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ABSTRACT
We present an approach to automatically discovering explicit rules
for software process evaluation from evaluation histories. Each rule
is a conjunction of a subset of attributes in a process execution,
characterizing why the execution is normal or anomalous. The dis-
covered rules can be used for stakeholder as expertise to avoid mis-
takes in the future, thus improving software process quality; it can
also be used to compose a classifier to automatically evaluate fu-
ture process execution. We formulate this problem as a contrasting
itemset mining task, and employ the branch-and-bound technique
to speed up mining by pruning search space. We have applied the
proposed approach to four real industrial projects in a commercial
bank. Our empirical studies show that the discovered rules can
precisely pinpoint the cause of all anomalous executions, and the
classifier built on the rules is able to accurately classify unknown
process executions into the normal or anomalous class.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software process
models

General Terms
Management

Keywords
Software Process Evaluation, Contrasting Rule Mining

1. INTRODUCTION
A software process is a set of activities, policies, practices and

procedures, which is used in a software organization to develop,
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deploy and maintain software and the associated artifacts (e.g., re-
quirement, design documents, source code, test cases, bug reposi-
tories) [9]. The maturity of a software process is the extent to which
the process is explicitly defined, managed, measured and executed.
As such, it is directly related to the productivity of the organization
and the quality of the software products [10].

Software process evaluation is a task conducted in an organi-
zation to measure the maturity of software processes within this
organization, in order to further identify and assess its weakness,
strength, and areas improved or to be improved. The evaluation
procedure is usually done by an internal or external software pro-
cess expert against a reference model based on the data collected by
means of questionnaires, interviewing with team-members, check-
ing project artifacts, etc. [13]. Then the organization can base
on the evaluation result to make action plans for future improve-
ment [4].

However, as stated in [3], existing approaches for the software
process evaluation task have the following main limitations. First,
the evaluation procedure is usually manual, and thus can be time-
consuming for large projects. Second, due to authority constraint,
external experts conducting the evaluation usually do not have full
access to every collection of data; consequently, the evaluation re-
sults may not be precise. Third, the evaluation is often subjective,
especially relying on the expertise of experts in specific software
processes and related knowledge in the organization. Therefore, it
will be useful if we can automate the evaluation without involving
different levels of experts.

Chen et al.[3] proposed a machine learning approach to semi-
automating the software process evaluation task. Generally, they
assume that the software organization possesses adequate process
execution history data, from which a classifier can be learnt for
evaluating future process executions. In detail, they target at history
data of sequence form, namely, each process execution is recorded
as a sequence of state transitions labeled normal or anomalous;
and employ off-the-shelf classification algorithms (i.e. C4.5, Naive
Bayes and SVM) to perform sequence classification. Their experi-
ments show the effectiveness of their approach.

However, the learnt classifier represents a set of implicit evalua-
tion rules, which can be hard for people to understand, and cannot
be further used to guide and improve process execution in the fu-
ture. For example, the classification model learnt by SVM with a
linear kernel is a weight vector, of which each dimension weighs
the importance of the corresponding feature of a process execution.



Given that there are 100 features in [3], a 100-dimension weight
vector is not friendly for humans to interpret why a process execu-
tion is classified into a class.

Different than the machine learning-based approach in [3], we
take a mining stance to discover explicit rules from history data. We
stick to the same assumption that the organization has performed
several process evaluations before, and owns adequate history data
(i.e. both process execution information and evaluation results are
preserved). Next, a set of features is extracted from each process
execution as its representation. After processing all executions, we
obtain a database of feature sets, with each set labeled as either
normal or anomalous indicating whether the corresponding process
execution violates process regulations or not.

We formulate the discovery of explicit rules as mining of con-
trasting itemset patterns from the database. Informally, a contrast-
ing itemset pattern is a set of features which is observed in only
either normal or anomalous process executions. Given such a pat-
tern {a1, a2, · · · , ai} only included in executions of type label (i.e.
normal or anomalous), we generate a rule in the following way:

a1 ∧ a2 ∧ · · · ∧ ai ⇒ label

Namely, if the feature representation of a process execution in-
cludes the attributes a1, a2, · · · and ai, then the evaluation result of
this execution is label.

Compared to the learnt classifier in [3], each of our mined rules
is explicit and human-readable. Therefore stakeholder can investi-
gate and draw conclusions from these rules and make future action
plans to improve the maturity of software processes in their orga-
nizations. Furthermore, a set of rules can be composed into a clas-
sifier, fulfilling the same task of designating normal or anomalous
label for future process execution, as the one described in [3].

We summarize our contributions as follows:

1. We propose a pattern mining-based approach for software
process evaluation. Each pattern is a rule explicitly stating
why a process execution is classified as normal or anoma-
lous. We formulate the pattern as a contrasting itemset, ap-
pearing exclusively in either normal or anomalous execu-
tions.

2. We devise a simple but effective metric called contrasting
significance (CS) to mine such rules. We also derive an upper
bound for CS and employ the branch-and-bound technique to
speed up the mining by aggressively pruning search space.

3. We have applied the proposed technique to four real-world
projects in a commercial bank. We first manually check
the expressiveness and understandability of the mined rules.
With post-processing and a little human effort, the mined
rules can be further summarized into several concise rules,
which precisely pinpoint the cause of anomalous process ex-
ecutions. We also build a classifier from the rules to classify
new execution into normal or anomalous class, and the per-
formance is comparable with the best one (i.e. SVM) in [3].

The paper is organized as follows. Section 2 briefly introduces
the concept of software process evaluation. Section 3 formulates
the problem and details the technique to discover evaluation rules.
Section 4 describes the case studies we have conducted on the in-
terpretability of mined rules and their performance to classify new
execution traces. Section 5 surveys related work, and Section 6
concludes this paper.

Figure 1: State Transition Flow of Defect Management Process

2. SOFTWARE PROCESS EVALUATION
Software process evaluation is a task conducted in an organiza-

tion to measure the performance of software processes in a specific
scope. Usually, the organization has a formal process specifica-
tion (e.g. finite state machines, flow diagrams) specifying the ex-
pected behaviors of software process executions. Figure 1 shows
the state transition flow of the defect management process speci-
fied in a commercial bank. A bug report starts with the state New,
and ends at any of the four states, Closed, Finished, Postponed or
Canceled.

Table 1: Two Examples of Process Execution Traces

ID Label Process Execution Trace
1 anomalous 〈New, Open, Fixed, Reopen, Fixed, Re-

open, Fixed, Reopen, Fixed, Reopen, Fixed,
Closed〉

2 normal 〈New, Open, Fixed, Postponed, Closed〉

However, there may be divergence between the formal specifi-
cation and the evaluation result of process executions in two cases.
First, an execution conforming to the specification is regarded as
anomalous, The first process execution in Table 1 shows an exe-
cution trace of the defect management process, which follows the
specification in Figure 1 exactly, but considered as anomalous as
the verification of the bug fix fails multiple times.

Second, a process execution which does not follow the formal
specification may not be considered harmful. For example in the
last row of Table 1 – a normal execution example extracted from a
bug repository, a developer fixed a bug, then the developer decided
to postpone the bug to the next release of the software. In the next
release, the bug fix was verified by the tester, and tagged as Closed.

Considering two examples above, we conclude that the software
process evaluation task is not a simple process conformance check-
ing problem, and propose the solution based on contrasting itemset
mining, presented in the following section.

3. APPROACH
Figure 2 displays the framework of our approach. Generally, the

input to our approach is two classes of process execution traces,
with each class labeled normal (or anomalous) representing nor-
mal (or anomalous) process executions respectively. Next, for each
trace, we extract a set of features to represent the trace. After the
extraction for all traces is done, we identify features which are ob-
served in only one class but never in the other via contrasting item-
set mining algorithm, as rules for process evaluation. Lastly, these



Figure 2: Framework of Our Approach

rules can be used for stakeholder as reference to improve software
process quality, or used to construct a classifier to evaluate future
process execution.

The rest of this section first formulates the problem of process
evaluation rule mining, then details the features we use to repre-
sent process execution traces, and finally describes the branch-and-
bound technique used to prune search space during mining.

3.1 Problem Formulation
Let I = {i1, i2, · · · , im} be a set of distinct features extracted

from software process executions, C = {+,−} be the set of class
labels identifying normal and anomalous executions ("+" for nor-
mal, "−" for anomalous), and D be a database consisting of n
transactions (i.e. process executions) {(T1, c1), · · · ,(Ti, ci), · · · ,
(Tn, cn)}, where Ti ⊆ I and ci ∈ C. For convenience, we define
two filtering functions + and − for a set of transactions S,

S+ = {(T, c) ∈ S|c = +}

S− = {(T, c) ∈ S|c = −}
For example,D+ (orD−) denotes all the normal (or anomalous)

transactions in D respectively. For a feature set (or itemset, pattern
interchangeably) P ⊆ I, we define tx : 2I → 2D , returning all
transactions in D containing pattern P .

tx(P ) = {(T, c) ∈ D|P ⊆ T}
The support of P is defined as the number of transactions con-

taining P , i.e. |tx(P )| denoted as sup(P ); moreover, sup+(P ) =
|tx(P )+| and sup−(P ) = |tx(P )−|. The support of a feature set
satisfies the following property stated in [1].

PROPERTY 1 (APRIORI). Given a feature set P ⊆ I, ∀P ′ ⊆
I, if P ′ ⊃ P , then

sup+(P ′) ≤ sup+(P )

sup−(P ′) ≤ sup−(P )

A pattern is deemed contrasting if it appears in one class of trans-
actions, but never in the other. Namely, a contrasting feature set
should be observed in either normal or anomalous class of process
executions. Let p = sup+(P ), n = sup−(P ), then the contrasting
significance of the pattern P is defined in Equation 1,

CS(p, n) =


p if p 6= 0 ∧ n = 0

n if p = 0 ∧ n 6= 0

0 otherwise
(1)

Given a pattern P and CS(sup+(P ), sup−(P )) 6= 0, we say
the label of P is normal if sup+(P ) > 0, otherwise anomalous.
Then given such a pattern {a1, a2, · · · , an} with label l (abbre-
viated as {a1, a2, · · · , an} : l), we can interpret it as a process
evaluation rule in the following:

a1 ∧ a2 ∧ · · · an ⇒ l

That is, if a process execution is observed to contain all the fea-
tures {a1, · · · , an}, then this execution is classified as either nor-
mal or anomalous indicated by the pattern label l.

DEFINITION 1 (TOP-K CONTRASTING ITEMSET MINING).
Given a database D, its feature set I and an integer k, top-k con-
trasting itemset mining returns a set {pi ⊆ I}ki=1 from D such
that:

• ∀i ∈ [1, k],CS(sup+(pi), sup
−(pi)) > 0

• maximizes
∑k

i=1 CS(sup+(pi), sup
−(pi))

Our explicit rules for software process evaluation is defined based
on Definition 1. We construct a database from the evaluation histo-
ries by extracting features from each process execution as its rep-
resentation, perform contrasting itemset mining and use the mined
patterns as evaluation rules.

3.2 Feature Representation Extraction
This section describes how we extract features from a process

execution. In this paper, we focus on one type of software pro-
cess exectuions, which can be represented as sequences, e.g., soft-
ware defect management process, software requirement manage-
ment process. Given a software process P , let Σ denote all the
possible states of P , then an execution of this process can be rep-
resented as seq = 〈e1, e2, · · · , en〉 where ∀i ∈ [1, n] : ei ∈ Σ.
Given an integer i ∈ [1, n], seq[i] refers to the i-th element ei in
seq. To facilitate our explanation, we define the auxiliary functions
in Figure 3.

Equation 2 returns the set of states in seq. Equation 3 tests the
existence of a transition in seq. Equation 4 counts the occurrences
of state e in seq. Equation 5 counts the occurrences of transition
〈e′1, e′2〉 in seq. Equation 6 returns the last state of the given se-
quence.

Next we extract the four features listed in Figure 4 from a pro-
cess execution. The function absence captures the states which are
not visited in the given execution. The second feature set vertex
records the occurrences of each state. Similar to vertex , transition
records the occurrences of transitions between two states. The last
function end captures the final state of an execution. Finally, the
feature set extracted from seq is absence(seq) ∪ vertex (seq) ∪
transition(seq) ∪ end(seq). Table 2 shows the four feature sets
extracted from the anomalous process execution trace in Table 1.

Note that in this paper, we only consider these four sets of fea-
tures, but it is possible to devise more features and our mining al-
gorithm is sufficiently generic to process other types of features if
only each feature can be represented as an item.

3.3 Branch-And-Bound Mining
The search space of contrasting itemset mining constitutes a lat-

tice. Each node is a subset of I, the bottom node is ∅ and the top
node is I. The partial order relation of the lattice is proper subset
inclusion. Namely, an edge n1 → n2 from the bottom to the top
represents n1 ⊂ n2. The pattern mining starts with the bottom
node ∅, and gradually visits nodes above the current lattice level,



S(seq) = {e ∈ Σ|∃i ∈ [1, n] s.t. seq[i] = e} (2)

〈e′1, e′2〉 v seq =

{
true if ∃i ∈ [1, n) s.t. e′1 = seq[i] ∧ e′2 = seq[i + 1]
false otherwise (3)

times(e, seq) = |{i ∈ [1, n]|seq[i] = e}| (4)
times(〈e′1, e′2〉, seq) = |{i ∈ [1, n)|seq[i] = e′1 ∧ seq[i + 1] = e′2}| (5)

last(seq) = seq[n] (6)

Figure 3: Auxiliary Functions for Feature Extraction

absence(seq) = {(e, 0)|e ∈ Σ\S(seq)} (7)
vertex (seq) = {(e, i)|e ∈ S(seq) ∧ i ∈ [1, times(e, seq)]} (8)

transition(seq) = {(〈e1, e2〉, i)|〈e1, e2〉 v seq ∧ i ∈ [1, times(〈e1, e2〉, seq)]} (9)
end(seq) = {(last(seq),−1)} (10)

Figure 4: Features for Process Evaluation

Table 2: Features Extracted from the Anomalous Execution Trace
in Table 1

Name Extracted Features

absence (Assigned, 0), (Postponed, 0), (Finished, 0),
(Canceled, 0), (Rejected, 0)

vertex

(New, 1), (Open, 1), (Fixed, 1), (Fixed, 2),
(Fixed, 3), (Fixed, 4), (Fixed, 5), (Reopen, 1),
(Reopen, 2), (Reopen, 3), (Reopen, 4),
(Closed, 1)

transition

(New,Open, 1), (Open,Fixed, 1),
(Fixed,Reopen, 1), · · · , (Fixed,Reopen, 4),
(Reopen,Fixed, 1), · · · , (Reopen,Fixed, 4),
(Fixed,Closed, 1)

end {(Closed,−1)}

until it reaches the top I or no more patterns of interest is avail-
able.

However, the size of search space is exponential to the number of
items I (i.e., 2|I|) and thus we employ branch-and-bound (BAB)
technique to aggressively prune the search space without loss of
soundness. Generally, during mining, each time we take a branch
and explore for interesting patterns from small to large. But if we
can predict that along this branch, there will be no more contrasting
patterns, we can safely stop this branch and move to the next one.
The following describes how we decide to stop exploring a branch.

Assume that we know a set of transactions ux(P ) ⊆ tx(P )
which contains all super patterns P ′ ⊇ P where sup(P ′) > 0,
referred to as unavoidable transactions.

ux(P ) =
⋂

P ′⊇P∧sup(P ′)>0

tx(P ′)

The super pattern P ′ (s.t. sup(P ′) > 0) may not only be the im-
mediate parent pattern of P , (i.e., P ′ = P ∪{e} where e ∈ I), but
also any super pattern with a transitive closure computation over P
(i.e., P ′ = P ∪ S where S ⊆ I).

The unavoidable transactions of a pattern may be empty if all
qualified super patterns share no common transactions. But in other
cases that ux(P ) 6= ∅, this notion can provide valuable informa-
tion for estimating the upper bound of CS for super patterns of P ,

which is essential in BAB search. Based on the Apriori in Prop-
erty 1, we get the following theorem.

THEOREM 1 (UPPER BOUND OF CS). Given a pattern P ,
let p = sup+(P ), n = sup−(P ), up = |ux(P )+| and un =
|ux(P )−|, then the contrasting significance of all its qualified su-
per patterns is upper bounded by the following formula:

UB(P) =


n if up = 0 ∧ un 6= 0

p if up 6= 0 ∧ un = 0

0 otherwise
(11)

PROOF. Given any qualified super pattern P ′ of P , let p′ =
sup+(P ′), and n′ = sup−(P ′). Based on Property 1 and the
definition of unavoidable transactions, we have up ≤ p′ ≤ p, and
un ≤ n′ ≤ n. For the first case, if up = 0 ∧ un 6= 0, we have
CS(p′, n′) ≤ CS(0, n′) ≤ CS(0, n) = UB(P ).

The same reason applies to the second case. For the last case, as
neither p′ nor n′ can be 0, CS(p′, n′) = 0.

This upper bound can be employed in BAB search for top-k con-
trasting itemset pattern mining, based on the following property.

PROPERTY 2 (UPPER BOUND-BASED PRUNING). Given an
itemset pattern P and a contrasting significance score CS∗ > 0, if

UB(P ) < CS∗

then ∀P ′ ⊇ P : CS(sup+(P ′), sup−(P ′)) < CS∗

For top-k contrasting itemset mining, during mining we maintain
a list containing the most k contrastingly significant patterns in the
visited patterns, and update this list with newly discovered patterns.
The minimum CS in this list is denoted as CS∗. Based on the
property above, if we see that UB(P ) < CS∗, we can stop explor-
ing the search space along the current path, and switch to another
path in the lattice.

We use the generic framework proposed in [19] with our cus-
tomized measure CS and its upper bound to mine contrasting item-
sets. For more information about the search space of itemset min-
ing, the way to compute unavoidable transactions, and the imple-
mentation of BAB, we refer the readers to [19].



4. CASE STUDIES
We have built a prototype of the proposed technique named MO-

SPER (Mining of Software Process Evaluation Rules) in C++, and
have evaluated it with the same dataset1 as [3], 2622 sequences of
defect report histories from four projects, which are extracted from
the repository of the test management system HP Quality Center
version 9.0 used in a commercial bank in China.

Table 3: Summary of Dataset

Project #Defects
Electronic Commercial Draft System 1019
Wealth Management System (Phase 1) 478
Wealth Management System (Phase 2) 665
Financial Leasing System (Phase 2) 460

Table 3 displays the project names and the number of defects
of each project collected in our case studies. All experiments are
carried out on a Debian Linux PC with Intel Core 2 Quad CPU 3.00
GHz and 8 Gb memory.

The case studies consist of two experiments. In the first ex-
periment, we mined all the rules, manually interpreted them, and
checked their correctness. In the second one, we built a classifier
based on the rules to classify un-labeled process execution into ei-
ther normal or anomalous class, and compare the performance with
the best classifier in [3].

4.1 Interpretation of Mined Rules
We applied MOSPER to the whole dataset with a very large k in

order to get all contrasting rules, 2021 in total. Then the rules are
separated into two lists based on their labels, and the rules in each
list are sorted in descending order of their CS . Next for each list
L, we scan it from the beginning and perform the pre-processing
listed in Algorithm 1 to get L′ with redundant rules removed.

Algorithm 1 Preprocessing Mined Rules

Input: L, a list of sorted rules for one class
Output: L′, a list of rules without redundancy

1: Covered = ∅
2: L′ = []
3: for each rule r ∈ L do
4: if tx(r) 6⊆ Covered then
5: L′ = L′ ∪ {r}
6: Covered = Covered ∪ tx(r)
7: end if
8: end for

We get 25 rules for anomalous class, which cover all (638 out
of 638) anomalous process executions; and 14 rules for normal
class, covering 187 out of 1984 correct process executions. Table 4
shows the top 5 anomalous rules. The first rule shows that a bug
report cannot be open twice. The second rule indicates that a report
cannot be closed twice without any postponed or finished actions.
The third shows that a report cannot be reopened twice. The fourth
rule shows that after rejected, a report should be reopened before it
is closed in the future. The last shows that after reopening a report,
we should verify the fix first before we close it.

We interpret all the anomalous rules, and summarize them into 7
categories for comprehension purpose.
1Available at http://www.cais.ntu.edu.sg/~nchen1/
SPE.htm

Table 4: Anomalous Example Rules

Rank Rule
1 {(Open, 2)}:anomalous
2 {(Closed, 2), (Postponed, 0), (Finished, 0)}:anomalous
3 {(Reopen, 2)}:anomalous
4 {(Closed, 1), (Rejected, 1), (Reopen, 0)}:anomalous
5 {(Reopen,Closed, 1)}:anomalous

1. A bug can only be open once, and we should use reopen for
the rest of times.

2. In order to close a bug, we need to fix it first.

3. A bug should not be reopen more than once.

4. Once a bug is open or reopen, some operations must be per-
formed to it before it reaches close or reopen, e.g., fixed and
rejected.

5. We cannot directly close a bug right after it is assigned.

6. In order to fix a bug again, there should be reopen.

7. The states of a bug after it is open but before it becomes re-
open should contain only one of {postponed, rejected, fixed}.

These rules are double checked with the persons, who originally
conducted the manual evaluation of all the software process exe-
cutions. And it is confirmed that they were indeed implicitly used
in the evaluation task. Thus we conclude that our mining algo-
rithm can effectively identify explicit software process evaluation
rules. Note that these rules are organization-dependent, and new
rules mined from execution histories in different organizations may
vary.

4.2 Classification
Basically, each rule is a set of features with a class label in the

form {f1, f2, · · · , fn} : label, then we can build a classifier such
that for each testing instance t, if it contains all the features of a rule
i.e. {f1, f2, · · · , fn} ⊆ t, then we predict t as class label. As we
have shown in the previous section that we can get rules covering
all anomalous executions, but only a portion of normal ones, we
use the anomalous rules to build a classifier, and if a testing instance
cannot be classified, we simply label it as normal. The performance
of the classifier is evaluated in terms of the following three metrics.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2× Precision× Recall

Precision + Recall

where TP, FP and FN refer to the number of true positives, false
positives and false negatives respectively. In the experiments, we
take normal as positive class and anomalous as negative class.

We first perform 10-fold validation on the dataset (randomly par-
titioning the dataset into 10 pieces, choosing one piece as testing set
and the rest as training set, and repeating 10 times) and compare
with the result reported in [3].

Table 5 shows the performance comparison. The second to fourth
rows are the classification results achieved by C4.5, Naive Bayes
classifier and SVM reported in [3], and the last row is by our mined



Table 5: Performance Comparison of 10-Fold Validation

Precision Recall F-measure
C4.5 92.9% 94.7% 93.8%
NB 92.9% 91.1% 92.0%

SVM 97.6% 99.6% 98.6%
MOSPER 100% 99.5% 99.8%

Table 6: Statistical Detail of Precision

Percentage Median(%) Mean(%) Standard Deviation
10 98.5 98.2 0.012
20 99.4 99.3 0.005
30 99.6 99.5 0.004
40 99.8 99.7 0.003
50 99.9 99.8 0.002
60 100 99.9 0.002
70 100 99.9 0.001
80 100 99.9 0.001
90 100 99.9 0.002

rules. As the performance scores of SVM and MOSPER are very
close, we conclude that MOSPER is comparable with SVM.

We also test the impact of the size of training set on the classi-
fication performance. We randomly select 10%, 20%, · · · , 90% of
the dataset as the training set and test the built classifier against the
remaining executions. To mitigate the randomness, all experiments
are repeated 100 times, and all performance metrics are averaged
for comparison.

Figure 5 displays the performance comparison in terms of pre-
cision, recall and F-measure. As indicated, the performance im-
proves with the size of the training set. Furthermore, even with 30%
training set, the classification performance (precision = 99.6%, re-
call = 98.8%, F-measure = 99.2%) is already comparable with SVM
which uses 90% of the dataset as training set.

Table 6, Table 7 Table 8 show the median, mean and the stan-
dard deviation of the Precision,Recall andF-Measure respectively
for training sets of different sizes. The standard deviation for each
metric is very small, thus we conclude that the average performance
of our approach is stable.

In the classifier above, we use both the normal and anomalous
rules for classification. We also build another classifier using solely
anomalous rules. They perform quite similarly. With 90% dataset,
its average precision is 100%, average recall is 99.36% and average
F-measure is 99.67%.

4.3 Efficiency
Figure 6 shows the runtime (in ×10−2 milliseconds) to mine

evaluation rules from training set of various sizes ranging from
10% to 100% of the whole data set. The mining algorithm is very
efficient, as no experiment takes more than one millisecond. The
runtime is linear to the number of transactions in the dataset, based
on the plots in Figure 6.

However the time complexity of our technique is theoretically
exponential to the number of distinct features extracted from pro-
cess evaluation history, i.e., |I|. As aforementioned, the mining of
contrasting itemsets is a search over a lattice, of which the bottom
is ∅, the top is I, and the relation between two nodes is subset re-
lation ⊂. Thus there are 2I nodes in the search space. As each
node represents a pattern – a set of features, we need to explore all
these patterns in the worst case. Hence, the worst time complexity
is O(2I).
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Figure 5: Performance Comparison with Training Set of Various
Sizes

Fortunately, with effective pruning technique such as estimation
of upper bound of CS, we can avoid exploring the whole space.
This is why the runtime of our technique is neglectable as shown
in Figure 6, even though there are 120 features in I of the whole
data set. Therefore, we conclude that under the current feature ex-
traction scheme in this paper, our algorithm is scalable to the size
of the dataset.

4.4 Threats to Validity
There are mainly three threats to validity. First, it is unknown

whether our approach can generalize to software process evalu-
ation tasks in other organizations, although the performance on
the four commercial projects in a commercial bank is promising.
However, our approach assumes that process executions of normal
and anomalous classes should be differentiable to human experts
with certain rules, and this assumption is general to other evalua-
tion tasks, thus we believe the performance on other organizations
should not deviate much.

Second, when the mined evaluation rules are applied to clas-
sify future process executions into a class, the classification per-
formance may degrade if the training set is not adequate. This can
be shown by Figure 5. There is a 0.004 difference in precision



Table 7: Statistical Detail of Recall

Percentage Median(%) Mean(%) Standard Deviation
10 98.6 98.3 0.009
20 98.7 98.7 0.004
30 98.9 98.8 0.004
40 99.0 99.0 0.004
50 99.2 99.2 0.003
60 99.3 99.2 0.003
70 99.3 99.3 0.004
80 99.5 99.4 0.004
90 99.4 99.3 0.006

Table 8: Statistical Detail of F-Measure

Percentage Median(%) Mean(%) Standard Deviation
10 98.4 98.3 0.007
20 99.0 99.0 0.002
30 99.2 99.1 0.002
40 99.4 99.3 0.002
50 99.5 99.5 0.002
60 99.6 99.6 0.002
70 99.7 99.6 0.002
80 99.7 99.7 0.002
90 99.7 99.7 0.003

and 0.007 difference in recall between 30% and 90% training sets.
Although the difference is ignorable, our approach with small train-
ing set may still not work well. Therefore, it is desirable to use our
technique when the organization already has a certain amount of
process evaluation data.

Third, the feature engineering scheme may not be effective for
all kinds of software processes. For more complex processes than
that in this paper, our features may become less discriminative to
distinguish normal and anomalous classes. Thus it will be nec-
essary to devise more features to characterize traces besides these
used in this paper. However, our mining algorithm is generic to
directly accept new features without any modification.

5. RELATED WORK
This work is inspired by the one done by Chen et al. in [3]. They

transform each process execution into a vector with each dimen-
sion corresponding to a k-gram of the alphabet set. In their case
studies, they use bigrams to construct dataset and test the classifi-
cation performance of various algorithms and conclude that SVM
is the best. However, the model learnt by the classification algo-
rithm is implicit, that is, it is not easy to understand the meaning
of the classification rules in the model. For example, a linear SVM
model is a weight vector, of which each dimension weighs the im-
portance of the corresponding feature (i.e. a bigram in [3]). Given
that there are 100 features in [3], it is not easy to identify the rea-
son why a process execution is classified as anomalous just based
on a 100-dimension weight vector. A decision tree model learnt by
C4.5 [15] is more human-readable than an SVM model. However,
due to the training method of C4.5, its classification performance
is not as good as SVM in process execution classification as re-
ported in [3]. Consequently the rules represented by C4.5 are not
as precise as ours, since our algorithm performs comparably with
SVM. In this work, we take a mining stance to identify the con-
trasting features between anomalous and normal executions. The
mined patterns serve as explicit rules which are much easier to un-
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Figure 6: Runtime of Different-sized Dataset

derstand. Our explicit rules can further be naturally used to build
a classifier, and the performance is comparable with SVM in terms
of precision, recall and F-measure.

Another line of related research is software process conformance
checking, which focuses on measuring the difference between the
formal process model and process executions [7, 6]. Our work
differs from those approaches in that we aim to mine explicit and
human-readable evaluation rules from two classes (normal or anoma-
lous) of process execution histories, whereas they compare the real
process executions with the formal specifications. Our work is
also related to software process model discovery by mining event
logs in software repositories. Rubin et al. present the applications
of process mining techniques to mine software development pro-
cesses in [16]. Samalikova et al. [17] propose a mining algorithm
based on ProM framework [20] to construct change control board
process model from event logs in software configuration manage-
ment systems, and compare the mined model against the formal
process model, in order to provide feedbacks to the development
team. Similar to theirs, our mined rules can also serve as feedbacks
to improvement process quality. Yet differently, instead of mining
process models, our approach mines explicit evaluation rules by
contrasting normal and anomalous process executions. And these
rules serve as explanations why a process execution is classified as
normal or anomalous.

Other studies on software process methodologies and models are
also relevant. They specify a set of guidelines and practices for as-
sessing and improving the general software process capability of
large and small software development organizations [4, 8, 14, 21,
12]. As mentioned in Section 1, these approaches usually require
human effort and expertise, which could be time-consuming, sub-
jective and imprecise. And our work complements them.

Our work is also related to discriminative model-based classifi-
cation for software engineering, as the concept of identifying con-
trasting patterns is similar to discriminative analysis for classifica-
tion. In [11], Lo et al. propose an automatic approach to classi-
fying executions into correct or faulty sets. They first mine dis-
criminative sequence patterns from execution histories as features
to contrast faulty and correct executions, and then represent each
execution trace as a binary vector, of which each dimension indi-
cates the occurrence of a distinct discriminative pattern. Finally, an
SVM model is learnt to predict the failure status of future execu-
tion. In [18], Sun et al. employ discriminative model approach to
analyzing the difference between a pair of duplicate bug reports and
a pair of non-duplicate reports, and train an SVM model with the
difference for duplicate bug report retrieval task. Anvik et al. [2]
propose a technique to triage new bug reports to appropriate devel-
opers via text categorization algorithms. In [5], Clenland-Huang et
al. propose a model to classify none functional requirements from
structured and un-structured documents.



6. CONCLUSION AND FUTURE WORK
In this paper, we propose a mining-based technique to identify

explicit rules for software process evaluation. These rules can serve
as guidelines for improving software process maturity in an orga-
nization, or further compose a classifier to automatically evaluate
future software process executions. We define the problem of iden-
tifying these rules as contrasting itemset mining, propose a metric
CS to quantify the contrasting significance of a rule, and derive
a tight upper bound for CS for aggressive pruning of rule search
space.

In the future, we plan to directly generate explanations of mined
rules in natural languages. Currently each evaluation rule is a con-
junction of several features, and we need to manually translate
them. We believe this will promote the usability of our technique
further. Another possible future direction of this work is to identify
evaluation rules from non-structured process execution data, as a
considerable proportion of software process execution data is non-
structured, e.g., document revisions, weekly progress reports, and
code revision histories, and it contains uncovered wealthy informa-
tion for process evaluation tasks.
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