
Improved Duplicate Bug Report Identification

Yuan Tian1, Chengnian Sun2, and David Lo1

1School of Information Systems, Singapore Management University
2School of Computing, National University of Singapore

Email: yuan.tian.2011@exchange.smu.edu.sg, suncn@nus.edu.sg, davidlo@smu.edu.sg

Abstract—Bugs are prevalent in software systems. To im-
prove the reliability of software systems, developers often allow
end users to provide feedback on bugs that they encounter.
Users could perform this by sending a bug report in a bug
report management system like Bugzilla. This process however
is uncoordinated and distributed, which means that many
users could submit bug reports reporting the same problem.
These are referred to as duplicate bug reports. The existence
of many duplicate bug reports may cause much unnecessary
manual efforts as often a triager would need to manually tag
bug reports as being duplicates. Recently, there have been a
number of studies that investigate duplicate bug report problem
which in effect answer the following question: given a new bug
report, retrieve k other similar bug reports. This, however,
still requires substantive manual effort which could be reduced
further. Jalbert and Weimer are the first to introduce the direct
detection of duplicate bug reports; it answers the question:
given a new bug report, classify if it as a duplicate bug report
or not. In this paper, we extend Jalbert and Weimer’s work
by improving the accuracy of automated duplicate bug report
identification. We experiments with bug reports from Mozilla
bug tracking system which were reported between February
2005 to October 2005, and find that we could improve the
accuracy of the previous approach by about 160%.

Keywords-Duplicate bug reports; Relative similarity;
Bugzilla

I. INTRODUCTION

Bugs are prevalent; software defects are found in most
if not all software systems. Bug reporting process is a
way to elicit feedback from end users on defects and
failures that affect them. Systems like Bugzilla or Jira are
frequently used to aid this bug reporting process. From the
software developers side, special personnel often referred to
as bug triagers, would then go through these bug reports
and assign suitable developers to address a particular report.
Not all reports are assigned, some reports are dropped after
screening by the bug triagers.

Despite the benefit of bug reporting process, bug reporting
in nature is an uncoordinated distributed process. The same
defect and failure could affect many users. These users could
simultaneously or in parallel submit reports describing the
same defect. These reports are termed as duplicate bug
reports. Bug triagers should not assign these reports to
different developers; this would be a waste of effort and
a potential of causing conflicting changes being made to a
system.

Bug triagers need to manually go through the list of bug
reports to detect if they are duplicate or not. This takes
much effort. It has been reported in 2005 that for Mozilla
“everyday almost 300 bugs appear that need triaging. This
is far too much for only the Mozilla programmers to
handle” [2]. Thus there is a need for an automated tool to
help bug triagers make decision if a bug is a duplicate report
or not. This work provides such a tool.

Why does helping bug triagers relevant for building or
maintaining dependable systems? Aiding bug triagers job
would make bugs processed more efficiently. Developers
often have a limited amount of time before a product release.
Many of bug reports take days even months to be closed.
Thus, with improved efficiency in triaging bugs, more bugs
could be fixed in a given amount of time. Thus, we believe
improving bug triaging would contribute towards better
maintenance of dependable systems.

To address the problem of duplicate bug reports, in the
research community there have been two threads of work.
One provides a solution to address the following problem:

Given a new bug report, return other bug reports that are
similar to it.

This thread of work include studies by Runeson et al. [18],
Wang et al. [23], Sun et al. [21], [20], etc. We refer to this as
report retrieval problem as the task is similar to the retrieval
of similar document from a corpus. Another thread of work
proposed by Jalbert and Weimer [10] addresses the following
problem:

Given a new bug report, classify it as either a duplicate
bug report or not.

We refer to this as report classification problem as the
task is to assign one out of the two labels, i.e. duplicate or
not, to bug reports.

While the first thread of work (report retrieval) has
received much attention, the latter (report classification)
receives less. Indeed, to the best of our knowledge, there
has been no study that extend the initial work by Jalbert and
Weimer. We believe both threads of work complement one
another in helping bug triagers do their job better. Report
retrieval helps bug triagers perform manual identification
of duplicate reports. Report classification could more fully
automate the identification of duplicate reports. With report

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.48

378

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.48

379

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.48

385

retrieval and classification, triagers not only can see the top-
k similar reports but also some flags to identify suspicious
bug reports that are likely to be duplicates.

Jalbert and Weimer compute the similarity between a bug
report with other reports. The highest similarity score (the
similarity between a bug report to its nearest “neighbour”)
is used as a feature along with other surface features such as
the component where the bug occurs, the day of the week,
etc. A similarity measure based on the frequency of common
terms appearing in the report is used in the study. They also
cluster bug reports and use it as features with the intuition
that clusters with one member tend to contain non-duplicate
reports.

To improve the work by Jalbert and Weimer, we consider
a number of extensions. First, rather than considering the
frequency of common terms as a similarity measure we
use an extension of BM25F [17], [24]. BM25F has been
used widely in the information retrieval community and has
been shown to outperform term frequency based similarity
measure. The extension of BM25F has also been shown to be
the most accurate measure for report retrieval [20]. Second,
we consider an additional feature namely the differences
in the “product” field of different bug reports. Bug reports
specifying problems for different “product” are likely to be
non-duplicate of one another. Third, rather than analyzing
just top-1 most similar report, we build a composite feature
that look into top-k most similar reports. We would like
to compute a measure we call relative similarity which
measures the relative similarity of a bug report to the top-1
with respect to the distances of other similar bug reports.
Our intuition is that similarity distance varies depending on
the topic of bug reports and we use distances between other
similar reports to decide the right threshold when similar
bug reports become duplicate bug reports.

We have experimented our approach on bug reports from
Mozilla bug tracking system which were reported between
February 2005 to October 2005, and show that our approach
could outperform the previous study by Jalbert and Weimer.
We increase the number of bug reports detected (or true
positive rate) by 200% (from 8% to 24%) while keeping the
number of false positives low (at 9%), i.e., a true negative
rate of 91%. Computing the harmonic mean of true positive
rate and true negative rate, we improve the accuracy of the
previous approach by 160% (from 14.8% to 38.6%).

Our contributions are as follows:
1) We integrate the latest technique in bug report retrieval

for improved bug report classification.
2) We introduce a new concept of relative similarity to

differentiate duplicate bug reports from similar bug
reports.

3) We have experimented with our solution on a dataset
of bug reports from Mozilla bug tracking system and
show that our approach could outperform the state-of-
the-art approach proposed by Jalbert and Weimer.

Table I
BUG REPORT 299445 FROM MOZILLA BUG TRACKING SYSTEM

Summary zlib buffer overflow
Description I’ve discovered a deflate data stream that causes zlib

to overwrite the bounds of an array, I believe this to
be potentially exploitable under certain conditions to
execute arbitrary code. Mark Adler, co-author of zlib,
has provided the detailed explanation and proposed
patch attached . . .

Product core

The paper is organized as follows. In Section II, we intro-
duce Bugzilla and the bug reporting process. In Section III,
we present our proposed approach. In Section IV, we present
our experiments. We present related work in Section V. We
conclude and present future work in Section VI.

II. BACKGROUND

In this section, we introduce bug reporting process using
Bugzilla and highlight the state-of-the-art study on report
classification.

A. Bug Reporting Process

When a defect manifests itself or a feature request is
raised, a user or tester can file a report to the corresponding
software project. A bug report is a structured document con-
sisting of several fields, e.g., summary, description, product,
etc. The summary field is a short description of the issue,
while the description field is a more detailed description of
the issue and how to reproduce it. Product field informs the
product that is affected by the issue. We show an example
bug report for Mozilla in Table I.

Once the new report arrives at the report repository, a
bug triager needs to manually identify whether the report is a
duplicate of an existing report in the repository or a new one.
If it is a duplicate, the report is labeled DUPLICATE. Some
bug reports are rejected (e.g., marked as WORKSFORME
or INCOMPLETE, etc.). Otherwise, a new bug report is
assigned to a developer for further investigation.

B. Report Classification: Jalbert & Weimer Approach

Jalbert and Weimer consider the same problem as ours.
In their approach, they consider several features and build a
linear model to classify whether a bug report is a duplicate
or not. Several features that they use include:

1) Textual similarity. They consider textual similarity
between a bug report and all existing bug reports (by
comparing their titles and descriptions) and use the
maximum of the similarity scores as two features (one
for title and another for description).

2) Surface features. They consider various surface fea-
tures of a bug report including: operating system, the
day the bug report was made, the length of the title,
whether the bug report has patch, and whether the
severity is major.

3) Clustering. They form a graph where bug reports are
nodes and the similarities between pairs of bug reports

379380386

Table II
A PAIR OF DUPLICATE BUG REPORTS

Id Summary Product
543839 JS Assert failure “Thin GetWait(tl->owner)” . . . core
543903 Assertion failure: Thin GetWait(tl->owner) . . . core

are weights to edges connecting them. They cluster
bug reports using a graph clustering algorithm by
Mishra et al. [15]. They use the result of the clustering
algorithm as a feature.

In their experiment they show that textual similarity is the
most important feature while clustering is the least important
feature. Their experiment on Mozilla bug reports has shown
that their approach could identify duplicate bug reports with
a true positive rate of 8% and true negative rate of 100%1.

III. PROPOSED APPROACH

In this section, we describe our proposed approach. We
first describe our set of features that could help to differ-
entiate similar bug reports from duplicate bug reports. We
then present the issue of imbalance data and how we handle
that. Finally, we describe our overall approach.

A. Feature Engineering

We want to capture the pertinent aspects of a bug report to
decide if it is likely a duplicate bug report or not. Intuitively,
the more similar it is with another bug report, the more likely
it is to be a duplicate bug report. Also, if two bug reports
are referring to different parts of a large software system,
unless the bug reports are wrongly reported, they are not
likely to be duplicate reports. Furthermore, similarity is a
relative concept. For some types of defects, high similarity
might not mean that two reports are duplicates; for others,
even two reports that are marginally similar are very likely
to be duplicates. We make use of these three intuitions to
formulate three features that we use to train a machine
learning model to classify if a bug report is a duplicate or
not. Table II shows a pair of duplicate bug reports from
Mozilla bug tracking system – we observe that they are
textually similar and refer to the same part of Mozilla, i.e.,
core.

1) Improved Similarity Metric: Jalbert and Weimer make
use of term frequency of co-occurring words in two bug
reports to detect how close two bug reports are. In the
information retrieval community, term frequency and its
extension, namely term frequency - inverse document fre-
quency (TF-IDF), has been shown to be effective; however,
a newer approach named BM25F has been proposed [17],
[24]. Recently, Sun et al. has also shown that an extension of
BM25F, namely REP has been shown to be the best measure
for report retrieval problem [20].

REP considers a bug report as a structured document
comprising of textual features, categorical features, and
ordinal features. The textual features include:

1Please refer to Section IV-A for more details on how these measures
are computed.

1) The bag of words appearing in the title of a bug report.
2) The bag of digrams (i.e., two consecutive words)

appearing in the title of a bug report.
3) The bag of words appearing in the description of a

bug report.
4) The bag of digrams appearing in the description of a

bug report.

The categorical features include information on the prod-
uct and component that the bug is found on, along with the
type of the report. The ordinal features include information
on the version that the bug affects and the priority of the
bug report.

In this work, rather that computing similarity score using
term frequency for the title and description of the report à la
Jalbert and Weimer, we compute a unified similarity score
using REP. Given two bug reports B1 and B2, we denote
the REP similarity score of B1 and B2 as REP (B1, B2).

For a new bug report BN and a bug report repository
Repo, we compute the following measure:

Max Sim(BN) = MaxBI∈RepoREP (BN , BI)

2) Product Difference: To capture our second intuition,
we single out product information from the other ordinal
features used in computing similarity using REP and create
a new feature. This feature is simply a boolean feature
whose value is either 0 or 1, depending if two bug re-
ports have different or the same product information. We
compute the product difference feature from the new report
BN and the report most similar to it; We denote this as
Prod Diff(BN).

3) Relative Similarity: To capture our third intuition,
we need a metric to measure whether the similarity score
between a new bug report BN and its nearest bug report is
significant or not. The intuition is that if many other bug
reports are equally similar to the new bug report, but they
themselves are not duplicate of one another, then the new
bug report is likely not a duplicate too.

To compute such a metric, we extract top-k nearest bug
reports (measured using REP) to the new bug report which
are not duplicates of one another. For the 2nd to the kth

nearest bug reports, we have k − 1 similarity values. We
then take the average of these k − 1 values and compare
it with the similarity of the new bug report with the top-1
nearest bug report (i.e., Max Sim(BN)). If the average is
very low as compared to Max Sim(BN), then the new bug
report BN is likely a duplicate as it is very similar to one
bug report but not others. Mathematically, given the set of
top-2 to top-k most similar bug reports TOP , this metric or
feature is computed as:

Rel Sim(BN) =
Max Sim(BN)

AvgBI∈TOPREP (BN , BI)

By default, we set the value of k to be 20.

380381387

4) Overall Features: For each new bug report BN , we
thus characterize and represent it as a triple:

(Max Sim(BN), P rod Diff(BN), Rel Sim(BN))

B. Addressing Imbalance Data

There are more bug reports that are non-duplicates than
those that are duplicates. Thus we have an issue of imbalance
dataset. Imbalance dataset causes an issue with a machine
learner, as it would then be biased to pick the label of the
majority. In our case, the machine learner would have the
tendency to label every new bug reports as a non-duplicate
report.

To address imbalanced data, two approaches are possible.
One approach would be to reduce the training instances from
the majority class (i.e., in our case, non-duplicate reports).
Another approach would be to duplicate training instances
from the minority class (i.e., in our case, duplicate reports).
As the first approach would cause the loss of information
(since we drop some training instances), we use the second
approach and duplicate the duplicate reports so that we have
a balanced dataset.

C. Overall Approach

Our overall approach is divided into training and de-
ployment phase. In the training phase, we train a machine
learning model based on a set of training data. In the
deployment phase, we apply this model to label new bug
reports as duplicate or not. The steps for the training phase
are as follows:

1) We split our training data into two parts. One part
is used to train the parameters of REP. To use REP
to measure the similarity between two bug reports,
some parameters need to be set; these parameters are
weights to the different features of bug reports, i.e.,
textual, ordinal, and categorical features. The other
part is used to train the machine learning model.

2) For the latter part of the training data, each bug report
is converted to a triple using the feature engineering
strategy presented in Section III-A.

3) We rebalance the training dataset using the approach
presented in Section III-B.

4) We then train a machine learning model using Support
Vector Machine (SVM) [8], [11].

IV. EXPERIMENTS

In this section, we present our evaluation measures, our
dataset, experiment results, and threats to validity.

A. Evaluation Measures

We follow the approach in Jalbert and Weimer’s work [10]
to identify true and false positives. Based on these, true
positive rate (aka. sensitivity or recall rate) and true negative
rate (aka. specificity) could be defined [13], [4]. We take the

harmonic mean of true positive rate and true negative rate
as the final evaluation criteria.

True positives are duplicate bug reports that are correctly
identified by the proposed approach. Let’s label this set as
TP . Considering each group of reports that are duplicates of
one another being put in the same bucket, the false positives
are the number of buckets of duplicate bug reports for which
there is not even one member of the bucket that is flagged
as a non-duplicate. Let’s label this set as FP .

Considering Duplicate as the set of all duplicates, the
true positive rate TPRate is defined as:

TPRate =
|TP |

|Duplicate|
Considering NonDuplicate as the set of non-duplicate

bug report buckets that get fixed, the true negative rate
TNRate is defined as:

TNRate =
|NonDuplicate \ FP |
|NonDuplicate|

As developers are often overwhelmed with the number
of bug reports, c.f., [2], both TPRate and TNRate are
important. Both poor TPRate and TNRate can potentially
cause some important reports to be missed – due to wasted
effort and a limited resource, and incorrect identification
of duplicate reports. We take the harmonic mean of true
positive and true negative rate as the final evaluation criteria.
It is defined by the following formula:

Harmonic =
2× TNRate × TPRate

TNRate + TPRate

B. Dataset

We follow the experimental setup of Jalbert and
Weimer [10]. We collected bug reports from Mozilla bug
tracking system which were reported between February 2005
to October 2005. Half of this dataset is used for training,
while the other half for testing. Out of the half used for
training, the first m reports that contain 200 duplicate bug
reports are used to train REP. The remaining reports in the
training set are used to train the machine learning model
using SVM. Note that, we only perform dataset rebalancing
as described in Section III-B on the training data used to
train the machine learning model. For the testing data, we
keep its original distribution, i.e., imbalanced.

C. Experiment Results

We compare our approach with that of Jalbert and Weimer
and evaluate them in terms of true positive rate, false positive
rate, and their harmonic mean. We compare our results with
those reported in their paper [10]. We first present the overall
results and then describe some additional experiments that
we performed to investigate the effects of the parameter k
and the relative importance of each of the three features.

381382388

Table III
OVERALL RESULTS: OURS VERSUS THE PRIOR STUDY

Approach TPRate TNRate Harmonic
Ours 24.48% 91.40% 38.62%
Jalbert and Weimer’s 8% 100% 14.8%

Table IV
EFFECT OF VARYING k

k TPRate TNRate Harmonic
4 24.57% 91.95% 38.78%
8 24.48% 92.42% 38.71%
12 24.75% 91.91% 39.00%
16 24.66% 91.58% 38.86%
20 24.48% 91.40% 38.62%

1) Overall Results: The overall results of comparing our
approach with that of Jalbert and Weimer’s are shown in
Table III. The true positive rate is increased from 8% to
24%. However, the true negative rate is reduced slightly
from 100% to 91%. We notice a 200% increase in true
positive rate for a 9% reduction in true negative rate. Our
approach could increase the harmonic mean from 14.8% to
38.6% (a 160% improvement). This shows that our approach
outperforms that of Jalbert and Weimer which is the state-
of-the art approach in report classification.

2) Effect of Varying k: Our relative similarity feature
(i.e., Rel Sim(BN)) takes as input the parameter k which
specifies the number of top-k similar bug reports to consider.
In Section IV-C1, we use the default value of k (k=20). Here,
we perform a sensitivity analysis on the value of k to see
its effect on the performance of our proposed approach.

The result of varying k from 4 to 20 is shown in Table IV.
We notice that varying k from 4 to 20 has not much impact
on the true positive rate, true negative rate, and the harmonic
mean of the two. We do not try k larger than 20, as the
reports would then be significantly different.

3) Effectiveness of Different Features: We compute
Fisher score to evaluate the effectiveness of different features
in discriminating duplicate bug reports from non-duplicate
ones. Fisher score is a popular measure used in statistics [6].
The Fisher score of a feature is defined as:

Fisher =
Σc

i=1ni(μi − μ)2

Σc
i=1niσ2

i

where ni is the number of instances or data points in
class i (i.e., the number of bug reports in a dataset), μi is
the average value of the feature in class i (i.e., duplicate or
non-duplicate), σi is the standard deviation of the feature
values in class i, and μ is the average value of the feature
in the whole dataset.

Table V show the Fisher scores for the three fea-
tures. From the scores we could note that relative simi-
larity (Rel Sim(BN)) has the highest Fisher score. The
second is maximum similarity (Rel Sim(BN)). Both of
them are much more discriminative than product difference
(Prod Diff(BN)).

Table V
FISHER SCORE FOR THE 3 FEATURES

Feature Fisher Score
Rel Sim(BN) 0.157
Max Sim(BN) 0.138
ProdDiff(BN) 0.011

D. Threats to Validity

As with many other studies, there are a number of possible
threats to validity including threat to internal validity, threat
to external validity, and threat to construct validity.

Threat to internal validity includes experimenter bias. In
this study, we choose a subset of the dataset chosen by
Jalbert and Weimer. We believe there is little bias as the
dataset is simply a set of tens of thousands of bug reports
from a well known software system.

Threat to external validity corresponds to the generaliz-
ability of our experimental results. We have experimented
with bug reports from Mozilla bug tracking system which
were reported between February 2005 to October 2005. In
the future, we would consider more software systems and a
larger set of bug reports.

Threat to construct validity refers to the suitability of our
metric. We use the same notions of true positive and true
negative defined by Jalbert and Weimer. From these notions
of true and false positive, we compute standard measures in
information retrieval and statistics namely true positive rate
(aka. specificity or recall rate) and true negative rate (aka.
sensitivity). We combine these two measures into a unified
measures by taking their harmonic mean. We believe these
measures (true positive rate, true negative rate, and their
harmonic mean) are reasonable; the more true positives (i.e.,
duplicate found) and the more true negatives (i.e., fixed non-
duplicate report identified) the better is an approach.

V. RELATED WORK

The pioneer study on bug reports classification is by
Jalbert and Weimer [10], which is also closest to ours. They
report that 8% of the duplicate reports could be filtered
by their technique in the experiments (TPRate of 8% and
TNRate of 100%). As shown in Section IV, our approach
can filter duplicate reports with TPRate of 24.48% and
TNRate of 91.40% – 160% relative improvement in terms
of Harmonic. Generally, the high true positive rate stems
from a classification model trained with more effective
features. In particular, first, our approach is based on a better
similarity measure REP specially designed for measuring
similarity of bug reports [20]. Whereas, Jalbert and Weimer
use cosine, a similarity measure based on TF-IDF for general
documents. Second, we consider the difference between
product fields of reports, as reports on different products tend
to be non-duplicates of one and each. Last but not least, we
propose the concept of relative similarity to further improve
the classification accuracy.

Another line of research is retrieval of duplicate reports.
When a new report comes, it returns a list of reports

382383389

existing in the repository which are potentially similar to
the new report. The intrinsic problem is how to measure
the similarity between two reports. Runeson et al. take
natural language text of bug reports and use cosine, dice
and jaccard to measure the similarity of reports [18]. Wang
et al. use not only natural language text bug also execution
information to improve the retrieve performance [23]. Sun et
al. propose a machine learning approach and extend BM25F
to accurately retrieve duplicate reports [21], [20]. Our work
is orthogonal to the above as we aim to output a binary
answer DUPLICATE or NEW for a new report.

Besides the effort on bug report classification and re-
trieval, there are also other studies on report categorization.
Anvik et al. [1], Cubranic and Murphy [5], Pordguski et
al [16], Francis et al. [7], and Tamrawi et al. [22] all
investigate the problem of bug report categorization for
better triaging. In [1], [5], [22], this categorization is used
to assign bug reports to the right developers. Menzies and
Marcus [14] propose a prediction model to automatically
infer the severity of bug reports. Ko and Myers investigate
the differences between defect reports and feature requests
based on the linguistic characteristics of summaries and
descriptions in bug reports [12].

Researchers have also done several empirical studies on
bug repositories. Sandusky et al. investigate the nature,
extent and impact of bug report networks in one large F/OSS
development community [19]. Anvik et al. empirically study
the characteristics of bug repositories and show interesting
findings on the number of reports that a person submitted
and the proportion of different resolutions [2]. Hooimei-
jer and Weimer develop a descriptive model based on a
statistical analysis of surface features of over 27,000 bug
reports in OSS projects, to predict bug report quality [9].
Bettenburg et al. survey developers of Eclipse, Mozilla, and
Apache to study what makes a good bug report. A good
bug report provides enough information to developers for
debugging [3].

VI. CONCLUSION AND FUTURE WORK

Bug reporting is an uncoordinated distributed process.
Thus, often there are many duplicate reports being submitted
that report the same defect. To address this issue, there is a
need for an automated duplicate report detection approach.
There are two families of research work in this direction:
report retrieval and report classification. In this work, we
extend the latest study on report classification by Jalbert
and Weimer. We extend their approach by utilizing REP
which was recently proposed for report retrieval problem to
measure the similarity of two bug reports. We also utilize
information on the difference between product fields in
two bug reports to help in identifying if two bug reports
are duplicate or not. Furthermore, we define a new notion
of relative similarity that help to decide if the similarity
between two bug reports is significant enough. We have

performed experiments on Mozilla’s bug reports which were
reported between February 2005 to October 2005. Our
preliminary study has shown that our approach is effective
to increase the true positive rate by 200% (from 8% to 24%)
while only suffering a loss in true negative rate by 9% (from
100% to 91%). The overall harmonic mean of true positive
rate and true negative rate is increased by 160% (from 14.8%
to 38.62%).

In the future, we plan to extend this study by investigating
more bug reports from different software systems. We also
would like to continue improving the accuracy of duplicate
bug report classification further. We also plan to release
a tool that would help developers to flag duplicate bug
reports and integrate it to bug management systems such
as Bugzilla.

REFERENCES

[1] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in ICSE, 2006.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,”
in ETX, 2005.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann,
“What makes a good bug report?” in FSE, 2008.

[4] M. Bland, An Introduction to Medical Statistics. Oxford, 2000.

[5] D. Cubranic and G. C. Murphy, “Automatic Bug Triage Using Text Catego-
rization,” in SEKE, 2004.

[6] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley Interscience, 2000.

[7] P. Francis, D. Leon, and M. Minch, “Tree-based methods for classifying
software failures,” in ISSRE, 2004.

[8] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed.
Morgan Kaufmann, 2006.

[9] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE, 2007.

[10] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking
systems,” in DSN, 2008.

[11] T. Joachims, http://svmlight.joachims.org.

[12] A. Ko and B. Myers, “A linguistic analysis of how people describe software
problems,” in IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2006.

[13] C. Manning, P. Raghavan, and H. Shutze, Introduction to Information Retrieval.
Cambridge, 2008.

[14] T. Menzies and A. Marcus, “Automated severity assessment of software defect
reports,” in ICSM, 2008.

[15] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan, “Clustering social networks,”
in Workshop on Algorithms and Models for the Web-Graph (WAW), 2007.

[16] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang,
“Automated support for classifying software failure reports,” in ICSE, 2003.

[17] S. Robertson, H. Zaragoza, and M. Taylor, “Simple BM25 extension to
multiple weighted fields,” in ACM International Conference on Information
and Knowledge Management (CIKM), 2004.

[18] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect
reports using natural language processing,” in ICSE, 2007.

[19] R. J. Sandusky, L. Gasser, R. J. S, U. L. Gasser, and G. Ripoche, “Bug report
networks: Varieties, strategies, and impacts in a f/oss development community,”
in MSR, 2004.

[20] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of
duplicate bug reports,” in ASE, 2011.

[21] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” in ICSE, 2010.

[22] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-based
automatic bug triaging (NIER track),” in ICSE, 2011.

[23] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting
duplicate bug reports using natural language and execution information,” in
ICSE, 2008.

[24] H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and S. Robertson, “Microsoft
cambridge at trec 13: Web and hard tracks,” in Text Retrieval Conference
(TREC), 2004.

383384390

