30].

3.4 Combination of Topic Model and BM25F
This section describes our technique to combine T-Model

and BM25F into DBTM to detect duplicate bug reports. In
our model, we have two prediction experts, y1 is an expert
based on topic-based features (T-Model), and y2 is another
expert based on textual features (BM25F). The two experts
have different advantages in the prediction of duplicate bug
reports. The textual expert (y2) is stricter in comparison,
therefore, it is better in the detection of duplicate bug re-
ports written with the same textual tokens. However, it does
not work well with the bug reports that describe the same
technical issue with different terms. On the other hand,
T-Model can detect the topic similarity between two bug
reports even when they are not similar in texts. However,
since topic is a way of dimension reduction of text contents,
the comparison in topic is less stricter than in texts.

By combining both models, we take advantage of both
worlds: textual and topic similarity measurement. To do
that, we apply a machine learning technique called Ensem-
ble Averaging, a linear combination of experts [11]. The
combined expert is a linear combination of the two experts:

y = α1 ∗ y1 + α2 ∗ y2 (4)

where α1 and α2 are the parameters to control the signif-
icance of experts in estimating duplicate bug reports. They
satisfy α1 + α2 = 1 and are project-specific. If α1 = 1 and
α2 = 0, only topic-based expert is used. If α1 = 0 and
α2 = 1, only text-based one is used. The optimal values of
α1 and α2 are learned from the training set (Section 4.3).

4. ALGORITHMS
Let us describe our algorithms for training the parameters

of T-Model and those of the combined model DBTM, and
our prediction algorithm using the trained parameters.

4.1 Training Algorithm for T-Model
This algorithm aims to estimate T-Model’s parameters

such as zb, θb, and ϕBR given the training data from a bug
database including the collection of bug reports B, and the
set of groups of duplicate bug reports {Gj(b)}.

We use Gibbs sampling and extend the training algorithm
in LDA [6] to support our DBTM. Initially, the parameters
zb and ϕBR are assigned with random values. The algo-
rithm then iteratively estimates every parameter based on
the distribution calculated from other sampled values. The
iterative process terminates when the estimated values con-
verge, that is when the sum of the differences between of
the current estimated topic distributions and previous esti-
mated ones is smaller than a threshold. In our implementa-
tion, the process stops after a number of iterations that is
large enough to ensure a small error. The detailed steps are:

1. Estimating the topic assignment for bug reports
in B: With each bug report b in B, T-Model estimates the
topic assignment zb[i] for position i. For each topic k in K
topics, it estimates the probability that topic k is assigned
for position i in document b. Then, it samples a topic based
on the probability values of ks. Since each bug report has
or does not have duplicate ones, two formulae are needed.

Case 1: When a bug report has no duplicate, the topic as-
signment estimation follows the Gibbs sampling in LDA [6]:

p(zi = k|zb[−i], wb) =
(Nb[−i, k] + α)

(Nb − 1 + Kα)

(NBR,k[−i, wi] + β)

(NBR,k − 1 + V β)
(5)

where Nb[−i, k] is the number of words in b (except for the
current position i) that are assigned to topic k; Nb is the
total number of words in b; NBR,k[−i, wi] is the number
of words wi in all bug reports B (except for the current
position) that are assigned to topic k; and NBR,k is the
number of all words in B that are assigned to topic k.

Case 2: If a bug report b belongs to a duplicate group
Gj , they share the same technical issue. Thus, we use the
following formula to describe the fact of sharing topic in
addition to the local topics of each bug report itself:

p(zi = k|zb[−i], wb) =
(N∗b[−i, k] + α)

(N ∗b [−i] + Kα)

(NBR,k[−i, wi] + β)

(NBR,k − 1 + V β)
(6)

where NBR,k[−i, wi] is the number of words wi in all bug re-
ports in B, except for the current position, that are assigned
to k, and NBR,k is the number of words in S describing k.

Comparing to (5), since a duplicate bug report shares the
buggy topic with other bug reports in its duplicate group,
the proportion θ∗ of a topic k described in the bug report in-
cludes its local topic proportion θb and the topic proportions
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1 // Predict and return a ranked list of groups of duplicate reports
2 function PredictTModel(ϕBR,BugReport bnew , DuplicateGroups Gj)
3 // Estimate topic proportion of new bug report bnew

4 repeat

5 θ′
bnew

← θbnew

6 for (i = 1 to Nb)
7 θbnew = EstimateZB2(bnew , i) //estimate topic at position i
8 end
9 θbnew [k] = Nbnew [k]/Nbnew //estimate topic proportion

10 until (|θbnew − θb′
new
| <= ϵ)

11 // Calculate topic similarity between bug report bnew and Gj

12 for (DuplicateGroups Gj ∈ B)
13 sim2(bnew, Gj) = TopicSim(bnew, Gj)
14 end
15 return list (sim2(bnew, Gj))
16 end
17 // −−−−−− Estimate topic assignment for position i in b −−−−−
18 function EstimateZB2(BugReport bnew ,, int i)

19 p(zbnew [i] = k)← (Nbnew
[−i,k]+α)

(Nbnew
−1+Kα)

(NBR,k[−i,wi]+β)

(NBR,k−1+V β)

20 zbnew [i]← sample(p(zbnew [i]))
21 end
22 //Compute topic similarity of bnew and a group of duplicate reports
23 function TopicSim(bnew , Gj)
24 for (BugReports bi ∈ Gj)
25 TopicSim(bnew, bi) = 1− JSDivergence(θbnew , θbi

)

26 end
27 TopicSim(bnew, Gj) = max

bi∈Gj
(TopicSim(bnew, bi))

28 return TopicSim(bnew, Gj)
29 end

Figure 6: Prediction Algorithm

of shared buggy topic θFj of the duplicate report group Gj .
From (5) and (6), we have N∗

b [−i, k] = Nb[−i, k]NGj [k] and
n∗

b [−i] = (Nb − 1)NGj , in which Nb[−i, k] is the number of
words in b (except for the current position i) that are as-
signed to topic k. Nb is the total number of words in b.
NGj [k] is the total number of positions assigned to topic k
in all bug reports in duplicate group Gj and NGj is the total
length of those reports. Note that this equation refers to the
impact of the shared topic(s) in the estimation of θb[k] since
θFj [k] is reflected (and estimated) via ratio NGj [k]/NGj .

2. Estimating topic proportion θb for a bug report b:
Once topic assignments for all positions in b are estimated,
the topic proportion θb[k] of topic k in b can be approximated
by simply calculating the ratio between the number of words
describing the topic k and the length of the document.

3. Estimating word distribution ϕBR: The last step is
to estimate the per-topic word distribution for each word wi

from V oc and topic k. ϕk[wi] is approximated by the ratio
between the number of times that the word at i-th index
in V oc is used to describe topic k and the total number of
times that any word is used to describe topic k.

4.2 Prediction Algorithm for T-Model
The goal of this algorithm is to estimate the topic propor-

tion of a newly arrived bug report bnew and calculate the
topic similarity to other bug reports and duplicate groups.
The algorithm uses the trained model from the previous al-
gorithm to estimate the topic proportion of bnew, and uses
the Jensen-Shannon divergence to calculate the topic sim-
ilarity between bnew and each bug report in all groups of
duplicate reports. The similarity sim1, in combination with
BM25F-based similarity sim2, will be used to estimate how
likely b can be a duplicate of the reports in the group G.

1 // −−−−−−−−−− Training ensemble weight α1 −−−−−−−−
2 function TrainAlpha(Reports B, TrainGrps Gtrain, TestGrps Gtest)
3 MAP (Gtest, Lpred)← 0
4 α1 = 0
5 // Training for T−Model and BM25F models
6 TrainBM25F(B, Gtrain)
7 TrainTModel(B, Gtrain)
8 // Compute text and topic similarity of a test report and a group
9 list (sim1(Btest, Gtest) = PredictBM25F(Btest, Gtest)

10 list (sim2(Btest, Gtest) = PredictTModel(ϕBR, Btest, Gtest)
11 //Estimate α1

12 for α1 from 0 to 1
13 increase α1 by 0.01
14 // Estimate combined similarity , build a ranked list of groups
15 sim(Btest, Gtest) =

α1 ∗ sim1(Btest, Gtest) + (1− α1) ∗ sim2(Btest, Gtest)
16 Lpred = rankedList(sim(Btest, G))
17 return the α1 value corresponding to the maximum MAP
18 end

Figure 7: Ensemble Weight Training Algorithm

The output of the algorithm is a list of potential duplicate
bug report groups corresponding to the given bug report.

Figure 6 describes the steps. Lines 4-10 show the estima-
tion step for parameters zbnew and θbnew for new bug report
bnew (the value of ϕBR is fixed after training phase and used
to estimate z and θ). Since the real duplicate links between
bnew and bug report groups G are unknown, we use LDA
Gibbs sampling equation to estimate the new bug report’s
topic assignment and topic proportion (Case 1, Section 4.1).
The estimation for zbnew is described in EstimateZB2 (lines
18-21). In the equation, Nbnew [−i, k] is the number of words
in bnew (except the current position i) that are assigned
to topic k. Nbnew is the total number of words in bnew.
NBR,k[−i, wi] is the number of words wi in the collection of
bug reports B (except the current position) that are assigned
to topic k. NBR,k is the number of words in B assigned to k.

To find the topic similarity between bnew and a group of
duplicate reports Gj , we calculate TopicSim(bnew, Gj) (lines
12-14). TopicSim(bnew, Gj) (lines 23-29) is calculated by find-
ing the maximum topic similarity between bnew and all bug
reports bis in Gj (line 27). We use the Jensen-Shannon
divergence (JSD) to measure the distribution distance be-
tween bnew and each bi (line 25). Since JSD is a symmetric
measure in [0..1], 1 − JSD is topic similarity in [0..1]. Fi-
nally, the algorithm returns a list of topic similarity values
between bnew and all groups of duplicate reports.

4.3 Training for Combined Model DBTM
DBTM is linearly combined from T-Model and BM25F.

Thus, we need to determine α1 and α2 for calculating the
similarity between bug reports and duplicate report groups.
Since α1 + α2 = 1 by definition, DBTM has to learn α1

only. α1 can be learned from the training set by using simple
cross-validation and a searching algorithm.

Figure 7 shows the training algorithm. Parameters are
initialized at lowest possible values (lines 3-4). A training
set is used for k-fold cross validation, thus, at each cross vali-
dation step, we have (k−1) folds of training duplicate report
groups Gtrain and one remaining fold of testing group Gtest.
DBTM first trains T-Model and BM25F model (lines 6-7).
The parameters of trained models are used for estimating
text similarity levels (line 9) and topic similarity levels (line
10) of a test bug report and a duplicate report group. Those
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similarity levels are combined into sim(Btest, Gtest) via a
varying weight α1 (line 15) with the step of 0.01. The com-
bined similarity values are used to rank the links between
bug reports and duplicate report groups (line 16). Those
ranked lists of links Lpred are used to evaluate a goal func-
tion MAP(Gtest, Lpred), which is used to find the optimized
value of α1. The α1 value corresponding to the highest value
for MAP will be returned. The goal function MAP in our
algorithm is the mean average precision as proposed in [24].

MAP (Ltest, Lpred) =
1

|Ltest|

|Ltest|∑

i=1

1

indexi

where Ltest is the real duplicate links in the testing set; Lpred

is the ranked list of predicted links; indexi is the index where
the true duplicate group is retrieved for the i-th query. Since
MAP measures how well the algorithm ranks the true links,
it can be used as a goal function in training DBTM.

The weights α1 and α2 trained from TrainAlpha are used to
calculate the combination of text and topic similarity sim =
α1 ∗sim1 +α2 ∗sim2, where sim1 and sim2 are the text and
topic similarity between a bug report bnew and the duplicate
report group G. The higher the combined similarity, the
more likely bnew is a duplicate of the reports in G.

5. EVALUATION
This section describes our empirical evaluation on DBTM’s

detection accuracy in comparison with the state-of-the-art
approaches, REP [24] and RTM [9]. All experiments were
carried out on a computer with CPU AMD Phenom II X4
965 3.0 GHz, 8GB RAM, and Windows 7.

5.1 Data Sets and Feature Extraction
We used the same data sets of bug reports in the open-

source projects as in REP [24] (Table 1). Column Time period

displays the time period of collected bug reports. Columns
Report and Dup show the numbers of bug reports and du-
plicate ones, respectively. Columns Train and Test show the
number of the duplicate bug reports used for training and
testing, respectively. The duplication information among
bug reports is also available in that data set. The data is
used to train T-Model and ensemble weights, and then used
to evaluate DBTM’s accuracy in detecting the duplication
between a bug report and the duplicate bug report groups.

The summary and description of a bug report were merged
and considered as a document. It then went through pre-
processing such as stemming, and removing grammatical
and stop words, and single-occurrence words as in REP [24].
Then, all the words were collected and indexed into a vo-
cabulary. After this phase, a bug report is represented as a
vector of the indexes of its words in the vocabulary.

5.2 Evaluation Setting and Metrics
The evaluation setting is the same as in REP [24]. All bug

reports were sorted in the chronological order. We divided
the data set into two sets. The training set includes the first
M reports in the repository, of which 200 reports are du-
plicates. It was used to train the parameters for T-Model,
BM25F, and DBTM. The remaining reports were used for
testing. At each execution, we ran DBTM through the test-
ing reports in the chronological order. When it determines
a duplicate report b, it returns the list of top-k potential du-
plicate report groups. If a true duplicate report group G is

Table 1: Statistics of All Bug Report Data
Project Time period Report Dup Train Test
OpenOffice 01/01/2008 - 12/21/2010 31,138 3,371 200 3,171
Mozilla 01/01/2010 - 12/31/2010 75,653 6,925 200 6,725
Eclipse 01/01/2008 - 12/31/2008 45,234 3,080 200 2,880

Figure 8: Accuracy with Varied Numbers of Topics

found in the top-k list, we count it as a hit. We then added
b to that group for later training. The top-k accuracy (i.e.
recall rate) is measured by the ratio of the number of hits
over the total number of considered bug reports.

5.3 Sensitivity Analysis
In the first experiment, we evaluated the sensitivity of

DBTM’s accuracy with respect to different numbers of top-
ics K. We ran DBTM on Eclipse data set as K was varied
from 20 to 400 with the step of 20, and then measured top-10
detection accuracy. Figure 8 shows the result. The shapes
of the graphs for three systems are consistent. That is, as
K is small (K<60), accuracy is low. This is reasonable be-
cause the number of features for bug reports is too small to
distinguish their technical functions, thus, there are many
documents classified into the same topic group even though
they contain other technical topics. When the number of
topics increases, accuracy increases as well and becomes sta-
ble at some ranges. The stable ranges are slightly different
for different projects, however, they are large: K=[140-320]
for Eclipse, K=[120-300] for OpenOffice, and K=[100-240]
for Mozilla. This suggests that in any value of K in this
range for each project gives high, stable accuracy. The rea-
son might be because the number of topics in these ranges
reflect well the numbers of technical issues in those bug re-
ports. However, as K is larger (K>380), accuracy starts de-
creasing because the nuanced topics appear and topics may
begin to overlap semantically with each other. It causes
a document to have many topics with similar proportions.
This overfitting problem degrades accuracy.

5.4 Accuracy Comparison
In this experiment, we aimed to evaluate how topic-based

features in our topic model T-Model, in combination with
BM25F, can help to detect duplicate bug reports. We also
compared our combined model DBTM with REP [24]. The
parameter K of DBTM in this experiment was selected after
fine-tuning for best results as in the previous experiment.
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Figure 9: Accuracy Comparison in Eclipse

Figure 9 displays the accuracy result of DBTM in compar-
ison with REP on Eclipse data set. We used REP’s result
from [24] because the same data sets and experiment setting
were used in this study. As shown, DBTM achieves very high
accuracy in detecting bug reports. For a new bug report, in
57% of the detection cases, DBTM can correctly detect the
duplication (if any) with just a single recommended bug re-
port (i.e. the master report of the suggested group). Within
a list of top-5 resulting bug reports, it correctly detects the
duplication of a given report in 76% of the cases. With a
list of 10 reports, it can correctly detect in 82% of the cases.
In comparison, DBTM achieves higher accuracy from 10%-
13% for the resulting lists of top 1-10 bug reports. That is,
it can relatively improve REP by up to 20% in accuracy.

We also compared the performance of two individual com-
ponents in DBTM. We implemented BM25F for comparison.
As seen, the IR approach BM25F generally achieves higher
accuracy than T-Model alone (except for top-5 accuracy and
above for Eclipse). Examining this case, we see that topic
model tends to group the bug reports with the same top-
ics, but not necessarily duplicates of one another. REP [24],
an extension from BM25F, outperformed both topic model
and BM25F. Those features such as non-textual fields (e.g.
product, component, and version) clearly help improve the
performance of BM25F. However, because DBTM achieves
10%-13% higher than REP, the topic-based features from T-
Model help improve further the performance of BM25F than
those non-textual fields. We found that in several cases,
REP was not able to detect the duplications of bug reports
whose texts are not similar, while they can be identified by
DBTM via topic features. That is, DBTM takes the best of
both worlds: topic modeling and information retrieval.

The results are also consistent in other data sets: OpenOf-
fice and Mozilla. Figures 10 and 11 display the accuracy
results on OpenOffice and Mozilla data sets, respectively.
DBTM consistently achieves very high levels of accuracy (42-
43% for top-1, 65-67% for top-5, and 73-74% for top-10 ac-
curacy). In comparison with REP [24], DBTM consistently
improves over REP with higher accuracy from 4%-6.5% for
OpenOffice and 5%-7% for Mozilla (i.e. 10-12% relatively).

To compare DBTM with a state-of-the-art topic model,
RTM [9], we implemented the combined model of RTM
and BM25F. RTM is a topic model extended from LDA by

Figure 10: Accuracy Comparison in OpenOffice

Figure 11: Accuracy Comparison in Mozilla

modeling the presence of the observed links between docu-
ments. As seen in Figures 9-11, our DBTM outperformed
RTM+BM25F from 4-7% (i.e. 5-11% relatively). This result
shows that combining topic modeling with IR can achieve
better results than individual techniques. Moreover, our T-
Model is more specialized toward duplicate bug reports and
performed better than RTM. This is reasonable. First, in
RTM [9], the presence of a link between two documents de-
pends on the similarity of their respective topic proportions.
Two duplicate bug reports do not necessarily have similar
topic proportions (Section 2). They might contain more of
their own topics. Second, in practice, there are often more
than two duplicate reports in a group. RTM must be trained
for each pair of those duplicate reports and it aims to find the
common topic structure among the document pair, rather
than the shared buggy topic(s) among all duplicate reports
in a group. DBTM can naturally find the shared topic(s)
and does not focus on individual pairs. For these data sets,
we found that there are many groups with two duplicate re-
ports. Thus, the results for RTM might get worse in other
subject systems if groups contain more than two reports.

5.5 Time Efficiency
Figure 12 shows DBTM’s time efficiency result. The size

of a project is the total of the number of bug reports and

77



Figure 12: Time Efficiency

the number of duplicate bug report groups in each data set
because training/predicting considers both bug reports and
duplicate bug report groups. The sizes are 34,509, 48,314,
and 82,578 for OpenOffice, Eclipse, and Mozilla respectively.
The total training and predicting time for those projects
are 1,174.8s, 1,819s, and 3,323.7s respectively. As seen, the

time is about linear to a project’s size, e.g. time(Eclipse)
size(Eclipse)

≈
time(Mozilla)
size(Mozilla)

. Importantly, DBTM is highly efficient. For a

large project like Mozilla, it took about 5 minutes for train-
ing (which could be run in background). For predicting, on
average, prediction time for one bug report are just 0.031s,
0.035s, and 0.041s for OpenOffice, Eclipse, and Mozilla, re-
spectively. In brief, DBTM is scalable and efficient to be
used interactively in detecting duplicate bug reports.

Interesting Case Studies Figure 13 shows two duplicate
bug reports detected by DBTM. Except the terms NPE
(NullPointerException) and StructuredViewer, which are popular
and common in the project, the two reports contain several
different terms because the reporters found the bug in two
different usage scenarios. That leads to different exception
traces: one involving image updating, and another on wid-
get selection. We noticed that when running BM25F model
by itself, bug report #225169 is ranked 8th in the list that
could be duplicate of bug report #225337 due to the dis-
similarity in texts. However, after extracting topics via the
co-occurrences of other terms such as startup, first time, RSE

perspective, wizard, etc in the previous duplicate reports (e.g.
from bug report #218304, not shown), DBTM ranked it at
the highest position and detected them as duplicate ones.

Threats to Validity We evaluated only on three open-
source projects. Different projects might have different qual-
ity of bug reports. However, Eclipse, Mozilla and OpenOf-
fice are long-lasting projects and were used in prior research.
They are sufficiently representative for our comparison. We
also should validate our method on commercial projects.

6. RELATED WORK
Several approaches have been introduced to support the

automatic detection of duplicate bug reports. Earlier ap-
proaches have applied traditional information retrieval (IR)
methods to this problem [14, 23]. Hiew et al. [14] use Vector
Space Model (VSM) by modeling a bug report as a vector of
textual features computed from Tf-Idf term weighting mea-
surement. Vector similarity is used to measure the similar-
ity among bug reports. Runeson et al.’s [23] combine VSM

Bug Report #225169
Summary: Get NPE when startup RSE on a new workspace
Description:
Using Eclipse M5 driver and RSE I20080401-0935 build. Start
eclipse on a new workspace, and switch to RSE perspective. I could
see the following error in the log. But otherwise, things are normal.
java.lang.NullPointerException at
org.eclipse.....getImageDescriptor(SystemView...java:123)
...
at org.eclipse....doUpdateItem(AbstractTreeViewer.java:1010)
at org.eclipse....doUpdateItem(SafeTreeViewer.java:79)
at org.eclipse....run(StructuredViewer.java:466)...
———————————————————————–
Bug Report #225337
Summary: NPE when selecting linux connection in wizard for the
first time
Description:
After starting an eclipse for the first time, when I went select Linux
in the new connection wizard, I hit this exception. When I tried
again a few times later, I wasn’t able to hit it.
java.lang.NullPointerException at
org.eclipse....getAdditionalWizardPages(RSEDefault...:404)
...
at org.eclipse....updateSelection(StructuredViewer.java:2062)
at org.eclipse....handleSelect(StructuredViewer.java:1138)
at org.eclipse....widgetSelected(StructuredViewer.java:1168)...

Figure 13: Duplicate Bug Reports in Eclipse

with simple natural language processing (NLP) to improve
further. In addition to NLP, Wang et al. [26] also take ad-
vantage of the information on execution traces relevant to
the bugs in the bug reports. However, such information
might not always be available as it is reported that only a
small percentage of bug reports (0.83%) contain execution
traces [25]. Comparing to those approaches, DBTM oper-
ates at a higher level of abstraction by also comparing the
underlying technical topics in the bug reports.

Another line of approach to this problem is machine learn-
ing (ML). Jalbert and Weimer [16] developed a binary classi-
fier model by performing a linear regression over textual fea-
tures of bug reports computed from the frequencies of terms
in bug reports. To make a binary classifier, they specify
an output value cutoff over such features that distinguishes
between duplication and non-duplication. Support Vector
Machine (SVM) was used by Sun et al. [25] in which to
train an SVM classifier, all pairs of duplicate bug reports
are formed and considered as the positive samples, and all
other pairs of non-duplicate bug reports are used as the neg-
ative ones. For prediction, a new report is paired with all
existing reports. Then, each pair is fed into the trained
SVM model and classified as positive or negative. Positive
pairs imply duplicate reports. The key limitation of those
aforementioned ML approaches is low time efficiency.

To overcome that, recent work by Sun et al. [24] intro-
duced REP, a novel IR technique that extends BM25F to
consider the long bug reports and the meta-data such as the
reported product, component, and version. They showed
that REP outperformed the state-of-the-art ML approaches
in both accuracy and efficiency. In this work, we combine
BM25F with our novel topic model, T-Model, to address
the cases where duplicate reports have different terms for
the same technical issue. To our knowledge, DBTM is the
first work in which topic-based features are used with IR to
support the detection of duplicate bug reports.
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Our prior work, BugScout [20], has applied topic model-
ing in the bug localization problem in which for a new bug
report, it provides a list of potential buggy files for the re-
ported issue. DBTM is also based on topic modeling, how-
ever, it has significant differences from BugScout. First,
while DBTM has one monolithic model with one single vo-
cabulary set, BugScout correlates the terms in two separate
sub-models to represent two different types of documents
with two vocabulary sets (source code in a programming
language, and bug reports in a natural language). Second,
in BugScout, the buggy source files, which are observable,
affect the topic assignment of the corresponding bug report.
In DBTM, it is more challenging because the buggy topics
(i.e. the technical issues) are latent and DBTM correlates
the terms in the duplicate bug reports that share the tech-
nical issue(s) without determining it.

Other researchers focus generally on bug reports. It is sug-
gested that duplicate reports complement to one another to
help in bug fixing [4]. Bettenburg et al. [3] analyzed informa-
tion mismatch between what developers need and what users
supply to determine good properties in bug reports. Struc-
tural information from bug reports has been shown to be
useful [5, 18]. Other researchers studied bug reports based
on their types, quality, severity [15, 3, 15, 1, 21, 10, 19, 2,
27, 12]. From bug reports, prediction tools [28, 17] can tell
whether a bug could be resolved with certain fixing time.
Approaches for automatic bug triaging include [1, 7, 8].

7. CONCLUSIONS
This paper introduces DBTM, a duplicate bug report de-

tection approach that considers not only IR-based features
but also topic-based features. DBTM models each bug re-
port as a textual document describing one or more technical
issues, and models duplicate bug reports as the ones on the
same technical issue. Trained with historical data including
identified duplicate reports, DBTM can learn sets of differ-
ent terms describing the same technical issues and detect
other not-yet-identified duplicate ones. Our empirical eval-
uation on real-world systems shows that DBTM can improve
the state-of-the-art approaches by up to 20% in accuracy.
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