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ABSTRACT
Debugging is known to be a notoriously painstaking and time-
consuming task. An essential and yet expensive process in
debugging is bug isolation. As one major family of automatic
bug isolation, statistical bug isolation approaches have been
well studied in the past decade. A recent advancement in
this area is the introduction of bug signature that provides
contextual information to assist in debugging and several
bug signature mining approaches have been reported. All
these approaches instrument the entire buggy program to
produce profiles for debugging. Consequently, they often
incur hefty instrumentation and analysis cost. However, as
in fact major part of the program code is error-free, full-scale
program instrumentation is wasteful and unnecessary. In
this paper, we devise a novel hierarchical instrumentation
(HI) technique to perform selective instrumentation so as to
enhance the efficiency of statistical debugging. We employ HI
technique to predicated bug signature mining (called MPS)
recently developed and propose an approach called HIMPS.
The empirical study reveals that our technique can achieve
around 40% to 60% saving in disk storage usage, time and
memory consumption, and performs especially well on large
programs. It greatly improves the efficiency of bug signature
mining, making a step forward to painless debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, diagnostics, monitors, tracing

General Terms
Experimentation, Reliability

Keywords
automated debugging, bug signature mining, hierarchical
instrumentation
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1. INTRODUCTION
As is well known, debugging is a notoriously painstaking

and time-consuming task. As an essential and yet expensive
process in debugging, bug isolation (or fault localization) aims
to isolate or locate program bugs. A considerable number
of automatic bug isolation approaches have been studied in
the past decade. Statistical bug isolation [1, 2, 3, 4, 5, 6, 7]
is one major family of these automatic approaches. They
collect two groups (i.e., failing and passing) of executions and
apply the statistical techniques to pinpoint the discriminative
elements as the potential failure causes.

Recently, Parnin and Orso [8] claimed that perfect bug
understanding does not hold. It is difficult in practice to
understand the bug by examining a single buggy statement.
More contextual information where the bug occurs is likely
to provide useful clue for identifying, understanding and
correcting bugs. Hsu et al. [9] coined the term bug signature.
Instead of a single suspicious element (statement or predicate)
isolated by automated bug isolation, bug signature comprises
multiple elements providing the bug context information.
They adopted sequence mining algorithm to discover longest
sequences in a set of failing executions as bug signatures.
Subsequently, Cheng et al. [10] identified bug signatures
using discriminative graph mining. They mined discrimina-
tive control flow graph patterns as bug signatures from both
passing and failing executions. Since only control flow tran-
sitions are considered in [10], bugs not causing any deviation
in control flow transitions cannot be identified. To enhance
the predictive power of bug signatures, Sun and Khoo [11]
proposed predicated bug signature mining, where both data
predicates and control flow information are utilized. They
devised a discriminative itemset generator mining technique
to discover succinct predicated bug signatures.

Motivation. Both statistical bug isolation [1, 2, 3, 5, 6,
7] and bug signature identification approaches [10, 11] in
essence analyze failing and passing executions to identify
discriminative elements as the bug cause or bug signature.
They assume that every program element can be a candidate
for bug identification, and thus instrument the entire pro-
gram before performing bug discovery task. Such full-scale
program instrumentation incurs hefty cost in terms of disk
storage space consumption, CPU time and memory usage,
etc., not just during instrumentation but also the analysis
thereafter. However, in fact, most part of the program code
works properly, and only small portions of a program are rel-
evant to a given bug [12]. As stated in [3], the majority of the
predicates tracked (often 98-99%) are irrelevant to program
failures. This motivates us to develop a selective instrumen-
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Figure 1: Workflow of predicated bug signature mining via hierarchical instrumentation

tation technique such that only the program elements which
are highly correlated to the failure are instrumented, thus
improving the efficiency of statistical debugging.

Approach. To this end, we devise a novel Hierarchical
Instrumentation (HI) technique to perform selective instru-
mentation. Our work is based on the insight that infor-
mation collected and measured by instrumenting composite
syntactic constructs (e.g., functions) can be used to guide
the selection of program elements (e.g., predicates) for sub-
sequent instrumentation. We term the former instrumen-
tation coarse-grained whereas the latter instrumentation
fine-grained . Briefly, a lightweight coarse-grained instrumen-
tation is first performed to obtain the execution information
of coarse-grained elements (e.g., functions). Through these
coarse-grained information, we can safely and effectively
prune away instrumentation (and subsequent analysis) of a
substantial number of fine-grained elements (e.g., predicates).

In this paper, we demonstrate the effectiveness of HI tech-
nique by applying it to predicated bug signature mining
described in [11]. We propose an efficient predicated bug
signature mining approach via HI, called HIMPS, whose
workflow is demonstrated by Figure 1.

Specifically, HIMPS comprises two phases: one-pass coarse-
grained phase followed by two-pass fine-grained phase. At
coarse-grained phase, we instrument all the function entries
(called coarse-grained elements) of the program and run the
instrumented program over a small portion of passing test
cases and all the failing test cases. We then capture the
execution information of these function entries, which is then
used in the fine-grained phase to guide the selective fine-
grained instrumentation. The fine-grained phase comprises
two passes, namely boosting and pruning . The boosting
pass instruments and analyzes a selected subset of predicates
(called fine-grained elements), and computes a fine-grained
suspiciousness threshold from it. This threshold is then ex-
ploited in the pruning pass, for pruning away unnecessary
predicates and returning a set of prospective predicates for
fine-grained instrumentation. Only these prospective pred-
icates will be instrumented during the pruning pass which
finally returns the top-ranked bug signatures as output for
our entire analysis.

We conduct experiments to compare HIMPS against the
MPS system developed in [11]. The experiments validate
that HI technique can greatly improve the time and space
efficiency of MPS without jeopardizing the effectiveness of

mining for top-ranked signatures: it overall saves near 40%
of execution time and more than 50% of disk storage space
for profile collection, and only takes less than 60% of time
and peak memory consumption for preprocessing and mining
together. It performs especially well on large programs.

Contribution. Our contributions are as follows.

• We devise a novel hierarchical instrumentation tech-
nique to conduct selective instrumentation. To the
best of our knowledge, this is the first which exploits
the coarse-grained execution information to guide the
fine-grained instrumentation for automated debugging.

• We propose HIMPS, an efficient predicated bug sig-
nature mining via hierarchical instrumentation, and
demonstrate empirically that it significantly outper-
forms the existing MPS in terms of both space and
time efficiency.

• We provide evidence to support that the HI technique is
feasible, and rigorously prove that our HIMPS approach
is safe in discovery of top-k bug signatures.

Outline. The remainder of this paper is organized as follows.
Section 2 introduces some background about predicated bug
signature mining, followed by the detailed presentation of
our approach in Section 3. We discuss the experimental
evaluation of our work in Section 4. Section 5 gives the
literature. Finally, Section 6 concludes.

2. BACKGROUND
We explain some of the steps used in statistical debugging

approaches through the lens of predicated bug signature
discovery proposed by Sun and Khoo [11]. Specifically, we
discuss in some details how a program is instrumented to
produce predicates during execution, the metrics used in
assessing the suspiciousness of signatures – in the form of
itemset, and how preprocessing is done to reduce the size of
database for signature mining.

2.1 Predicated Bug Signature
An instrumentation scheme widely used in the statistical

debugging community was developed by Liblit et al. [3].
It was also adopted by Sun and Khoo [11] in their design
of predicated bug signature discovery. Here, a program



is instrumented to collect the runtime values of predicates
at particular program points. Each program point to be
instrumented is called instrumentation site. At each instru-
mentation site, several predicates are tracked. There are four
categories of instrumentation sites considered:

• Branches: For each conditional, two predicates are
tracked to indicate whether the true or false branch is
taken at runtime.

• Returns: At each scalar-returning call site, six predi-
cates are created to capture whether the return value
r is ever > 0,≥ 0, < 0,≤ 0,= 0, or 6= 0.

• Scalar-pairs: At each assignment of a scalar value,
six predicates are considered: x <,≤, >,≥,=, 6= yi (or
cj), where x is the assigned value, yi and cj represent
one of the other same-typed in-scope variables and one
of the constant-valued integer expressions seen in the
program, respectively.

• Float-kinds: At each assignment of a floating point
value, nine predicates are recorded to check if the as-
signed value is: -Inf, negative and normalized, negative
and denormalized, -0, NaN, +0, positive and denormal-
ized, positive and normalized, +Inf.

A profile is obtained for each run of the instrumented
program. It consists of a set of predicate counts which
records the number of times each predicate is evaluated to
true during the run. In [11], only those predicates whose
counts are equal to or bigger than 1 (i.e., the predicate is
evaluated to true at least once), are retained. Each profile is
thus regarded as a set of items, each of which is a predicate
evaluated to true at least once during execution. In addition,
each profile is labeled as passing or failing according to the
oracle. All the profiles constitute a database of labeled
itemset transactions, each corresponding to one profile.

Formally, let I = {e1, e2, . . . , em} be a set of items, C =
{+,−} be the set of class labels, D be a class-labeled itemset
database constituting n transactions, i.e., D = {(T1, c1), . . . ,
(Tn, cn)} where ∀i ∈ [1, n], Ti ⊆ I ∧ ci ∈ C. As discussed
above, in the context of predicated bug signature mining,
I corresponds to the set of all the instrumented predicates.
Each transaction Ti in D corresponds to a profile consisting
of predicates evaluated to true during execution – a subset
of I. Each profile is generated by running the instrumented
program using one test case. The class label (+) identifies
the passing profile (i.e., correct execution), whereas (-) labels
the failing profile (i.e., faulty execution). We call the cor-
responding transactions positive and negative transactions,
respectively.

In [11], a bug signature is a set of predicate itemsets, which
are observed together frequently in the failing executions but
rarely in the passing ones, and thus regarded to be corre-
lated to program failures. Given the class-labeled itemset
database, predicated bug signature identification is formu-
lated as a discriminative itemset pattern mining task. They
mine the highly discriminative bug signatures based on the
discriminative measure discussed later in Section 2.2.

2.2 Discriminative Significance
The discriminative significance of a pattern (itemset) is

typically measured by the notion of information gain (IG)
[13].

Let D be a class-labeled itemset database, D+ and D−
denote all the positive and negative transactions in D, re-
spectively. Given an itemset pattern P , the support of P
wrt. an itemset database D is defined as the number of
transactions in D containing P , i.e., sup(P,D) = |td(P,D)|
where td(P,D) = {(T, c) ∈ D|P ⊆ T}. let p = sup+(P,D) =
|td(P,D+)| and n = sup−(P,D) = |td(P,D−)| be the num-
ber of all the positive and negative transactions containing
P , which are called positive support and negative support of
P , respectively. The information gain of pattern P can be
defined as follows:

IG(p, n) = H(|D+|, |D−|)− p+ n

|D| ×H(p, n)−

|D| − (p+ n)

|D| ×H(|D+| − p, |D−| − n) (1)

where

H(a, b) = − a

a+ b
× log2(

a

a+ b
)− b

a+ b
× log2(

b

a+ b
)

In [11], Sun and Khoo define the following discriminative
significance measure based on IG:

DS(p, n) =

{
IG(p, n) if n

|D−| >
p
|D+|

0 otherwise
(2)

Since all the itemsets within one bug signature possess
the same positive and negative support, their DS values
are also the same. Therefore, the DS value is used as the
discriminative significance score of a signature.

2.3 Preprocessing and Bug Signature Mining
In [11], Sun and Khoo first performed preprocessing on the

profiles to produce a dataset which is subsequently fed into
the bug signature miner. To begin with, some unimportant or
redundant predicates are filtered out in advance. Specifically,
three filtering strategies are applied. Firstly, according to
the definition of discriminative significance (Equation 2),
all predicates such that n

|D−| ≤
p
|D+| are filtered as their

DS values are always zero. Secondly, all predicates whose
Increase [3] value not greater than zero are also filtered.
Thirdly, all predicates with operators ≥,≤, 6= are filtered if
they and their subsumed predicates (with operators >,<,=)
are both true in the same set of profiles. For instance,
consider a predicate a ≥ b, if this predicate is true in all
the same profiles where a > b is true. That means a ≥ b
does not capture additional execution information than its
subsumed predicate a > b. The predicate a ≥ b is actually
redundant and thus can be filtered. Note that preprocessing
is essential as it constructs the database in a suitable format
for the subsequent mining step; furthermore, it filters a great
number of predicates so as to effectively reduce the scale of
mining. However, it is also quite expensive especially if the
profiles processed are of big size.

Sun and Khoo [11] devised the discriminative itemset gen-
erator mining algorithm. Given a predicate itemset database
constructed from profiles through preprocessing, and the
number of top discriminative signatures to mine k, the al-
gorithm discovers the top-k discriminative bug signatures
based on the discriminative significance measure discussed
in Section 2.2. Specifically, they adopted a tree-based repre-
sentation of the database as [14] and proposed a depth-first
search algorithm over the pattern space while effectively prun-
ing the search space in a branch and bound fashion. They



provided two modes of signature mining: inter-procedural
and intra-procedural. In the first mode, a bug signature is
identified over the whole program. The items in a signature
can span across multiple functions. In the latter mode, the
mining is employed to each function separately, and the items
in a signature must reside in the same function. Since the
inter-procedural signature mining is much more expensive
than the intra-procedural, we focus on improving the effi-
ciency of the inter-procedural mode in this work. We refer
the readers to [11] for the detailed mining algorithm.

3. APPROACH
Given a buggy program and two groups (failing and pass-

ing) of test cases, the objective of our approach is to efficiently
mine the top-k bug signatures which are highly correlated
to the bug as measured by the DS values. The essence of
our approach is a safe pruning of predicates instrumented
and mined, making the bug signature mining more efficient.
Briefly, we first capture the execution information of functions
by a lightweight coarse-grained (function-level) instrumen-
tation and analysis phase. Subsequently such information
about functions is exploited to safely prune away unneces-
sary predicates. Algorithm 1 gives the detailed predicated
bug signature mining algorithm via HI involving two phases,
namely coarse-grained and fine-grained phase.

Algorithm 1: Predicated Bug Signature Mining via Hi-
erarchical Instrumentation

// coarse-grained instrumentation and analysis

1 Instrument all function entries in the entire program;
2 Run all failing and partial passing test cases to collect

coarse-grained profiles CP ;
3 list← AnalyzeCoarseGrainedProfiles(CP );

// fine-grained instrumentation and analysis

// first pass: threshold boosting

4 boost← SelectPredicatesForBoosting(list, γ);
5 Instrument all predicates in boost;
6 Run all failing and passing test cases to collect all the

fine-grained profiles BP ;
7 BD ← Preprocess(BP );
8 BS ← MineBugSignatures(BD, k);
9 θ ← the top-kth DS value of signatures;

// second pass: safe pruning

10 prospect← PrunePredicates(list, θ);
11 Instrument all predicates in prospect−boost;
12 Run all failing and passing test cases to collect all the

fine-grained profiles PP ;
13 PD ← Preprocess(PP+BP );
14 PS ← MineBugSignatures(PD, k);
15 return PS;

At the coarse-grained phase, only function entries of the
subject program are instrumented (Line 1). This sparsely
instrumented program is then run against all the failing and
a small portion of passing test cases to collect the coarse-
grained profiles (Line 2). Each coarse-grained profile consists
of a set of functions which are executed at least once during
execution. Having these coarse-grained profiles, a coarse-
grained analysis is performed to produce a list of functions
with their respective negative and positive supports (i.e.,

the number of failing and passing coarse-grained profiles
containing the function, respectively) (Line 3). This function
list will guide the ensuing fine-grained phase.

The fine-grained phase has two passes, each of which per-
forms fine-grained instrumentation followed by bug signature
mining. The first pass is called “threshold boosting”. It aims
to set a threshold which will be used as a lower bound of
the actual top-kth DS value of bug signatures mined by [11].
This is done by mining the top-kth DS value of signatures
having only a small fraction of highly suspicious predicates
instrumented (Lines 4-9). The second pass will efficiently
produce the top-k bug signatures through safely pruning
considerable predicates whose DS values are less than the
threshold determined in the first pass (Lines 10-15).

Specifically, in the first pass, we first select a few predi-
cates which are likely to be of high DS values (Line 4). The
selection detail will be expounded in Section 3.2. Next, we
perform the fine-grained instrumentation to instrument all
these selected predicates (Line 5), and then run the instru-
mented program using all the failing and passing test cases
to acquire fine-grained profiles (Line 6). The profiles are
preprocessed to create the mining dataset (Line 7), which
is fed into the bug signature miner to discover the top-k
bug signatures (Line 8). Note that Lines 5-8 indicate the
traditional procedure of predicated bug signature mining
stated by [11], making it possible for modular plug-in of new
debugging algorithm. After mining, we attain a threshold
θ, which is the top-kth DS value of signatures mined during
boosting (Line 9). We prove that this boosted threshold θ
is a lower bound of the actual top-kth DS value of signa-
tures mined in [11]. We will discuss this in Section 3.3. In
the second pass, predicates with DS value lower than θ are
pruned away, leaving behind a set of prospective predicates
constituting the top-k bug signatures (Line 10), which will be
discussed in Section 3.4. Only these prospective predicates
are considered in the pruning pass. Lines 11-14 perform the
bug signature mining as usual. Finally, the identical top-k
bug signatures as mined by [11] are returned (Line 15). Note
that since we have obtained the fine-grained profiles corre-
sponding to the predicates in boost during the first pass, we
only need to instrument other predicates in prospect−boost
in the second pass so as to further reduce execution time and
storage space for profile collection (Line 11). However, we
have to preprocess all the profiles (i.e., PP+BP ) in order to
perform inter-procedural signature mining (Line 13).

Identical test cases are used in coarse-grained phase (Line
2) and fine-grained phase (Lines 6 and 12). Except that in
coarse-grained phase (Line 2), instead of all the passing test
cases, only a subset of passing test cases∗ are used, thus
further minimizing the cost of coarse-grained phase.

3.1 Instrumentation
A salient feature of the HI technique is to have mul-

tiple levels of instrumentation, where instrumentation at
higher/coarser-grained level can help prune unnecessary in-
strumentation at lower/finer-grained level, resulting in big
saving in performance cost. In this work, two levels of in-
strumentation are applied, namely coarse-grained (Line 1)
and fine-grained (Lines 5 and 11).

At the coarse-grained phase, only the function entries
across the program are instrumented (Line 1). Each function

∗The number of passing test cases used is set to
min{max{0.1× |D|, |D−|}, |D+|}.



entry corresponds to one instrumentation site. After running
the coarse-grained instrumented program over all the failing
and a portion of passing test cases, we obtain a set of coarse-
grained profiles each for one test case. Each profile records a
set of functions which are executed during the run.

The instrumentation scheme discussed in Section 2.1 is
used for the fine-grained instrumentation (Lines 5 and 11)
where four types of predicates are considered. At each of the
two passes, different parts of the program are instrumented,
and the instrumented programs are executed using all the
failing and passing test cases to generate two groups of fine-
grained profiles, marked as failing and passing respectively.
As mentioned in Section 2.1, each fine-grained profile is
a set of predicates evaluated to true during the run. It
corresponds to an itemset transaction in the fine-grained
profiles database. Notice that our technique is also orthogonal
to the instrumentation scheme. More types of predicates can
be introduced without affecting our framework.

3.2 Predicate Selection for Boosting
Recall that the objective of the boosting pass is to generate

a sufficiently high DS threshold of signatures for use in the
pruning pass. Operationally, the threshold is generated by
performing signature mining (aka., MPS) on the subject with
a small selected set of predicates being instrumented. As the
whole mining process is involved, we wish to instrument as
few predicates as possible so as to reduce overhead incurred
and yet discover bug signatures with as high DS value as
possible so as to prune more predicates away in the ensuing
pruning pass.

We believe that the DS value computed during coarse-
grained phase for each function, as an approximation to the
DS values of the enclosing predicates, plays an important
role in selecting predicates for boosting (i.e., the predicates
instrumented during boosting pass). Specifically, we have
the following hypothesis:

Hypothesis 1. If the DS value of a function is high, then
it is quite likely that the DS values of predicates within this
function are high as well.

In other words, there is a high correlation between DS
values of a function and the predicates within. We test this
hypothesis empirically by measuring the correlation coeffi-
cient (i.e., Pearson’s r [15, 16]) between the DS value of a
function and the average DS value of all predicates within
that function using 102 faulty versions in 5 buggy programs.
For each version, we compute a correlation coefficient. Table
1 shows the averaged correlation coefficient among all the
versions in each subject, excluding the statistically insignifi-
cant ones with p-value [15, 16] bigger than 0.05. The results
indicate a strong positive correlation between DS values of
a function and their predicates.

Table 1: Correlation Coefficient
Subject replace space grep sed gzip Overall

CC 0.69 0.71 0.63 0.46 0.71 0.64

Based on the above hypothesis, we elect to choose the pred-
icates within functions of high DS values as the predicates
for boosting. These predicates will be instrumented in the
boosting pass for boosting a threshold. Specifically, we rank

the functions in descending DS values, and select the predi-
cates within the top few functions, until the total number of
predicates selected reaches a pre-determined percentage γ of
the total number of predicates in the entire program (Line
4). In our experiments, to guarantee low overhead, we set γ
to be 5%.

3.3 Safeness of Threshold Boosting
We obtain a threshold θ, i.e., the top-kth DS value of

signatures mined during boosting pass (Line 9). In the
ensuing pruning pass, we will prune away those predicates
whose DS values are less than θ, preventing them from
being instrumented and thus saving the instrumentation and
mining effort. To guarantee the safety of mining results
(i.e., the actual top-k bug signatures mined by the original
predicated signature mining [11] having all the predicates
in the program instrumented, continue to appear in the
results of pruning pass), we need to ensure that this boosted
threshold is indeed a lower bound of the actual top-kth DS
value (as stated by Theorem 3.2), such that no real top-k
signatures will be erroneously missed. Before the proof, we
first introduce a definition and a theorem, which will be used
in pruning Theorem 3.2.

Definition 3.1 (Projected Database). Given a set
of distinct items I, a subset I′ ⊆ I, a set of class labels
C, and a class-labeled itemset databases D constituting n
transactions, i.e., D = {(T1, c1), . . . , (Tn, cn)} where ∀i ∈
[1, n], Ti ⊆ I ∧ ci ∈ C, a same-sized itemset database D′ =
{(T ′1, c′1), . . . , (T ′n, c

′
n)} is said to be the projected database

from D wrt. I′ if and only if the following condition holds:

∀i ∈ [1, n], c′i = ci ∧ T ′i = Ti ∩ I′

Theorem 3.1 (Pattern Preservation). Given a set
of items I′, two class-labeled itemset databases D and D′
such that D′ is the projected database from D wrt. I′, for an
itemset pattern P ⊆ I′, the following holds:†

DS(sup+(P,D′), sup−(P,D′)) = DS(sup+(P,D), sup−(P,D))

Theorem 3.2 (Lower Bound). Let θ be the boosted
threshold, i.e., the top-kth DS value of signatures mined
by boosting pass, dsk be the top-kth DS value of signatures
mined by the original predicated signature mining with all the
predicates in the program instrumented, then we can derive
that θ is a lower bound of dsk, formally θ ≤ dsk.

Proof. Consider the original predicated signature mining,
first instruments all the predicates in the entire program, then
runs all the failing and passing test cases to collect profiles
which are then constructed to a class-labeled itemset database
for bug signature mining. As mentioned in Section 2.1, let
I denote the set of all the instrumented predicates by the
original signature mining, D denotes the class-labeled itemset
database thus constructed. Accordingly, let I′ correspond
to the set of predicates instrumented at the boosting pass
which is a subset of I. D′ is the itemset database derived
during boosting. We can derive that D′ is the projected
database from D wrt. I′. Since for each executed test case,
we will attain the same labeled profile in both databases
(i.e., let n be the number of test cases executed, then ∀i ∈
[1, n], c′i = ci). Meanwhile, for those predicates instrumented
during boosting (i.e., e ∈ I′), they are evaluated to true if

†The proof is provided by Appendix A.



and only if they are also evaluated to true in the original
mining for the same test case. Therefore, these predicates will
identically appear in both transactions Ti ∈ D and T ′i ∈ D′,
i.e, ∀i ∈ [1, n], T ′i = Ti ∩ I′.

SinceD′ is the projected database from D wrt. I′, based on
Theorem 3.1, we can conclude that for any itemset pattern
mined in boosting pass, its DS value is identical to that
computed in the original mining.

As mentioned before, a signature is a pattern consisting
of itemsets with the same DS values. Therefore, given any
signature mined in boosting, we will discover the same sig-
nature with the same DS value in the original mining. As
a consequence, the actual top-kth DS value of signatures
mined in the original signature mining dsk will be at least the
boosted threshold θ, i.e., the top-kth DS value of signatures
mined during boosting pass, i.e., θ ≤ dsk.

3.4 Predicate Pruning
In the pruning pass, we aim to discover the actual top-k

bug signatures. We leverage the results from the coarse-
grained phase (which is a list of functions associated with
their respective negative supports) and the boosting pass
(which is the boosted threshold θ) to safely prune away
predicates whose DS value is less than θ, leaving behind a list
of prospective predicates (Line 10). This is done by means of
a safe pruning condition. Conceptually, the predicates within
functions whose negative supports fall below a number n0

(computed from θ) can be safely exempted from fine-grained
instrumentation, since they cannot contribute a bug signature
whose DS value is at least θ. Specifically, this safe pruning
condition can be formalized as follows:

Theorem 3.3 (Necessary Condition). Let ei denote
a predicate, mi be the function in which ei is located, n(m)
be the negative support of function m. Given a predicate
itemset database D, a bug signature P comprising a set of
predicate itemsets all having the same negative and positive
supports, for ease of presentation, let P = {{e1, e2, ..., ek}}
and a threshold θ, the following implication holds where n0 =
arg minn{IG(0, n) ≥ θ}:

DS(sup+(P,D), sup−(P,D)) ≥ θ =⇒ ∀i ∈ [1, k], n(mi) ≥ n0

Proof. Let p = sup+(P,D) and n = sup−(P,D), we have
the following deduction.

DS(p, n) ≥ θ (3)

=⇒ IG(0, n) ≥ θ (4)

=⇒ n ≥ n0 where n0 = arg minn{IG(0, n) ≥ θ} (5)

=⇒ ∀i ∈ [1, k], sup−({ei},D) ≥ n0 (6)

=⇒ ∀i ∈ [1, k], n(mi) ≥ n0 (7)

Inequality (4) holds because IG(0, n) is an upper bound of
DS(p, n) as proved in Theorem B.1 of Appendix B. Since
∂IG(0,n)

∂n
= 1
|D| log2

|D|−n

|D−|−n
> 0 always holds, IG(0, n) is

monotonically increasing with respect to n (0 ≤ n ≤ |D−|).
Inequality (5) is thus derived. If sup−(P,D) is no less than
n0, then for all the predicates ei ∈ P , their negative supports
are no less than n0 (6). Note that if ei is evaluated to true
during one failing run, then mi must be executed during
the same run. That is, given the same failing test cases,
n(mi) ≥ sup−({ei},D) holds. Therefore, (7) holds. As a
result, we have proved Theorem 3.3.

Based on the above necessary condition, we prune away all
the predicates within the functions whose negative supports

are less than n0. Predicates that are not pruned away are
called prospective predicates. As mentioned earlier, these
prospective predicates will be instrumented and mined in
the pruning pass.

From Theorem 3.3, we know that any bug signatures with
DS value no less than θ, have to have their constituent pred-
icates coming from these prospective predicates. Moreover,
we have proved that this boosted threshold θ is a lower bound
of the actual top-kth DS value of signatures in Section 3.3.
Thus, mining done at the pruning pass can discover all the
actual top-k bug signatures.

4. EMPIRICAL EVALUATION
We have conducted an empirical evaluation of our approach

using 102 faulty versions in 5 buggy programs on an Intel
Core 2 Quad 3.0GHz PC with 16GB main memory running
64-bit Fedora 19. Table 2 lists the subjects used, number of
faulty versions, lines of code, number of functions, number
of instrumentation predicates, and the size of test suite used.
Note that in our experiments, all the results displayed for
each subject are the average values computed across all the
faulty versions in that subject. Moreover, the number of
top discriminative signatures to mine k is set to 1, and γ
which is the percentage of predicates instrumented during
the boosting pass is set to 5%.

Table 2: Characteristics of subject programs

Subject Versions LoC Functions Predicates Tests

replace 31 564 21 22,412 5,542
space 34 6,199 131 461,566 13,585
grep 12 10,068 121 1,418,835 809
sed 16 14,427 163 2,377,612 363
gzip 9 5,680 90 3,741,611 213

The original predicated signature mining [11] is composed
of four main steps, namely instrumentation, profile collection,
preprocessing and mining. Since each instrumentation is
only performed once and then the instrumented program
can be run forever, its cost is not significant compared with
the other steps (i.e., profile collection, preprocessing and
mining). In the following, we mainly discuss the performance
improvement during the other three steps. Note that in our
approach these steps are performed in each of the two passes
of the fine-grained phase. Nevertheless, in comparing these
two approaches, the experiments show that our approach,
combining both coarse-grained and fine-grained phases, is
able to greatly save the execution time and disk storage
space for profile collection as well as the time and memory
cost during the preprocessing and mining steps. Specifically,
we measure the improvement of our approach in reducing
execution time and storage space during profile collection
in Section 4.1. In Section 4.2, we compare with [11] in
terms of time and memory consumption for preprocessing
and signature mining. We abbreviate the original predicated
bug signature mining [11] as MPS (Mining Predicated Bug
Signatures), whereas our approach as HIMPS (MPS via HI).

4.1 Profile Collection
In this step, we run the failing and passing test cases to

collect profiles. This corresponds to Lines 2, 6 and 12 in
Algorithm 1. Here we consider two aspects of performance



cost, namely the execution time for running the instrumented
programs and the disk storage space used for profiles.
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Figure 2: Percentage of predicates instrumented

As both performance costs are to some extent dependent
on the number of predicates instrumented, we first present
the percentage of predicates which are instrumented in our
approach. Figure 2 depicts the percentage of predicates
instrumented during boosting and pruning in HIMPS. As can
be seen, compared with MPS where all the predicates (100%)
in the whole program are instrumented, HIMPS manages
to prune away considerable predicates. It only needs to
instrument less than 45% of predicates for all subjects except
for replace. Overall, more than half of the predicates are
exempted from instrumentation compared with MPS. Note
that HIMPS performs quite well especially on large programs.
For gzip, even more than 75% of predicates are safely pruned
away. For replace, it is of small size and most of the functions
are executed during each run. HIMPS can hardly prune
away predicates based on the coarse-grained information
(i.e., negative and positive supports). As a consequence,
it can only reduce 20% of predicates instrumented. We
believe that the larger the program, the higher percentage
of predicates our approach can prune away.

We have discussed the effectiveness of our approach in
pruning unnecessary predicates in Figure 2. This provides an
empirical evidence that HIMPS incurs relatively less time in
executing instrumented programs and also utilizes less disk
storage space for profiles than MPS. We further validate this
hypothesis by directly measuring the execution time and the
storage space for profiles.

Table 3: Execution time (in seconds) for profile col-
lection

MPS HIMPS Ratio

Subject original coarse boost prune total total/original

replace 12,332 841 6,829 10,108 17,777 144.16%
space 293,760 11,765 29,219 124,670 165,655 56.39%
grep 148,803 934 8,638 18,557 28,129 18.90%
sed 68,474 549 3,690 38,164 42,403 61.93%
gzip 663,789 1,945 112,151 57,980 172,076 25.92%
Overall 237,431 3,207 32,105 49,896 85,208 61.46%

Table 3 illustrates the execution time spent for running
the instrumented program to collect profiles. We compare
HIMPS including the coarse-grained phase (Column coarse)
and two fine-grained passes (Columns boost and prune) with
MPS adopting full instrumentation. As mentioned earlier,
the coarse-grained instrumentation is lightweight. Moreover,
only a small portion of passing test cases are executed in
the coarse-grained phase. That is why Column coarse is
quite small. Column total indicates the total execution time,

which is the sum of all three columns in HIMPS. As can
be seen, for grep and gzip, HIMPS only takes less than
30% of the execution time that MPS takes. But for replace,
our approach costs more time than MPS due to running
the fine-grained instrumented program twice. On average,
HIMPS can save near 40% of the original execution time.
Note that we employ sampler-cc [17] as the instrumenter in
this experiment. Moreover, in order to ensure credible and
stable results, we run each instrumented program four times,
ignore the first run and compute the average execution time
of the other three runs.

Table 4: Disk storage space used (in KB) for profile
collection

MPS HIMPS Ratio

Subject original coarse boost prune total total/original

replace 125,883 116 13,686 89,132 102,935 81.77%
space 6,242,337 1,950 401,591 2,174,017 2,577,558 41.29%
grep 1,145,575 170 116,008 391,439 507,617 44.31%
sed 864,367 125 49,515 288,398 338,038 39.11%
gzip 821,421 29 50,932 146,060 197,020 23.99%
Overall 1,839,916 478 126,346 617,809 744,634 46.09%

Table 4 presents the storage space used for profiles in kilo-
bytes for HIMPS and MPS. Three groups of profiles were
collected for HIMPS: the coarse-grained profiles (Column
coarse), the fine-grained profiles during boosting (Column
boost) and pruning (Column prune). It shows that HIMPS
only requires less than 45% of the profile storage space re-
quired by MPS for all the subjects except for replace.

4.2 Preprocessing & Mining
Having fine-grained profiles, we perform preprocessing to

construct the mining dataset (Lines 7 and 13), and then mine
bug signatures (Lines 8 and 14). Here, we compare HIMPS
with MPS in terms of time cost and memory consumption
for preprocessing and mining. Note that in our experiment,
both HIMPS and MPS perform the same procedure as stated
in Section 2.3 under the same setting.

We first demonstrate the percentage of predicates prepro-
cessed and mined in HIMPS against that of MPS as the base
(100%). Figures 3(a) and 3(b) plot the percentage during
preprocessing and mining, respectively. As mentioned earlier,
the profiles collected during boosting have to be preprocessed
again in the pruning pass for the inter-procedural mining
(Line 13 in Algorithm 1). That is why the percentage of
predicates preprocessed (Figure 3(a)) is slightly bigger than
that of instrumented (Figure 2). Nevertheless, around 50%
of the total predicates are preprocessed during boosting and
pruning together. Compared with 50% reduction in the num-
ber of predicates for preprocessing, overall only about 10% of
predicates are reduced for mining shown as Figure 3(b). The
underlying reason is that a certain number of predicates have
been pruned through the filtering strategy during prepro-
cessing discussed in Section 2.3, which weakens the pruning
effectiveness of our technique. Again, HIMPS can prune
away higher percentage of predicates for larger programs
than for smaller ones. In the following, we directly provide
the time cost and memory consumption for preprocessing
and mining.

Tables 5 and 6 show the time cost in seconds and peak
memory used in kilobytes for preprocessing and mining, re-
spectively. Column total gets the sum of boost and prune
for Time and the maximum for Memory. For preprocessing,
HIMPS only takes at most around 40% of time that MPS
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Figure 3: Percentage of predicates analyzed

Table 5: Time (in seconds) and memory consumption (in KB) for preprocessing
MPS HIMPS Ratio

original boost prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 16.99 180,876 1.18 33,955 13.70 156,969 14.88 156,969 87.59% 86.78%
space 1,162.57 4,642,485 34.98 399,727 271.25 1,978,003 306.23 1,978,003 26.34% 42.61%
grep 128.63 895,591 9.33 164,821 41.64 466,192 50.97 466,192 39.62% 52.05%
sed 85.98 733,413 4.51 134,328 31.41 383,566 35.92 383,566 41.78% 52.30%
gzip 87.39 786,913 4.52 177,142 18.55 327,594 23.07 327,594 26.40% 41.63%
Overall 296.31 1,447,856 10.90 181,994 75.31 662,465 86.21 662,465 44.35% 55.07%

takes for all the subjects except for replace. The peak mem-
ory consumed is also smaller than 55% of that used by MPS.
As for mining, HIMPS can also save more than 25% of time
and 15% of peak memory consumption in general.

Table 7 demonstrates the total time cost and memory
consumption for preprocessing and mining together. In addi-
tion, HIMPS also includes the time and memory used by the
coarse-grained analysis, shown as Column coarse. We can see
that the coarse-grained analysis is quite cheap compared with
the fine-grained analysis (Column boost & prune). Overall,
HIMPS can save more than 40% of total time and memory
consumption compared with MPS for the whole analysis.

5. RELATED WORK
We provide an overview of literature on statistical debug-

ging approaches in this section.

Statistical Bug Isolation. Statistical bug isolation ap-
proaches locate the root cause of failure by analyzing the
discriminative behavior between passing and failing execu-
tions. The rationale is that program elements which are
frequently executed in failing executions and rarely executed
in passing executions are very likely to be faulty. Different
types of elements are considered to represent the execution
behavior in different approaches. In addition, various mea-
sures for assessing suspiciousness of elements are proposed.
Tarantula [1, 2] as the first work, uses statement coverage
information to represent the execution behavior and assesses
the suspiciousness of each statement based on their proposed
measure. Similar to Tarantula, Abreu et al. [5, 6] proposed
Ochiai metric as the suspiciousness measure of program state-
ments. Liblit et al. [3] collected runtime values of predicates
and introduced Importance score to measure each predicate.
SOBER [4] employs a different statistical model to evalu-
ate predicates. Since the runtime predicate value captures
finer-grained execution information than statement coverage,
more precise results can be attained. However, it also suffers

from heavy instrumentation cost and performance overhead.
In [3], sparse random sampling [17] is adopted to address the
overhead issue. As an extension of [3], Gore et al. [7] intro-
duced elastic predicates such that statistical bug isolation
is tailored to a specific class of software involving floating-
point computations and continuous stochastic distributions.
Furthermore, the causal inference has been recently applied
to reduce the control and data flow dependence confound-
ing bias in statement-level [18, 19] and predicate-level [20]
statistical bug isolation.

Bug Signature Identification. As is well known, debug-
ging is an integral process of localizing the bug, understanding
and then fixing it. To assist in debugging, a great number of
automatic debugging approaches have been proposed recently.
Most of them focus only on the first phase which is termed as
fault localization or bug isolation. These studies commonly
try to isolate the root cause of the bug, which is usually a
single buggy statement. However, in practice, it is difficult
to understand the bug by examining that single statement
in isolation. The perfect bug understanding does not hold
[8]. To better support debugging, more information than
sole buggy statement or root cause is required. The “context”
where the bug occurs is likely to provide more useful clue
for identifying, understanding and correcting bugs. Recently
Hsu et al. [9] presented RAPID to identify bug signatures.
They adopted sequence mining algorithm to discover longest
sequences in a set of failing executions as the context. Jiang
and Su [21] combined feature selection, clustering, and con-
trol flow analysis to identify faulty control flow paths that
may cover bug locations. Cheng et al. [10] identified bug sig-
natures using discriminative graph mining. They mined the
discriminative control flow graph patterns from both passing
and failing executions as bug signatures. Since only control
flow transitions are considered in [10], bugs not causing any
deviation in control flow transitions cannot be identified. To
enhance the predictive power of bug signatures, Sun and
Khoo [11] proposed predicated bug signature mining, where



Table 6: Time (in seconds) and memory consumption (in KB) for mining
MPS HIMPS Ratio

original boost prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 28.90 240,974 0.08 16,277 26.50 231,617 26.57 231,617 91.96% 96.12%
space 813.93 2,533,414 1.15 62,458 670.08 2,294,894 671.23 2,294,894 82.47% 90.59%
grep 300.15 321,836 1.82 23,908 166.89 245,349 168.72 245,349 56.21% 76.23%
sed 24.39 65,952 0.05 5,539 19.38 59,425 19.43 59,425 79.68% 90.10%
gzip 56.64 70,780 0.12 6,947 34.91 49,171 35.04 49,171 61.85% 69.47%
Overall 244.80 646,591 0.64 23,026 183.55 576,091 184.20 576,091 74.43% 84.50%

Table 7: Time (in seconds) and memory consumption (in KB) for preprocessing and mining together
MPS HIMPS Ratio

original coarse boost & prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 45.89 240,974 0.03 3,161 41.45 231,617 41.49 231,617 90.41% 96.12%
space 1,976.51 4,642,485 0.40 49,463 977.47 2,294,894 977.86 2,294,894 49.47% 49.43%
grep 428.78 895,591 0.73 47,906 219.69 466,192 220.41 466,192 51.40% 52.05%
sed 110.37 733,413 1.21 75,317 55.35 383,566 56.56 383,566 51.25% 52.30%
gzip 144.03 786,913 1.85 114,622 58.10 327,594 59.95 327,594 41.63% 41.63%
Overall 541.11 1,459,875 0.84 58,094 270.41 740,773 271.26 740,773 56.83% 58.31%

both data predicates and control flow information are utilized.
They devised the discriminative itemset generator mining
technique to discover the succinct predicated bug signatures.

Our HI technique aims to improve the efficiency of statisti-
cal debugging by performing selective instrumentation. It is
independent of the particular statistical debugging approach
(either statistical bug isolation or bug signature mining).
Our technique can be applied to most of the debugging ap-
proaches [1, 2, 3, 5, 6, 7, 10, 11] discussed above to make
them more efficient, only requiring deducing a respective
necessary condition according to the specific fine-grained
suspiciousness measure used.

6. CONCLUSION
In this paper, we introduce a novel hierarchical instru-

mentation technique to improve the efficiency of statistical
debugging. This technique is based on the insight that infor-
mation collected and measured by instrumenting composite
syntactic constructs (e.g., functions) can guide the selec-
tion of program elements (e.g., predicates) for subsequent
fine-grained instrumentation, resulting in significant saving
in instrumentation effort, and substantial speed-up in the
subsequent analysis process. We apply the HI technique to
predicated bug signature mining and propose an approach
called HIMPS. We provide evidence to support the insight
mentioned above, and prove that HIMPS can safely discover
top-k bug signatures. Our empirical study also concludes
that in general HIMPS can achieve around 40% to 60% sav-
ing in disk storage space usage, time cost and peak memory
consumption, and especially performs well on substantially
large programs. This greatly improves the efficiency of pred-
icated bug signature mining. Moving forward, we intend
to formalize the HI technique and provide a more general
and systematic approach for its application to statistical
debugging.
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APPENDIX
A. PROOF OF PATTERN PRESERVATION

The following provides the proof of Theorem 3.1.

Proof. Since D′ is the projected database from D wrt.
I′, we can derive that ∀i ∈ [1, n], c′i = ci ∧ T ′i = Ti ∩ I′
according to Definition 3.1.

Given an pattern P ⊆ I′ and ∀i ∈ [1, n], T ′i = Ti ∩ I′, we
have the following deduction:

∀i ∈ [1, n], P ⊆ T ′i (8)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti ∩ I′ (9)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti ∧ P ⊆ I′ (10)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti (11)

Thus we proved that ∀i ∈ [1, n], P ⊆ T ′i ⇐⇒ P ⊆ Ti.
Further, recall that the positive support of P wrt. an item-

set database D′, sup+(P,D′) = |td+(P,D′)| where td+(P,D′)
= {(T ′, c′) ∈ D′|P ⊆ T ′ ∧ c′ = +)}. Since ∀i ∈ [1, n], P ⊆
T ′i ⇐⇒ P ⊆ Ti as proved above and given ∀i ∈ [1, n], c′i = ci,
we can derive that td+(P,D′) = td+(P,D) where P ⊆ I′.
Therefore, sup+(P,D′) = |td+(P,D)| = sup+(P,D). Simi-
larly, we can get sup−(P,D′) = sup−(P,D). According to
Equation 2, DS(sup+(P,D′), sup−(P,D′)) will be equal to
DS(sup+(P,D), sup−(P,D)).

B. UPPER BOUND OF DS‡

Theorem B.1 (Upper Bound of DS). Given an item-
set database D, and a pattern P , let p = sup+(P,D) and n =
sup−(P,D), the discriminative significance of P , DS(p, n)
is upper bounded by IG(0, n), shown as follows:

DS(p, n) ≤ IG(0, n)

Proof. According to the definition of discriminative sig-
nificance (Equation 2), we prove it in the following two cases.

1. If n
|D−| >

p
|D+| , according to Equation 2, DS(p, n) =

IG(p, n). The partial derivative of IG(p, n) with respect
to p:

∂IG(p, n)

∂p
=

1

|D| log2

p(|D| − p− n)

(p+ n)(|D+| − p)

Since ∂IG(p,n)
∂p

< 0 always holds where n
|D−| >

p
|D+| ,

IG(p, n) is monotonically decreasing with respect to
p (0 ≤ p ≤ |D+|). Therefore, we can derive that
DS(p, n) ≤ IG(0, n).

2. If n
|D−| ≤

p
|D+| , according to Definition 2, DS(p, n) = 0.

The partial derivative of IG(p, n) with respect to n:

∂IG(p, n)

∂n
=

1

|D| log2

n(|D| − p− n)

(p+ n)(|D−| − n)

Since ∂IG(0,n)
∂n

= 1
|D| log2

|D|−n

|D−|−n
> 0 always holds,

IG(0, n) is monotonically increasing with respect to
n (0 ≤ n ≤ |D−|). Thus IG(0, 0) = 0 ≤ IG(0, n).

All in all, we proved that DS(p, n) ≤ IG(0, n).

‡The theorem name is same as one in [11]. But we introduce
a totally different upper bound here for our use.


