
AIMDROID: Activity-Insulated Multi-level
Automated Testing for Android Applications
∗Tianxiao Gu, ∗‡Chun Cao, ∗Tianchi Liu, †Chengnian Sun, ∗Jing Deng, ∗Xiaoxing Ma, ∗Jian Lü,
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
∗Department of Computer Science and Technology, Nanjing University, Nanjing, China

†Department of Computer Science, University of California, Davis, USA.
{tianxiao.gu,chengniansun,liutianchi92,dmemoing}@gmail.com, {caochun,xxm,lj}@nju.edu.cn

Abstract—Activities are the fundamental components of An-
droid applications (apps). However, existing approaches to au-
tomated testing for Android apps cannot effectively manage
the transitions between activities, e.g., too rarely or too often.
Besides, some techniques need to repeatedly restart from scratch
and revisit every intermediate activity to reach a specific one,
which leads to unnecessarily long transitions and wasted time.
To address these problems, we propose AIMDROID, a practical
model-based approach to automated testing for Android apps
that aims to manage the exploration of activities and meantime
minimize unnecessary transitions between them. Specifically,
AIMDROID applies an activity-insulated multi-level strategy dur-
ing testing and replaying. It systematically discovers unexplored
activities and then intensively exploits every discovered individual
with a reinforcement learning guided random algorithm. We
conduct comprehensive experiments on 50 popular closed-source
commercial apps that in total have billions of daily usages in
China. The results demonstrate that AIMDROID outperforms
both SAPIENZ and Monkey in activity, method and instruction
coverage, respectively. In addition, AIMDROID also reports more
crashes than the other two.

Keywords-Android Application Testing; Model-based Testing;
Reinforcement Learning;

I. INTRODUCTION

Today’s Android devices provide more and more powerful
computation capability, which gives rise to the increasingly
rapid grow of Android applications (apps). For example, the
largest app in our evaluation has more than 180 thousands
of method and 3.7 millions of bytecode instructions. Besides,
there are over 3.1 million Android apps available from the
Google Play but unfortunately 12% of them are low quality
apps as of August 2017 [1].

Android apps are GUI-based applications driven by various
events. An app usually has a number of activities [2] (i.e., GUI
windows) and must adapt to various versions of Android to
provide a nearly uniform look-and-feel. These features make
it hard to test Android apps [3], [4], [5]. Android app testing
still relies heavily on manual testing [6], [7].

Monkey [8] is regarded as the state-of-practice automated
testing technique [9], [10], which is released by Google as
a built-in tool in Android. Monkey can generate pseudo-
random streams of GUI events such as touching and swiping.
However, Monkey may spend much time in generating a

‡Corresponding author: Chun Cao.

long sequence of events, which includes many redundant
events [11] (e.g., repeatedly jumping between activities) and
unfruitful events [12] (e.g., clicking non-interactive area on
the screen). Such an exceptionally long event sequence also
makes it hard for developers to replay and diagnose [13], [11].

Some techniques leverage GUI layouts to reduce unfruitful
GUI events [14]. Moreover, these techniques develop vari-
ous new strategies to guide the exploration, e.g., using the
frequency of actions [14]. However, these techniques lack
the management of exploration of activities. For example,
Monkey allocates a lopsided distribution of exploration time
on activities during testing a commercial app, where the top 4
activities consumes 43.4% time budgets [12]. To mitigate this
problem, Zeng et al. [12] limit the total time of exploring an
activity in order to balance the visiting time of every activity.
However, they may still make unnecessary activity transitions
before reaching the time limit.

To guide the testing, systematic approaches leverage sym-
bolic execution or evolutionary computation techniques to
steer the exploration of the app to some specific part. How-
ever, these techniques are less scalable than Monkey [10].
Another popular technique is model-based testing [15], [16],
[17], [18], [19]. These approaches usually first build a state
machine as the model of the app and then develop a number
of exploration strategies such as Depth-First Search (DFS),
Breath-First Search (BFS) or hybrid to systematically explore
the model [17], [18].

Existing model-based approaches have worse over-all per-
formance than Monkey on some benchmark apps [10]. First,
systematic exploration strategies like DFS need to repeatedly
restart the app for backtracking [10], [16]. Second, building
a precise and complete model is extremely challenging in
practice. There do exist non-deterministic transitions/events,
which can easily interrupt the steering of the exploration of
the app along with the model. Third, model-based approaches
also have the state explosion problem. For example, a finite
state model that takes account of text of widgets may not even
exist for real-world apps [18]. In our opinion, the key solution
to improve the performance of model-based techniques is to
reduce search complexity and restart time.

We propose AIMDROID, the first offering the Activity-
Insulated Multi-level strategy to model-based automated test-
ing for Android apps, which seeks to maximize the cover-



age and fault detection while controlling the length of test
sequences. AIMDROID models and explores the apps under
test (AUT) using a multi-level method [18]. The key insight
of AIMDROID is twofold. First, AIMDROID systematically
discovers every unexplored activity using a BFS algorithm.
Second, AIMDROID insulates a discovered activity in a “cage”
and intensively exploits the insulated activity with a reinforce-
ment learning guided fuzzing algorithm. Therefore, we can
simplify the search complexity, save restart time and manage
the time consumed in each activity.

Specifically, AIMDROID divides the overall testing into
episodes. In each episode, AIMDROID generates a bounded
number of events and focuses on a single activity by dis-
abling activity transitions. In addition, AIMDROID uses a
reinforcement learning algorithm, i.e., SARSA [20], to learn
the ability of events that can discover new activities. With
SARSA, AIMDROID can “looks ahead” and select events that
are more likely to trigger new activities and crashes in a greedy
manner.

To further save restart time, AIMDROID can start an ex-
plored activity for another episode without restarting from
scratch. In the normal usage, we need a proper event sequences
to reach an activity. Actually, some internal activities can be
started directly by providing a proper intent [21] only. To this
end, we record the intent when starting an activity. Then, we
try to start the activity directly first during the remaining test
using the saved intents and then restart from the scratch if
the intent fails. This method is also used during replaying.
Thus, AIMDROID can also provide a short event sequence for
replaying.

In this paper, we make the following contributions:
• We propose a novel activity-insulated multi-level strategy

for model-based automated testing for Android apps.
• We have implemented our strategy in a practical testing

tool named AIMDROID, which is publicly available1.
• We conduct comprehensive experiments on 50 popular

close-source commercials apps to demonstrate the effec-
tiveness of AIMDROID.

The rest of the paper is organized as follows. We first
introduce the basic idea of AIMDROID with an illustrative
example in Section II. Next, we present the design and imple-
mentation of AIMDROID in Section III. Then, we show the
experiment results in Section IV. Finally, we discuss related
work in Section V and conclude in Section VI.

II. ILLUSTRATIVE EXAMPLE

A. Automated Testing For Android Apps

Existing approaches to automated testing for Android apps
can be classified into three categories, i.e., fuzz (random) test-
ing [8], model-based testing [15], and systematic testing [22],
[23], [24]. Each kind of approaches tries to efficiently generate
a number of events under a particular strategy to drive and
explore the apps thoroughly. Though there are many kinds
of events that Android supports, the GUI events are the most

1https://icsnju.github.io/AimDroid-ICSME-2017/

popular [14], [12], which can be generated by mimicking GUI
actions (e.g., click). As events are generated by actions, we
may use them interchangeably in the following sections.

We observed that almost all existing approaches lack an
effective method to manage the exploration time of activ-
ities [14], [15], [16], [18], [19]. Since an activity is the
entry point to all widgets on it, we should first discover
as many as possible activities and then intensively explore
every discovered activity for sufficient time to gain confidence
(e.g., high coverage) and detect defects. However, existing
approaches can trap in certain activities [12] and thus fail
to discover new activities in bounded time. Moreover, the
intensive exploration of an activity can be interrupted if actions
that can jump to other activities are taken too often.

B. Activity and Its Lifecycle

Activities are the fundamental components of Android apps.
An activity is a collection of widgets that are organized into
a tree-like structure. We can easily obtain this tree using a
black-box tool, i.e., UI Automator Viewer [25], which is also
released within the Android platform. UI Automator Viewer
also provides various attributes of each widget. Thereby, we
can determine the appearance, e.g., bounds or text, and the
functionality, e.g., clickable or scrollable, for each widget,
which can be leveraged to determine available actions.

The lifecycle of an activity is tightly coupled with the
Android framework [26]. An activity may be interrupted
and change its lifecycle status unexpectedly to respond user
interactions or environment changes, e.g., from foreground
to background by phone calls. The hiding of a top activity
actually gives rise to the transition to a new top activity.
An Android app, particularly a commercial app, usually has
hundreds of activities (See Table I). As a result, the transitions
between activities are common during both daily usages and
testing.

The lifecycle of an activity is managed by an essential ser-
vice in Android called Activity Manager Service (AMS). AMS
provides various methods for an activity to start another activ-
ity. For example, to start another activity, even of another app,
an activity needs to invoke a method like startActivity
to notify the AMS of the request. Method startActivity
requires as parameter an intent that contains the URI [27] of
the request activity. In addition to the intent, an activity may
also rely on persistent data during changing its lifecycle.

C. Illustrative Example

AIMDROID is a model-based approach that aims to manage
the exploration of each activity and meanwhile reduce unnec-
essary transitions between activities. Figure 1 is an example
with three activities, i.e., A1, A2 and A3, which describes the
flow of a shopping app. We use the large circle to represent
the activity and the small circle to represent the intra-activity
states inside an activity. There is no gold rule to identify states.
In practice, most existing techniques make use of the widgets
inside an activity [16], [14], [18], [19].



A1: Item List

A2: Shopping Cart

A3: Payment

s1 s2

s3

s4

s5

Crash
a1 a6

a
4a 2

a
3

a7

a 8a
5

a5 a 9

a10

Fig. 1: Illustrative Example

Specifically, A1 lists the items for shopping, while A2 is the
shopping cart and A3 is for the payment. An end user may
start from A1 and search for interested items by action a1.
The user may alter the search keywords or filter conditions
by action a2 or even clear the search keyword by action a3.
Besides, the user may also choose an item and jump to the
shopping cart to preview the shopping list by action a4 or a7.
The state then becomes s4, which belongs to activity A2. The
user may continue to add items and go back to s2 or s3 by
action s5, or checkout to complete the payment by action a8,
where the states become s5. A good app with well designed
user experience usually provides an opportunity to cancel the
payment. Hence, the state may become s4 again by action a9.
Finally, the state becomes s1 again if the payment is confirmed
by action a10.

Actions have four kinds of results, i.e., state transitions,
activity transitions, app transitions and crash. The most com-
mon transitions are between states of a same activity. Note
that the transition may be a cycle if the source state and the
target are the same. The transition is treated as an activity
transition if the target state belongs to another activity and an
app transition if the target state or the target activity belongs
to another app. We will discuss why to treat these kinds of
transitions differently in Section III-D.

We have the following observations on the results of actions.
1) Most transitions between activities are bi-directional,

because there is a BACK button for Android devices,
either physical or virtual [28]. For example, a5 and a9
are actions made by the BACK button.

2) There also do exist uni-directional transitions between
activities. In this situation, we need to restart from the
initial activity to reach the target activity again. For
example, we need start from s1 and follow a1, a4 or
a7, and a8 to visit s5 or A3 again.

3) Activity transitions are prevalent, particularly in com-
mercial apps. Many actions on a same state or activity
can even make the same transitions. For example, both
a7 and a4 can also jump to A2 from A1. These actions
can interrupt the intensive exploration of A2.

4) Every activity has a different number of states and
actions. Some are worthy of more explorations. For
example, intuitively we should stay in A1 for longer time

than the other two activities because it has more internal
states and actions, and much more complex interactions
between internal states and actions.

Unfortunately, we observed that many actions that are
made by existing approaches result in unnecessary transitions
between activities. For example, a random based approach may
generate equal number of actions. But actually, we should
generate more actions like a2 or a3. Actions such as a4,
a7, and a8 are also important because they can discover new
activities but at the same time must not be taken too frequently,
because they can interrupt the exploration inside an activity.
Actions like a5 or a9 should be considered less important
because they sometimes just go back to a previously visited
activity. Besides, a systematic approach that aims to cover
every action may take actions a1, a4, and a8 again to visit a9
on s5 if the first visited action on s5 is not a9 but a10.

To mitigate these problems, we first introduce the activity-
insulated strategy to block unnecessary transitions between ac-
tivities during exploiting an activity. This strategy can balance
the time of each activity according to its available actions.
For example, we may stay in A1 for a long time to exploit
thoroughly by blocking a4 and a7. Besides, we record every
intent that is used for starting an activity. By this way, we can
avoid replaying the previous actions to reach the final state
again and only replay the entire action sequence if the intent
fails. Thus, if we want to explore A3, we could directly start
A3 without restarting from A1 and A2.

Within our experience, a certain number of activities can be
started directly by providing a proper intent only (See Table I).
This may be because first different activities may be developed
and tested by different groups following the principle of
separation of concerns. Second, a good mobile app usually
consider the state persistence for unexpected interruptions. For
example, the battery may run out of charge and a call may
arrive at any second. Thus, an activity must support saving
and restoring from persistent data directly.

Apparently, an action or a transition that can start a new
activity is worthy of revisiting multiple times, which helps to
discover new intents as well. To learn such ability of an action,
we apply a reinforcement learning (RL) enhanced fuzzing
algorithm during exploring an activity. With this enhancement,
AIMDROID can select actions that are likely to trigger new
crashes or new activities.

III. THE AIMDROID APPROACH

We first give an overview of AIMDROID, and then discuss
its design and implementation in detail in this section.

A. Overview

Figure 2 depicts an overview of AIMDROID. AIMDROID
has various components and is implemented in a client-server
style. The server is a controller that actually guides the
exploration. The client is an Android device, which is either
an emulator or a real device that is connected to the controller
via networking. AIMDROID takes the APK file of the AUT
as input and produces various reports for problem diagnosing



Android

Controller

Observer

Cage

Application
Under Test

Action
Generator

Input
Unit

Activity Transition

Other

Crash
Result

Testing Manager

Action
Knowledge

Base

Action
Selector Rewarder

Reinforcement Learning

APK

Input Output

Results

Actions

ResultsStates&Actions

Events

Actions

Commands

States&Actions

Fig. 2: Overview of AIMDROID.

as output. The overall testing is divided into episodes. Each
episode focuses on exploring a single target activity. The target
activity is insulated in a cage, which blocks any transitions to
any other activity of the AUT from the target activity.

Each episode is further divided into a number of iterations
by a fixed time interval. During each iteration, AIMDROID
first rips the current GUI to build the current state and actions.
Next, AIMDROID selects an action based on the knowledge
maintained by the reinforcement learning module. On the
other hand, AIMDROID captures the results caused by the
previous action, which are used to update the knowledge about
the action in the reinforcement learning module. Finally, the
selected action is used to generate events to feed the AUT.

B. Multi-level State Representation

AIMDROID uses two levels of states to guide the testing.
In addition to the intra-activity states (i.e., inner-states), AIM-
DROID considers an activity as an outer-state. An illustrative
example is shown in Figure 1. In the following sections,
we may also use “activity” to refer to the outer-state, and
“state” to refer to the intra-activity state or the inner-state
interchangeably.

Baek et al. [18] first proposed the idea of applying multi-
level states for Android app testing. However, their approach
picks a single fixed level of state at a time and applies the same
exploration strategy to them. In contrast, AIMDROID uses two
levels of states at the same time and applies different explo-
ration strategies to them. More details about the exploration
strategy can be found in Section III-C.

The outer-state space has no state explosion problem. The
number of activities of an app is usually not significant. For
example, commercial apps used in our evaluation usually have
hundreds of activities. Consequently, AIMDROID can system-
atically explore activities. Apparently, this coarse-grained state
representation cannot be used in intra-activity exploration.
Thus, we need a fine-grained inner-state representation to help
generate actions for intra-activity exploration.

An inner-state is derived from the widgets inside an activity.
In a nutshell, we identify a widget by its bounds on the screen
and use the set of actions on interactive widgets as an inner-
state [16]. Note that there is only a limited number of widgets
visible on the screen. For example, a list has 100 items but
maybe only 10 of them are visible at a time. We need to
swipe down to show another 10 items with different but similar
contents. The new 10 items have the same bounds and the new
GUI layout is treated as the same state. Hence, using bounds
only can help to reduce the inner-state space.

C. Activity-Insulated Multi-level Strategy

We apply different strategies to each level of states. At the
activity level, we apply model-based methods to systematically
explore activities. Inside an activity, we use a reinforcement
learning guided fuzzing algorithm to mitigate the problem of
state explosion in the inner-state space. We present the overall
exploration strategy of AIMDROID in Algorithm 1.

Algorithm 1 systematically traverses activities using a BFS
strategy and dynamically constructs a BFS tree (i.e., T) to
represent the simplified transitions of activities, i.e., a tuple
(A, I ′, A′) of the source activity A, the intent to start the target
activity I ′, and the target activity A′ (at line 21). The BFS tree
is used by function quickLaunch to start activities directly.

The exploration starts from the main activity as the target
activity at line 3. In every iteration of BFS, a new activity is
removed from the queue as the target activity. Once the target
activity has been launched, AIMDROID insulates the activity
in the cage and starts to explore the inner-states of the activ-
ity (in the function exploreInCage). During the in-cage
exploration, AIMDROID enqueues newly discovered activities
into the queue, and saves the simplified transition in the BFS
tree at line 22. The BFS strategy ensures that each activity is
in theory explored once by the function exploreInCage,
Hence, AIMDROID can reduce the restart and backtracking
frequency, which wastes much time in traditional model-based
approaches [16].

In fact, activity transitions are a common behavior in An-
droid apps. It has some technical difficulties to insulate activi-
ties. Consequently, previous work usually pays little attention
to the impact of activity transitions on their effectiveness [8],
[16], [13], which causes two aforementioned problems, i.e.,
trapping in certain activities and wasting time on restarting
apps for backtracking to particular states/activities. To address
these problems, we propose the activity-insulated strategy to
explore activities and their intra-activity states with different
strategies respectively to reduce the searching complexity.

1) Insulate Activity: Actions have four types of results.
• R1: Activity Transitions. An action starts another activity

of the AUT or just finishes itself and goes back to the
parent activity. We use R̂1 to denote a fresh activity
transition, where the target activity is firstly discovered.

• R2: App Transitions. An action invokes another app or
just closes the AUT.

• R3: Crash. An action exposes a crash in the activity. As
many crashes may be manifested by the same error, we



Algorithm 1: AIMDROID.
Input: A, the AUT
Output: T, the BFS tree of activities represented by a

set of activity transitions, S, the set of action
sequences, C, the set of crash reports.

1 (Q,T,S,C)← (∅,∅,∅,∅)
2 launch(A)
3 A← getActivity()
4 Q← enqueue(Q, A)
5 T← T{(∅,∅, A)}
6 while Q 6= ∅ do
7 (Q, A)← dequeue(Q)
8 (Q,T,S,C)← exploreInCage(A,A,Q,T,S,C)

9 Function exploreInCage(A,A,Q,T,S,C)
10 while true do
11 quickLaunch(A,A,T,S)
12 (s, a,S)← (∅,∅,∅)
13 stop ← true
14 while true do
15 s′ ← getState()
16 a′ ← getAction(s′)
17 SARSA(s, a, s′, a′)
18 R← getResult(s, a, s′)
19 if R = R̂1 then
20 A′, I ′ ← getActivityAndIntent()
21 T← T ∪ {(A, I ′, A′)}
22 Q← enqueue(Q, A′)
23 stop ← false

24 if R = R̂3 then
25 C← C ∪ getCrash(R)
26 stop ← false

27 S ← append(S, {(a,R)})
28 if R ∈ {R2, R3} ∨ |S| ≥ bound(A) then
29 S← S ∪ S
30 break
31 s← s′, a← a′

32 execute(a′)

33 if stop then
34 return (Q,T,S,C)

use R̂3 to denote a fresh crash, where the corresponding
error is firstly exposed.

• R4: State Transitions. An action leads to a transition to
another state of the activity or even the same state.

Activity transitions are concerned mostly in our approach.
AIMDROID blocks this kind of transitions and insulates the
currently visiting target activity from other activities by putting
it in the cage. The cage doesn’t block transitions between
states of the target activity. AIMDROID doesn’t prevent app
transitions as well. In this way, AIMDROID has the opportunity

to test whether the AUT can interact with other apps properly.
In the meantime, we also don’t expect this kind of transitions
to occur often. Crashes are unpredictable and unstoppable.
Thereby, AIMDROID doesn’t deter this kind of behaviors and
just records the stack information of every crash.

To block activity transitions, we intercept the corresponding
transition request. AIMDROID embodies the black-box testing
methodology. Thus, we choose to instrument the Android
framework instead of the AUT. Recall that the lifecycle [26]
of an activity is managed by AMS. For example, to start
another activity, an activity needs to invoke the method
startActivity, which requires an intent that contains the
URI [27] of the request activity. We instrument the method
and all its variants in the Android framework to implement the
barrier for the cage. The barrier is closed and opened by the
testing manager when necessary. Specifically, the testing man-
ager opens the barrier and starts the activity normally when
it attempts to launch the target activity, and closes the barrier
once the target activity has been launched. When blocking an
activity transition, AIMDROID records the corresponding in-
tents to implement the function getActivityAndIntent
and quickLaunch in Algorithm 1.

2) Quick Launch: In order to reach a certain activity or
state, traditional model-based techniques need to restart the
AUT and replay the entire event sequence that can drive the
AUT from the initial state to the target state. Even though
AIMDROID has reduced the frequency of restart with the
activity-insulated strategy, we expect to further expedite the
process of activity launching by the quick launch method.

As previously described, an intent contains the URI and
necessary data for starting an activity. Hence, AIMDROID tries
to start the target activity directly with the intent. As shown
in Figure 1, suppose that A3 is the target activity. Traditional
approaches need to restart the AUT to reach A1 first and then
replay the action sequence 〈a1, a4, a8〉 to reach A3. By the
quick launch method, AIMDROID only needs to directly start
A3 with the intent, which avoids replaying the action sequence.

Obviously, the quick launch approach is able to save time
of replaying events, but there do exist activities that strongly
depend on other activities. It may result in false crashes to
start activities directly. In this situation, AIMDROID tries to
directly start the parent activity A2, and then replay the action
a8 to reach A3. Then, the launching process of AIMDROID
contains only a single action, i.e., a8.

Although these crashes are caused by launching with the
intent directly and thus may not happen in normal use,
AIMDROID still records the runtime context information of
these crashes. In the worst case, AIMDROID falls back to
the traditional approaches, which needs to replay the action
sequence 〈a1, a4, a8〉.

D. Exploration in the Cage

Based on SARSA [20], we propose our exploration strat-
egy for exploring the target activity in the cage. Function
exploreInCage in Algorithm 1 illustrates the basic idea of
the in-cage exploration. In trivial cases, the target activity is



explored only one episode to avoid unnecessary explorations.
If AIMDROID can discover new activities or new crashes in the
activity, the target activity is explored more than one episodes.

During an episode (i.e., the outer loop of exploreInCage
in Algorithm 1), AIMDROID limits the total number of it-
erations/actions based on the total available actions on an
activity (by function bound at line 28 in Algorithm 1). We
provide two parameters, i.e., minL and maxL, to further
control the number of total iterations. Specifically, the func-
tion bounds simply returns the value of min(max(minL,
|AA|),maxL), where AA is the union of all actions of all
states of the activity A.

All actions during an episode are recorded into a new
sequence S and saved into S for output. In addition to
controlling the exploration by the length of the sequence,
AIMDROID stops the in-cage exploration immediately if a
crash occurs (i.e., R = R3) or the current state is out of the
AUT (i.e., R = R2).

We assume that the number of new activities and new
crashes discovered are finite in each activity. Therefore, AIM-
DROID can finish the exploration for each activity within a
limited time. Traditional model-based approaches usually ter-
minate their exploration if they cannot detect new states. Our
strategy can stop the exploration if it cannot find new activities
and crashes. Note that users can still make AIMDROID to re-
explore the BFS tree again if testing time allows.

The action generator provides a function getState to
determine the state and its available actions from the current
GUI layout.

1) States and Actions: App behaviors can be suitably exer-
cised by generating GUI events only [10]. The research [29]
found that the time needed to trigger a crash, can be sig-
nificantly reduced if the tools for GUI testing is aware of
the visible widgets and specifically targets them. Therefore,
AIMDROID obtains the visible widget tree of the current GUI
first. Then action generator traverses the widgets in the tree
to find interactive widgets and analyzes the attributes of those
interactive widgets to collect actions. We use the bounds of a
widget to refer to it. For simplifying the state representation,
we use the set of actions on all interactive widgets to represent
the current state, which is widely used in previous GUI testing
techniques [16], [30].

2) Observer and Rewarder: As mentioned in Section III-C,
an action in an activity can result in four kinds of transitions.
The responsibility of the observer is to monitor the results.
The rewarder then calculates rewards for actions based on the
results. To maximize coverage and fault detection, we should
give high rewards to actions that can discover new activities
and new crashes. Therefore, we use the function in Equation 1
to calculate the reward of a result R, where R̂1/R̂3 denotes
detecting a new activity/crash.

reward(R) =

 1 R = R̂1 or R̂3

−1 R = R2

0 otherwise
(1)

3) Action Selector: We expect to use a fuzz testing strategy
for exploring states to avoid systematically handling the mazy
GUI layouts in each activity. However, it is unlikely that a
simple random algorithm without any comprehension of the
AUT can explore an activity sufficiently within a reasonable
amount of time. Some techniques expect to improve random
strategies by obtaining information of GUI widgets to generate
actions and selecting the actions based on profiling information
like frequency [14]. We think that the historical results and
the inner relations of actions, which are neglected by previous
fuzzing techniques, should also be considered [12].

Actions that can result in discovering new activities and new
crashes, together with their prior actions, should have a high
priority to be selected. As a result, AIMDROID should have the
ability to learn from action results and predict which action can
bring more benefits. Finally, we adopt the SARSA algorithm
that conforms with our idea, and choose ε-greedy [31] as the
learning policy. The function getAction is implemented as
follows.

getAction(s) =

{
argmaxa∈A(s)Q(s, a) 1− ε
random(A(s)) ε

(2)

Equation 2 depicts the basic idea of the ε-greedy strategy,
where A(s) is the action set of the state s. The value Q(s, a)
(i.e., Q-value) represents the possible reward received for
taking action a in state s in the following iterations. In the ε-
greedy strategy, the action with the highest Q-value is selected
with the probability 1−ε, while the action is selected at random
from all available actions with the probability ε.

SARSA uses the following equation to update the Q-value
of states and actions.

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (3)

where r is the reward of action a. This equation takes currently
learned information, newly acquired reward and future rewards
into consideration. The importance of newly acquired reward
and future rewards are determined by α and γ separately. The
initial Q-value of an action on a new state is 1.

With the Q-value learned by SARSA, AIMDROID can use
the ε-greedy strategy to select each action cleverly, which
naturally balances the exploration and the exploitation of the
AUT via a random and a greedy selection criterion, respec-
tively. From Equation 3, we can know that the action with the
largest Q-value is more likely to be selected repeatedly. But
the largest Q-value will decrease if the corresponding action
cannot receive positive rewards, i.e., when they cannot trigger
new crashes or discover new activities. Finally, the greedy
selection criterion (i.e., argmaxa∈A(s)Q(s, a)) will guide the
testing tool to determine another action instead.

E. Implementation

As shown in Fig. 2, AIMDROID is implemented in a
client-server style. This design choice enables us to easily
parallelize AIMDROID in the future work. At the client side,
we employ Xposed [32] to implement the observer and the
cage as two Xposed modules, which can be easily activated



and deactivated when necessary. The input unit is implemented
on top of Monkey and supports six types of actions, including
touch, flip, trackball, drag, keyboard and type. The action
generator is implemented on top of UI Automator Viewer [25].
The latest UI Automator Viewer can dump layouts inside a
WebView. This feature enables AIMDROID to test hybrid
apps. The server side of AIMDROID is implemented in the Go
programming language. Thereby, we can deploy AIMDROID
cross different platforms.

AIMDROID generates a set of artefacts for crash diagnose,
including crash reports, activity transition reports and action
sequences. Activity transition reports are generated from the
BFS tree (i.e., T in Algorithm 1) to record the simplified tran-
sitions of activities in the AUT. Note that every action in the
execution sequences (i.e., S in Algorithm 1) are tagged with
its actual result. Hence, these transitions and action sequences
can be used together by the function quickLaunch during
either testing or replaying.

Most closed-source commercial apps cannot be repacked to
enable collecting method and instruction coverage. To this end,
we implement a tracing tool by modifying the davlik runtime
on Android 4.4 for SAPIENZ, and the ART runtime [33] for
Monkey and AIMDROID on Android 6.0.1, respectively. The
tracing tool traces every method except those in the Android
framework. These method are forced to be interpreted by the
interpreter. Then, we modify the bytecode interpreter to record
every executed instruction in traced methods. During our
evaluation, the performance degradation caused by disabling
compilation is negligible on real devices. We also provide a
command line tool to harvest the coverage data and a parser
to generate the coverage report.

AIMDROID aims to be a practical black-box testing tool,
though the current implementation relies on the Xposed, which
needs to root the devices. Actually, we have figured out a new
implementation approach that can be purely built on top of
the Android framework. That means in the future we could
deploy AIMDROID on any non-modified Android platform
since Android 6. We briefly explain the mechanism here. To
start an activity, we can use the command am [34] or the
API it called to start an activity. Here, the activity must be
implicitly or explicitly exported [35]. Though we cannot use
the quick launch method for every activity, the false crashes
caused by the quick launch method can be reduced. To block
activity transition, we can use a hidden framework API used
by Monkey. Monkey has already used this hidden API to
block inter-app activity transitions (i.e., the option -p). A
detailed technique explanation can be found at the web site
of AIMDROID.

IV. EMPIRICAL EVALUATION

We regard SAPIENZ and Monkey as the state-of-the-art
and state-of-the-practice techniques, respectively. Hence, we
conducted an empirical study on 50 real-world apps on real
Android devices to compare the performance of AIMDROID
with them. We want to answer the following research ques-
tions:

• RQ1: (Code Coverage) How does the coverage achieved
by AIMDROID compare to SAPIENZ and Monkey? Cov-
erage is an important indicator to reflect the effectiveness.
We use the activity, method, instruction as the level of
coverage measure in our experiment.

• RQ2: (Crashes) How do the crashes triggered by AIM-
DROID compare to those triggered by SAPIENZ and
Monkey? We believe that the ability to discover faults
is inevitably essential in assessing the effectiveness of
any testing tool.

A. Experimental Setup

We downloaded 50 popular closed-source commercial apps
from a third-party market that is maintained by a mobile
phone manufacturer2. These apps in total have billions of daily
usages in China. We excluded a certain number of popular
apps that require login first. The latency of networking has
an impact on the time interval for GUI updating, which is
critical for GUI-ripping based testing tools. Thereby, we have
not downloaded apps from the Google Play market because
most apps there may not have a server in China. The details of
the selected apps, including the number of activities, methods,
and bytecode instructions, are shown in Table I.

We conducted our experiment on a PC, which has eight-
cores 3.40GHz CPU and 20GB RAM on Ubuntu 14.04, and
a real-world Android device Nexus 7 (2013 wifi) tablet. For
Monkey and AIMDROID, we prepared Android Marshmallow
(6.0.1) version (API 23) in the Nexus 7 tablet because it
was the latest version when we started our study. However,
SAPIENZ only supports Android KitKat version (API 19),
because a crucial component called MotifCore of SAPIENZ
only works on Android KitKat and this component is not
open-source. Therefore, we prepared Android KitKat (4.4.2)
in another Nexus 7 tablet (with the same configuration) for
SAPIENZ separately. We also made some efforts to make
SAPIENZ work on real devices, since SAPIENZ supports
Android emulators only by default.

We configured three testing tools to wait 700 milliseconds
for the finish of GUI updating. This kind of delay was also
set in [10], [16], [11]. Every tool was given one hour to test
each app on one Android device, which was also set in [13].
If a testing tool finished its testing process before timeout,
our experiment script restarted the tool to test the app again.
For overtime testing processes, only activities and crashes
discovered in one hour were counted. We made a coverage
harvest every minute since the testing process started.

We ran Monkey and SAPIENZ with their default config-
urations (except the wait interval). For AIMDROID, we set
minL = 20 and maxL = 50 (which is smaller than the default
max sequence length of SAPIENZ). These two numbers were
estimated based on the average number of actions per state
we observed. We configured ε, α and γ with 0.1, 0.8 and 0.8
respectively. We plan to study the effect of these parameters
in the future.

2http://www.smartisan.com/.



TABLE I: Results on 50 real world commercial apps.

App Act.α Method Instruction AIMDROID SAPIENZ Monkey
(#) (#) (#) C (#) A (%) M (%) I (%) C (#) A (%) M (%) I (%) C (#) A (%) M (%) I (%)

cn.amazon.mShop.android 130 84,107 1,087,308 2 20.8 19.1 16.5 0 11.5 9.5 8.6 0 6.2 16.7 14.4
cn.dxy.android.aspirin 83 58,084 838,064 4 45.8 30.4 26.3 2 3.6 21.3 18.1 0 7.2 22.9 18.5

cn.kuwo.player 50 82,457 1,362,898 0 14.0 11.8 10.2 0 14.0 6.0 5.1 0 6.0 12.2 11.2
cn.wps.moffice eng 232 181,693 3,702,610 1 8.2 8.8 6.4 0 7.3 7.0 4.9 0 3.0 8.5 6.4

com.achievo.vipshop 293 121,488 1,982,531 1 13.0 11.2 9.5 0 9.2 12.0 10.6 0 2.0 8.4 6.9
com.autonavi.minimap 110 91,215 1,836,208 1 3.6 24.6 19.8 0 4.5 20.5 16.6 1 3.6 13.2 10.3

com.baidu.BaiduMap 107 109,719 1,784,620 0 9.3 16.0 14.1 0 4.7 11.0 9.6 0 1.9 13.4 12.0
com.baidu.lbs.waimai 127 64,586 1,014,716 1 23.6 8.0 4.6 0 11.0 15.1 12.4 0 5.5 13.5 11.1
com.baidu.searchbox 277 106,291 1,683,206 0 24.5 15.9 12.1 0 8.7 16.4 12.7 0 3.6 16.0 13.1

com.baidu.tieba 398 51,616 818,032 0 5.3 19.5 14.7 0 3.0 19.4 15.6 0 1.8 22.6 18.4
com.chaozh.iReaderFree 105 42 578 0 8.6 42.9 39.4 0 11.4 40.5 30.6 0 7.6 42.9 39.4

com.cubic.autohome 201 55,977 907,121 4 15.9 20.7 17.8 0 9.0 20.5 17.5 1 3.0 14.8 12.9
com.dianping.v1 535 153,582 2,660,563 0 3.2 12.8 10.3 0 0.4 13.0 10.6 0 2.4 8.5 6.6

com.douban.frodo 202 72,259 1,116,161 2 23.8 16.6 14.6 1 5.0 9.4 8.1 0 6.9 14.4 12.5
com.estrongs.android.pop 79 75,745 1,675,939 0 29.1 18.6 17.8 0 31.6 10.2 7.1 0 20.3 15.2 11.4

com.hexin.plat.android 63 96,297 1,616,479 0 9.5 11.9 11.0 0 11.1 11.6 10.8 0 3.2 7.5 7.0
com.hunantv.imgo.activity 75 75,502 1,167,702 0 29.3 23.0 19.8 0 14.7 21.2 18.5 0 4.0 17.7 15.2

com.kugou.android 258 122,571 2,201,108 1 16.3 20.6 18.1 0 6.2 15.2 13.3 0 1.9 7.7 7.2
com.letv.android.client 173 130,096 2,216,365 3 22.5 15.3 13.6 0 6.4 13.0 11.7 0 1.7 12.0 10.7

com.meitu.meiyancamera 54 51,131 869,366 1 50.0 26.6 30.3 2 53.7 26.7 30.5 0 22.2 22.2 26.7
com.mfw.roadbook 225 113,807 1,726,640 0 28.0 18.4 16.4 0 17.3 19.2 17.4 0 4.0 9.2 8.1
com.MobileTicket 9 27,718 408,275 0 44.4 6.4 5.7 2 11.1 5.8 4.8 0 11.1 6.5 5.7

com.moji.mjweather 167 75,593 1,281,964 3 34.1 26.0 23.1 0 8.4 18.4 16.6 0 5.4 21.4 18.6
com.mt.mtxx.mtxx 111 58,125 1,080,410 0 25.2 22.4 24.0 0 18.9 16.1 19.7 0 24.3 21.2 23.9

com.netease.newsreader.activity 249 145,177 2,437,901 0 3.2 19.2 18.2 0 2.4 24.4 23.7 0 1.2 18.9 18.4
com.nuomi 137 112,840 1,868,688 0 6.6 10.4 8.8 2 6.6 11.6 10.3 0 3.6 9.6 8.0

com.panda.videoliveplatform 48 48,485 756,966 2 20.8 17.6 13.8 0 16.7 22.2 17.8 0 8.3 21.2 17.0
com.qiyi.video 279 138,788 2,485,083 12 10.0 19.8 16.8 1 0.7 5.1 4.4 0 3.9 17.1 14.2

com.Qunar 887 35,815 536,055 0 4.2 14.2 14.1 0 6.5 17.5 17.8 0 1.4 13.8 13.9
com.sankuai.meituan 613 157,479 4,187,341 0 5.5 15.2 9.5 0 0.7 9.9 5.4 0 0.2 7.1 3.8

com.sankuai.meituan.takeoutnew 134 66,888 1,429,411 1 17.2 20.6 15.2 0 3.7 11.4 7.1 0 6.0 19.5 13.9
com.sdu.didi.psnger 237 141,488 2,233,520 8 6.3 15.9 14.3 0 2.5 10.7 9.8 0 1.7 10.9 10.0

com.shoujiduoduo.ringtone 40 36,769 630,841 2 45.0 24.6 21.7 0 35.0 21.1 18.9 1 35.0 20.0 18.0
com.sina.weibo 531 130,347 2,073,948 1 6.6 10.2 12.3 1 1.3 7.6 9.8 0 1.7 8.6 10.4

com.smile.gifmaker 152 74,579 1,397,362 0 9.9 15.7 12.2 0 9.2 16.8 13.2 0 1.3 13.5 10.3
com.ss.android.article.news 249 91,416 1,652,016 1 5.6 21.3 17.3 0 10.0 22.8 18.5 0 2.8 20.0 16.0

com.taobao.taobao 469 49,281 957,170 2 12.2 30.4 26.7 2 6.8 27.1 24.0 0 3.0 27.3 24.3
com.taobao.trip 127 88,455 1,483,885 0 16.5 15.3 13.6 1 11.8 13.2 6.5 0 5.5 10.5 5.2
com.tencent.mtt 64 40,524 867,533 0 7.8 34.6 25.8 0 4.7 39.3 30.8 0 9.4 39.8 30.9

com.tencent.news 149 84,802 1,517,873 7 28.9 20.0 14.7 0 16.1 26.6 22.0 0 11.4 23.6 19.5
com.tencent.qqlive 145 92,155 1,743,390 4 17.2 24.4 19.4 0 15.2 28.5 23.6 0 4.1 21.3 17.1

com.tencent.qqmusic 120 97,289 2,061,809 2 20.8 24.7 19.0 0 10.8 20.0 15.1 1 5.8 19.8 15.3
com.wuba 147 111,834 1,549,681 1 38.8 14.7 13.5 0 24.5 15.3 14.4 0 6.8 13.0 11.8

com.xiachufang 193 27 702 3 31.6 51.9 43.3 0 18.7 51.9 46.4 0 5.2 51.9 43.3
com.xunlei.downloadprovider 145 73,517 1,341,254 2 28.3 20.4 18.3 0 13.1 17.3 15.2 0 6.9 12.1 10.7

com.youdao.dict 107 108,212 1,640,566 1 32.7 17.0 13.7 0 0.9 1.1 1.1 0 6.5 12.8 10.4
ctrip.android.view 331 48,378 813,809 0 11.5 19.3 16.9 1 7.6 17.9 16.0 0 3.9 18.1 15.9

fm.xiami.main 74 83,631 1,428,379 2 28.4 28.4 25.3 1 12.2 26.7 23.8 0 4.1 16.5 15.1
me.ele 92 87,804 1,229,535 3 42.4 28.0 23.7 0 19.6 28.2 24.0 0 13.0 21.8 18.4

tv.danmaku.bili 117 86,472 1,238,251 2 16.2 19.2 16.4 0 14.5 10.3 8.7 0 10.3 19.9 17.0

Total/Averageβ 9,900 4,292,153 74,601,833 80 19.6 20.0 17.2 16 11.1 17.7 15.2 4 6.4 17.1 14.7
α Act. and C show the number of activities and crashes, respectively. A, M, and I show the coverage of activity, method, and instruction, respectively.
β In this row all coverage data are the average and other data are the total.

B. Results

For each testing tool, we collected the activity, method and
instruction coverage of each app. In addition, we also collected
the number of unique crashes of each app. The detailed results
of each app are shown in Table I.

RQ1: (Code Coverage) AIMDROID significantly outper-
formed SAPIENZ and Monkey in the activity coverage. This
result helps to show the effectiveness of the activity-insulated
exploration strategy. For method and instruction coverage,

AIMDROID also has better results than the other two on
some apps but are not as significant as the activity coverage.
This may be because the function bound, which controls the
total iteration of an episode, was not properly implemented.
Actually, AIMDROID may apply the in-cage exploration to
every discovered activity again if it still has time.

Monkey obtained better results on some apps, which is also
observed by previous work [14], [13], [10]. SAPIENZ didn’t
get a comparable results on our subject apps in comparison
with those on open-source apps in [13]. This is because



TABLE II: Exception Types of 80 Crashes

Exception #

java.lang.NullPointerException 62
java.lang.SecurityException 10

java.lang.ClassNotFoundException 2
android.content.ActivityNotFoundException 1

android.util.AndroidRuntimeException 1
android.util.SuperNotCalledException 1

java.lang.OutOfMemoryError 1

Native crash 2

we counted all methods and instructions in the installation
file (i.e., APK) of every app, including those from third-
party libraries. Besides, we used the default configuration of
SAPIENZ. In addition, SAPIENZ needs to reset the app to the
clean state before evaluating every testing script. Therefore,
SAPIENZ generated much fewer events than AIMDROID and
Monkey during our evaluation. We may need more hours to
show the effectiveness of SAPIENZ on testing the subject apps.

Figure 3 depicts the progressive average coverage on 50
apps. The activity coverage of AIMDROID increases more
rapidly than SAPIENZ and Monkey. For the method and
instruction coverage, AIMDROID and SAPIENZ almost have
the same result and both have a better result than Monkey.

RQ2: (Crashes) As shown in Table I, AIMDROID triggered
80 unique crashes, while SAPIENZ and Monkey triggered
16 and 4 unique crashes, respectively. A crash is uniquely
identified by the error message and the crashing activity.
Hence, at most 80 activity discovered by AIMDROID cannot
be properly started by the quick launch method. We do not
compare the sequence length in our experiment, since most
activities can be launched directly and AIMDROID limited the
longest length of each testing sequence in an episode with a
small constant maxL = 50.

Table II shows the distribution of different errors. Most
errors were caused by accessing null references. AIM-
DROID may generate two kinds of false crashes. First,
the quick launch method may fail to create the tar-
get activity. Second, blocking the start of another activ-
ity may fail to resume the current activity. We identify
these two kinds of potential false crashes by analyzing the
stack traces. Specifically, if the stack trace contains the
method android.app.Activity.performCreate()
or android.app.Activity.performResume(), then
we treat the crash as a false crash. Finally, we found 26 false
crashes during creating an activity and 4 false crashes during
resuming an activity. Note that 20 of 50 apps have neither true
crash nor false crash.

C. Threats to Validity

Subjects We haven’t evaluated AIMDROID with benchmark
apps used by previous work [10], [13]. This is because most
of those apps are open-source and only have a few activities.
The improvement of activity-insulated exploration may not be

significant on these apps.

Emulator We haven’t evaluated AIMDROID on emulators or
any other phones. All experiments were conducted on Nexus 7.
Nexus series are products of Google and used as the reference
for device vendors. Hence, we can avoid problems caused by
emulator bugs or device fragmentation [36].

Wait Interval A proper wait interval is necessary for testing
real-world Androids apps [16], [11]. Existing work sets dif-
ferent wait intervals for different apps on different platforms,
e.g., 200 milliseconds in [10], 5 seconds in [16], and 4 seconds
in [11]. With our knowledge of subject apps, we set a 700
milliseconds wait interval for every testing tool.

False Crashes AIMDROID reported many crashes that can-
not be triggered during normal usage. However, it may not
be annoying to manually inspect these errors: the number of
crashes for each app ranges from 0 to 12, which is not sig-
nificant. We also found some patterns to triage these crashes,
which further helps to reduce human efforts. AIMDROID can
also help to reveal bad code smells, e.g., accessing a potential
null pointer without check in a method.

SAPIENZ The currently available version of SAPIENZ must
be modified to test commercial apps on real devices. To install
SAPIENZ on real devices, we manually resolved the permission
problems. To mitigate the problem of GUI updating, we set a
wait interval for all testing tools. The wait interval may not be
necessary for SAPIENZ, though many previous work has set
it [10], [16], [11]. Therefore, we need more hours to evaluate
SAPIENZ.

V. RELATED WORK

A. Mobile Application Testing

Mobile application development has many challenges, such
as divergent context [37], [38], performance [39], [40], re-
source and energy [41], [42], [43], [44], [45]. For Android
apps, an addition difficulty is the fragmentation [5], [36]. In the
following sections, we mainly discuss techniques addressing
a more fundamental problem, i.e., how to effectively gen-
erate events to exercise apps thoroughly. We classify these
techniques into three types following previous work [10], i.e.,
fuzz testing, model-based testing, and systematic testing. These
techniques are mostly based on primitive actions/events but
can piggy-back on macro actions/events that are inferred from
execution traces from human users [46], [47].

B. Fuzz Testing

Monkey [8] adopts a random strategy to generate a tremen-
dous number of irrelevant input events. In comparison with
techniques in academy [10], Monkey actually has a better
usability and also better performance on some benchmark
apps [10]. The main limitation of Monkey is that the long event
sequences have many redundant and unfruitful events [13].
To this end, many techniques focus on reducing the length
of testings [13], [11], which we believe is essential to make
automated testing tools practical.



0 5 10 15 20 25 30 35 40 45 50 55 60
0

5%

10%

15%

20%

Time (m)

C
ov

er
ag

e
(%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5%

10%

15%

20%

Time (m)

C
ov

er
ag

e
(%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5%

10%

15%

20%

Time (m)

C
ov

er
ag

e
(%

)

(a) Average activity coverage. (b) Average method coverage. (c) Average instruction coverage.

AIMDROID SAPIENZ Monkey

Fig. 3: Progressive average coverage on 50 real world commercial apps.

To avoid unfruitful events, Dynodroid [14] rips the GUI to
generate events on interactive widgets. To avoid being trapped
in certain activities, Zeng et al. [12] additionally limit the total
exploration time of an activity and prohibit the transition to an
over-explored activity. AIMDROID manages the exploration of
an activity in a systematic way, which also can help to reduce
necessary activity transitions.

Android apps also need to behave well in adverse con-
ditions [48], [49], [50], [51]. Some techniques manufacture
intents as input for Android components (e.g., activities and
services) by static analysis [52], [53]. Besides, fuzzing intents
can also be used with model-based testing [19]. In contrast,
AIMDROID collects intents dynamically. In the future work,
we plan to use these intents as feeds for intents fuzzing and
use these generated intents for quick launch.

C. Model-based Testing

Model-based testing techniques have been widely studied
in testing Android apps [54], [15], [17], [16], [18], [55]. The
exploration can be guided to specific unexplored parts using
a systematic strategy such as DFS, BFS or hybrid [54], [17],
[18], or a stochastic model [19].

However, a critical problem of model-based testing for
Android apps is the granularity of state abstraction. Baek
et al. [18] conducted a study of multi-level state representa-
tions to show that different levels of abstraction actually have
an impact on the effectiveness of a modeling based tool. While
Baek et al. adopt a single level abstraction a time, AIMDROID
integrates two-level abstractions and two different strategies.

In addition, a systematic strategy like DFS needs to restart
the app from the initial state to backtrack to previous states.
Restarting and backtracking badly slow the testing process,
although SwiftHand [16] tries to solve this problem by using
actions such as BACK. AIMDROID insulates each activity in
the cage and explores each activity independently. By using
the quick launch method, AIMDROID can significant reduce
unnecessary transition between activities.

D. Systematic Testing

Systematic testing approaches [22], [23], [24], [13], [9]
apply symbolic execution or evolutionary algorithms to guide

the input generation. However, these tools are considered less
scalable than black-box techniques like Monkey [10].

SAPIENZ [13], which we consider as the state-of-the-art in
this paper, introduces multi-objective approach to test Android
apps. SAPIENZ applies evolutionary algorithms to optimize the
event sequences for three objectives: code coverage, sequence
length and the number of crashes found. However, SAPIENZ
has to iteratively evaluate new generated event sequences,
which consumes much time and resources. Besides, the app
should be reset and restarted to obtain a clean state for
replaying the testing scripts. Restart is time-consuming and
replaying can also be interrupted by non-determinism [16].

AIMDROID can adopt search-based techniques such as Evo-
Droid [9] and SAPIENZ [13] for the intra-activity exploration.
By using the quick launch method, we can avoid replaying
events in the test scripts to start the activity. In addition, non-
determinism caused by intents created from dynamic data can
also be mitigated if we start the activity with a chosen fixed
intent.

VI. CONCLUSIONS

In this paper, we propose AIMDROID, an approach to
model-based automated testing for Android apps. AIMDROID
implements the activity-insulated multi-level strategy, which
can manage the exploration of activities and avoid unnecessary
activity transitions between them. We believe that AIMDROID
is a practical black-box testing tool. We have evaluated AIM-
DROID on 50 popular real world closed-source commercial
apps in China. Our evaluation has shown that AIMDROID
outperforms the state-of-the-art and the state-of-the-practice
in activity, method, and instruction coverage, respectively. In
addition, AIMDROID reveals more crashes than the other two.

ACKNOWLEDGMENT

This work was supported in part by High-Tech Re-
search and Development Program of China under Grant
No.2015AA01A203, National Natural Science Foundation
(Grant Nos. 61690204, 61472177) of China, and the Collab-
orative Innovation Center of Novel Software Technology and
Industrialization.



REFERENCES

[1] “Number of Android applications,” http://www.appbrain.com/stats/
number-of-android-apps, accessed: 2017-08-01.

[2] “Activity,” https://developer.android.com/reference/android/app/Activity.
html, accessed: 2017-08-01.

[3] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the
devices to test your app on: A case study of Android game apps,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 610–620.

[4] K. Moran, M. Linares-Vsquez, and D. Poshyvanyk, “Automated GUI
testing of Android apps: From research to practice,” in 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
2016, pp. 648–648.

[5] M. Linares-Vsquez, G. Bavota, C. Bernal-Crdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: A
threat to the success of Android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, 2013, pp. 477–
487.

[6] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” in 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2013,
pp. 15–24.

[7] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2015, pp. 1–10.

[8] “UI/Application Exerciser Monkey,” https://developer.android.com/
studio/test/monkey.html, accessed: 2017-08-01.

[9] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of Android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, 2014, pp. 599–609.

[10] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for Android: Are we there yet?(e),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 429–440.

[11] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI event
traces,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 422–434.

[12] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie,
“Automated test input generation for Android: Are we really there yet
in an industrial case?” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 987–992.

[13] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. ACM, 2016, pp.
94–105.

[14] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 224–234.

[15] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications,” in International Confer-
ence on Fundamental Approaches to Software Engineering. Springer,
2013, pp. 250–265.

[16] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in ACM SIGPLAN
Notices, vol. 48, no. 10. ACM, 2013, pp. 623–640.

[17] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in ACM SIGPLAN Notices, vol. 48,
no. 10. ACM, 2013, pp. 641–660.

[18] Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI
testing using multi-level GUI comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 238–249.

[19] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, p. to appear.

[20] G. A. Rummery and M. Niranjan, On-line Q-learning using connec-
tionist systems. University of Cambridge, Department of Engineering,
1994.

[21] “Intent,” https://developer.android.com/reference/android/content/Intent.
html, accessed: 2017-08-01.

[22] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 59.

[23] J. Jeon, K. K. Micinski, and J. S. Foster, “Symdroid: Symbolic execution
for dalvik bytecode,” 2012.

[24] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing android apps through symbolic execution,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 6, pp. 1–5, 2012.

[25] “UI Automator Viewer,” https://developer.android.com/training/testing/
ui-automator.html#ui-automator-viewer, accessed: 2017-08-01.

[26] “Activity Lifecycle,” https://developer.android.com/training/basics/
activity-lifecycle/index.html, accessed: 2017-08-01.

[27] “URI,” https://developer.android.com/reference/android/net/Uri.html, ac-
cessed: 2017-08-01.

[28] “Tasks and back stack,” https://developer.android.com/guide/
components/activities/tasks-and-back-stack.html, accessed: 2017-08-01.

[29] C. Bertolini, G. Peres, M. d’Amorim, and A. Mota, “An empirical
evaluation of automated black box testing techniques for crashing GUIs,”
in 2009 International Conference on Software Testing Verification and
Validation. IEEE, 2009, pp. 21–30.

[30] S. Bauersfeld and T. E. Vos, “User interface level testing with TESTAR;
what about more sophisticated action specification and selection?” in
SATToSE, 2014, pp. 60–78.

[31] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[32] “Xposed module repository,” http://repo.xposed.info/, accessed: 2017-
08-01.

[33] “ART and Dalvik,” https://source.android.com/devices/tech/dalvik/, ac-
cessed: 2017-08-01.

[34] “Activity manager command,” https://developer.android.com/guide/
topics/manifest/activity-element.html#exported, accessed: 2017-08-01.

[35] “App manifest,” https://developer.android.com/guide/topics/manifest/
activity-element.html#exported, accessed: 2017-08-01.

[36] L. Wei, Y. Liu, and S. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, 2016, pp. 226–237.

[37] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa:
Automated large-scale mobile app testing through contextual fuzzing,”
in Proceedings of the 20th Annual International Conference on Mobile
Computing and Networking, 2014, pp. 519–530.

[38] K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas, C. Vendome, and
D. Poshyvanyk, “CrashScope: A practical tool for automated testing
of Android applications,” in Proceedings of the 39th International
Conference on Software Engineering Companion, 2017, pp. 15–18.

[39] Y. Liu, C. Xu, and S. Cheung, “Characterizing and detecting perfor-
mance bugs for smartphone applications,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 1013–
1024.

[40] M. Linares-Vsquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How
developers detect and fix performance bottlenecks in Android apps,”
in 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2015, pp. 352–361.

[41] Y. Liu, C. Xu, S. Cheung, and J. Lu, “Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 911–940, Sept 2014.

[42] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting display energy
hotspots in Android apps,” in 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), 2015, pp. 1–10.

[43] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy
optimization of HTTP requests for mobile applications,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 249–260.

[44] M. Linares-Vsquez, G. Bavota, C. E. B. Crdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
GUIs in Android apps: A multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 143–154.

[45] Q. Li, C. Xu, Y. Liu, C. Cao, X. Ma, and J. L, “CyanDroid: Stable
and effective energy inefficiency diagnosis for Android apps,” SCIENCE
CHINA Information Sciences, vol. 60, no. 1, p. 12104, 2017.



[46] M. Linares-Vsquez, M. White, C. Bernal-Crdenas, K. Moran, and
D. Poshyvanyk, “Mining Android app usages for generating actionable
GUI-based execution scenarios,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, 2015, pp. 111–122.

[47] M. Ermuth and M. Pradel, “Monkey See, Monkey Do: Effective gen-
eration of GUI tests with inferred macro events,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, 2016,
pp. 82–93.

[48] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with AppDoctor,” in Proceedings of the Ninth European
Conference on Computer Systems, 2014, pp. 18:1–18:15.

[49] C. Q. Adamsen, G. Mezzetti, and A. Mller, “Systematic execution of
Android test suites in adverse conditions,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015, pp.
83–93.

[50] P. Huang, T. Xu, X. Jin, and Y. Zhou, “DefDroid: Towards a more defen-
sive mobile OS against disruptive app behavior,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, 2016, pp. 221–234.

[51] Z. Shan, T. Azim, and I. Neamtiu, “Finding resume and restart errors
in Android applications,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2016, pp. 864–880.

[52] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the
Android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, 2013,
pp. 68:68–68:74.

[53] R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting intents of death,”
in Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, De-
bugging, and Analytics (PERTEA), 2014, pp. 1–5.

[54] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon, “Using GUI ripping for automated testing of Android pplica-
tions,” in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. ACM, 2012, pp. 258–261.

[55] T. Su, “FSMdroid: Guided GUI testing of Android apps,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, 2016, pp. 689–691.


