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Abstract—We present an automatic approach to detecting
symmetry relations for general concurrent models. Despite the
success of symmetry reduction in mitigating state explosion prob-
lem, one essential step towards its soundness and effectiveness, i.e.,
how to discover sufficient symmetries with least human efforts, is
often either overlooked or oversimplified. In this work, we show
how a concurrent model can be viewed as a constraint satisfaction
problem (CSP), and present an algorithm capable of detecting
symmetries arising from the CSP which induce automorphisms
of the model. To the best of our knowledge, our method is the
first approach that can automatically detect both process and
data symmetries as demonstrated via a number of systems.

I. INTRODUCTION

In practice, a certain (sometimes rich) degree of symmetries
is ubiquitous in concurrent and distributed systems [26], [36].
A number of representative real-world complex networks,
including a broad selection of biological, technological and
social networks, are found to have a nontrivial symmetric
structure [26]. In theory, given a model, a symmetry is
an automorphism of its underlying state space (which can
be viewed as a graph). A naive (and complete) symmetry
detection method thus needs to explore the complete space.
In general, if a symmetry detection method is performed
on a state space, then the complete state space is required
to be constructed prior to the exploration. It is not only
computationally expensive or impossible, but also against the
original goal of symmetry reduction to reduce the explored
state space. A practical and popular approach is to use static
analysis to derive symmetries at model level [22], [34].

Existing symmetry reduction approaches have two main
limitations in the identification of symmetries in a model. First,
the soundness and efficiency highly depend on human efforts.
It is generally too difficult for machines to look through the be-
havior of concurrent models to pin down symmetries correctly.
Most approaches require users to provide correct symmetries,
which is tedious and error-prone. Some languages provide
dedicated instructions for specifying symmetries [22], [30],
[31]. For instance, Murφ provides a special data type with a
list of syntactic restrictions. All values that belongs to this type
are equivalent. Although there are automatic approaches which
do not need expert insights, they are designed for specific
languages [24], [23], or require models to be written in specific
patterns [13], [14]. Thus they trade off generality for efficiency,
and consequently a user has to transform his problem into a
form amenable to the approach. Second, existing approaches
can only handle a specific class of symmetries and largely

ignore other classes of symmetries which could reduce state
space significantly. As a result, symmetries in the underlying
state space are only partially discovered.

In this work, we develop a novel approach for symmetry
detection which addresses these two limitations. Not restricted
to a particular modeling language, our approach works for gen-
eral concurrent models (i.e., concurrent composition of finite-
state machines which could communicate through channels,
synchronous events or shared memories) in a fully automatic
way. Further, it is able to detect many kinds of process
symmetries and data symmetries together. The workflow of
our approach is shown in Figure 1.

First, a concurrent model is translated into a semantics-
equivalent nondeterministic sequential model using existing
approaches [3], [25]. The motivation behind is two-fold. First,
it is nontrivial to analyze concurrent models whose behaviors
are not obvious, such as subtle flexible communication patterns
and numerous possible interleavings between processes. Sec-
ond, we can take advantage of well-developed static analysis
techniques for sequential models. The worst case complexity
of the translation is linear in the total number of atomic
statements of all processes.

Second, we consider the problem of discovering symmetries
from a new angle. Our key insight is recognizing the similarity
between the role of symmetries in constraint programming and
that in model checking. Our analysis transforms the sequential
model into a constraint satisfaction problem, and extracts a
graphical representation of the CSP called colored graph. Each
automorphism of the colored graph is proved to correspond to
one in the concurrent model, which is effectively discovered by
applying a graph automorphism generator named Saucy [12].
The detected symmetries can be used later to speed up the
performance of a state space exploration tool, e.g., a model
checker or a simulator.

The above steps can be performed fully automatically.
The effectiveness and efficiency of our approach have been
demonstrated via a variety of systems.

The rest of this paper is organized as follows. Section II
presents a simple motivating example. Section III intro-
duces relevant background information and terminology used
throughout this paper. Section IV describes our automatic
symmetry detection approach in details and proves the sound-
ness of our approach. Section V presents the results of our
case studies. Section VI surveys related work. Section VII
concludes the paper and discusses possible future work.



Fig. 1: Automatic symmetry detection workflow

II. MOTIVATING EXAMPLE

In the following, we use a token circulation protocol [2]
as a running example. All the agents, or nodes, are deployed
in a directed ring. The protocol requires the existence of a
leader. Each agent has two single-bit variables recording its
token and label and one Boolean constant indicating whether
it is a leader. Only agents that are adjacent can interact (the
source node is the initiator and the target is the responder).
During an interaction, two agents update both of their states
according to two predefined transition rules . If two agents
have the same label, the responder is a leader and the initiator
is not, the responder sets its label to the complement of the
initiator’s label; otherwise the responder copies the label from
the initiator. If an interaction triggers a label change, a token
is passed from the initiator to the responder. Starting from an
arbitrary configuration, the protocol guarantees that eventually
there is always one and only one agent holding a token.

The concurrent model of this protocol with N agents is
described in Figure 2 using the syntax of Communicating
Sequential Programs [32]. Process Rule1 (or Rule2) defines
how an initiator u interacts with a responder v. Every time
there is an interaction in the network, the initiator and re-
sponder must update themselves according to the two tran-
sition rules. A rule is applicable only if the guard condi-
tion (e.g., !leader[v] ∧ label[u]! = label[v]) is satisfied. An
event (e.g., rule2) may be attached with variables updating
(e.g., token[u] := 0; token[v] := 1; label[v] =: label[u]).
The whole token circulation protocol is described as process
TokenCirculation, which is the interleaving (modeled by the
operator |||) of all possible interactions in the network. Initially,
the system can be in any possible configuration and the initial
variable valuation is omitted here for simplicity.

Rule1(u, v) = [!leader[u] ∧ leader[v] ∧ label[u] = label[v]] rule1

{token[u] := 0; token[v] := 1; label[v] := 1− label[u]; }
→ Rule1(u, v);

Rule2(u, v) = [!leader[v] ∧ label[u]! = label[v]] rule2

{token[u] := 0; token[v] := 1; label[v] := label[u]; }
→ Rule2(u, v};

TokenCirculation() = (|||x : 0..N − 1@

(Rule1(x, (x+ 1) mod N)|||(Rule2(x, (x+ 1) mod N));

Fig. 2: Concurrent Model of Token Circulation Protocol

Simple as the protocol is, the protocol exhibits non-trivial
symmetries: (a) process symmetries that rotate every process
following the network direction; (b) data symmetries that swap
the label values; (c) the combinations of process and data
symmetries that permute processes and label values together.

Existing data symmetry detection approaches [10], [22] rely
on scalarset annotations to discover fully symmetric compo-
nents (i.e., components which are identical up to rearranging
their identifiers). Although values of all label variables are
fully symmetric in this case, that is, permuting the values 1 to
0 and 0 to 1 for all label variables together over all the states
and transitions of the state space results in the same state space,
the arithmetic operations on the variables prohibit the use of
scalarsets. Further, the protocol does not take message-passing
paradigm, so the approaches [13], [14], [24], [23] for detecting
process symmetries are not applicable. Moreover, as far as we
know, there is no approach that considers process and data
symmetries which are not both full symmetries at the same
time, i.e., no existing approaches can find all symmetries in
this example.

III. PRELIMINARIES

This section is devoted to the background knowledge of
symmetry reduction in one application area of state space
exploration, i.e., model checking, and the relevant concepts
of constraint satisfaction problems.

A. Model Checking with Symmetry Reduction

We present our work in the setting of Labeled Transition
Systems (LTSs). An LTS is a tuple L = (S, init,Σ,→) where
S is a finite set of states, init ∈ S is the initial state, Σ is a
finite set of events and →: S × Σ × S is a labeled transition
relation. A permutation σ is said to be an automorphism of
an LTS L iff it preserves the transition relation and the initial
state, i.e., (∀s1, s2 ∈ S; e ∈ Σ. s1

e→ s2 ⇒ σ(s1)
e→ σ(s2)) ∧

σ(init) = init. A group G is an automorphism group of L
iff every σ ∈ G is an automorphism of L. A permutation σ
is said to be an invariance of L and property ϕ iff it is an
automorphism of L and σ(ϕ) ≡ ϕ where ≡ denotes logical
equivalence under all propositional interpretations [17]. G is
an invariance group of L and ϕ iff every σ ∈ G is an invariance
of L and ϕ. Given a state s ∈ S, the orbit of s is the set θ(s) =
{t| ∃σ ∈ G. σ(s) = t}, i.e., the equivalence group which
contains s. From the orbit of state s, a unique representative
state rep(s) can be picked such that for all s and s′ in the
same orbit, rep(s) = rep(s′). Intuitively, if σ is an invariance
of ϕ, states of the same orbit are behaviorally indistinguishable
with respect to ϕ. Based on this observation, an LTS L can be
turned into a quotient LTS LG where states in the same orbit
are grouped together. If G is an invariance group of L and ϕ,
then L satisfies ϕ iff LG satisfies ϕ [8].

There are two common types of symmetries for improving
the performance of model checking. A process symmetry
is a permutation on identifiers of concurrent processes. A
data symmetry is a permutation on data values. For example,
suppose a state st is (s1, s2, · · · , sn) where si is the local



state valuation of process i. If σ is a process symmetry on
the process ids {1, 2, · · · , n}, then σ acts on st in the form
σ(st) = (sσ(1), sσ(2), · · · , sσ(n)); if it is a data symmetry, then
σ acts on st in the form σ(st) = (σ(s1), σ(s2), · · · , σ(sn)).

B. Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple (V,D,C)
where V is a finite set of variables, D is a set of finite domains
and C is a finite set of constraints. Each variable vi ∈ V has
an associated domain Di ∈ D of possible values. A literal is
a statement of the form vi = d where vi ∈ V and d ∈ Di.
For any literal l of the form vi = d, we use var(l) to denote
its variable vi. The set of all literals is denoted by χ. An
assignment is a set of literals, each of which is a variable
valuation of the CSP. A solution of a CSP is a complete
assignment which satisfies each constraint in C. A constraint
c is defined over a set of variables, and the set is denoted as
Var(c).

A solution symmetry is a permutation of literals that pre-
serves the set of solutions [9]. A constraint symmetry is
a solution symmetry that preserves the constraints of the
CSP [9]. But a solution symmetry may not be a constraint
symmetry. For example, a CSP is (V = {x, y, z}, D =
{1, 2, 3}, C = {x < y, y < z}). It only has one solution
{x = 1, y = 2, z = 3}. One of its solutions symmetries
is (x = 2, x = 3). But it is not a constraint symmetry,
because it maps the literals {x = 2, y = 3} which satisfies
x < y to {x = 3, y = 3} which does NOT satisfy it. For
a CSP (V,D,C), a variable symmetry σ is a permutation on
V such that for any constraint c ∈ C, {v1=a1, · · · , vn=an}
satisfies c iff {σ(v1)=a1, · · · , σ(vn)=an} satisfies c; a value
symmetry σ is a permutation on D such that for any
constraint c ∈ C, {v1=a1, · · · , vn=an} satisfies c iff
{v1=σ(a1), · · · , vn=σ(an)} satisfies c. A variable-value sym-
metry is a permutation of the literals (i.e., V × D) that is a
constraint symmetry. Note that a variable-value symmetry is
not necessarily a composition of a variable symmetry and a
value symmetry.

IV. AUTOMATIC SYMMETRY DETECTION

In the section, we describe an automatic approach to de-
tecting the symmetries of a concurrent model. It translates
a concurrent model into a CSP whose symmetries can be
exploited using the state-of-the-art detection approaches for
CSPs.

Algorithm 1 gives an overview of the overall approach.
There are three main steps. The first step, as described in pro-
cedure Concurrent2Sequential, converts a concurrent model
CurModel into its semantics-equivalent nondeterministic se-
quential model SeqModel. The second step, as described in
lines 3-9, separately transforms each enabling condition and
each next-state program in SeqModel, and its init statement to
a semantics-equivalent CSP as shown by Procedure Transform.
These CSPs are then merged into one single CSP. The third
step, detects variable, value and variable-value symmetries in
the merged CSP, as described in Procedure DetectSymmetries.

Algorithm 1: Overview of our approach
1 autos := ∅;V L := ∅; csps := ∅;
2 SeqModel := Concurrent2Sequential(CurModel)
3 identify the set of global variables V G in SeqModel;
4 foreach summand sum in SeqModel do
5 identify the set of local variables locals of sum;
6 V L := V L ∪ locals;
7 foreach function or enabling condition f in sum do
8 csps := csps ∪ {Transform(f)};

9 csps := csps ∪ {Transform(init)};
10 autos := DetectSymmetries (Merge(csps), V G, V L);

Further, we prove that each detected symmetry is a real
automorphism of the LTS of the original concurrent model.
Lastly, we present two lightweight but effective optimization
methods.

A. Step 1: conversion from concurrent to sequential

We briefly introduce the principle of modeling concurrent
models by means of nondeterministic sequential models. The
corresponding sequential model can be built by simulating the
behavior of the concurrent model and keeping track of local
states of each process and global states all the time. Basically,
the preparatory step of the transformation is to introduce a new
integer variable state for each process in the model to represent
its control points, and then a syntactic transformation is per-
formed to translate each statement into one or more sequential
statements recursively. Then a concurrent model is reduced
into a sequential one which captures all its behaviors. Note
that the idea of linking concurrent models to nondeterministic
sequential models goes back to the work of Ashcroft and
Manna [3], [20] for proving the correctness of concurrent pro-
grams. The detailed transformation process is also explained
in [37]. The transformation is general enough to handle three
different types of systems with respect to execution patterns,
i.e., sequential and parallel systems with synchronous and
asynchronous communication. Therefore our approach is not
specific to one particular specification language. Moveover, for
a concurrent model, its corresponding sequential model can be
extracted in linear time [37]. The resulting model has the total
number of atomic statements of all processes in the worst case.

Figure 3 shows the sequential model for the token circula-
tion protocol. The nondeterministic sequential model is written
in a single process with data variables that describes a system
as a set of guarded and nondeterministic transitions. It contains
a single parameterized recursive process definition and the
initial parameter valuations of this process. The left-hand side
of the process definition is a process name with a vector of
data parameters. Here we refer to these parameters as global
variables. An addition operator in the right-hand side ‘sums’
a list of nondeterministic transitions, to which we refer to as
summands. A summand has a declaration of local variables
followed by an enabling condition, an event (if any) and a
next-state program from left to right. Each local variable can
be evaluated to any value of its type nondeterministically. It



type AG : 0..N − 1

type BIT : 0..1

proc TokenCirculation(BIT[N ] token, BIT[N ] label, BOOL[N ] leader) =

AG u1.AG v1.[v1 = (u1 + 1) mod N∧!leader[u1] ∧ leader[v1] ∧ label[u1] = label[v1]]

rule1{token[u1] := 0; token[v1] := 1; label[v1] := 1− label[u1]; } → TokenCirculation(token, label, leader)
+

AG u2.AG v2.[v2 = (u2 + 1) mod N∧!leader[v2] ∧ label[u2]! = label[v2]]

rule2{token[u2] := 0; token[v2] := 1; label[v2] := label[u2]; } → TokenCirculation(token, label, leader);
init TokenCirculation(∗);

Fig. 3: Sequential model of the token circulation protocol

is read-only and cannot be of array type1. Executability of
a summand is decided by its enabling condition that is a
Boolean expression; the action of the summand is decided
by the event name; the effect of the summand is decided by
its next-state program which updates the global variables. A
next-state program is composed of a sequence of statements.
A statement can be an assignment, conditional, or while-
loop statement. Besides, there is an initial valuation of global
variables denoted by init, which is the entry where the process
starts to execute. The symbol ∗ denotes the nondeterministic
choice of all possible evaluations of global variables.

For the running example, the transition in Process Rule1
(resp. Rule2) is transformed into the first (resp. second) sum-
mand in the sequential model. There are two process identifiers
used in each transition from the domain {0 · · ·N − 1}. The
initiator and responder ids u and v are transformed into u1

and v1 (resp. u2 and v2 ) in the first (resp. second) summand.

B. Step 2: transformation from the sequential model to a CSP

We describe how to convert a function or the init statement
into the static single assignment form (SSA) [11] below, from
which an equivalent CSP is derived. SSA is a form of a
semantics-preserving intermediate representation of a program,
which requires that each variable be assigned exactly once.
The key feature of SSA is that each variable with the same
name always has the same value in everywhere in the program.
The immutability of variables is the primary reason why we
transform each function into a constraint system by the use of
SSA.

Converting ordinary source code into SSA is relatively
straightforward. In essence, it replaces the target variable
of each assignment with a fresh name. Every usage of this
variable in the succeeding statements is replaced with the new
name, until a new assignment to the same variable occurs. We
call the existing variables original variables, and other new
variables versioned variables.

Further, SSA defines an artificial function ϕ to represent the
choice between different branches of a conditional statement
defined formally as follows. A new Boolean variable b, called

1If a local variable is an array, the language can be extended to support it
easily, as we have done in our tool.

decision variable, is introduced to store the value of the
condition and the if and else branches are converted separately.
For each variable x defined in the if or else branch, an
additional assignment x′′′ := ϕ(x′, x′′, b) is inserted at the
end of the block to achieve branch selection, where x′ and
x′′ are the last definitions of x in the if and else branches
respectively.

ϕ(x′, x′′, b) = if b then x′ else x′′

Still, converting a program to SSA form becomes more
complicated when while-loop statements are involved. A while-
loop can be equivalently regarded as an infinite number of
nested conditional statements. But it is impractical to transform
it into such conditional statements. So the assumption here is
that any loop can be finished in a finite number of iterations.
In this way, we reduce the problem of converting a loop
to converting a list of conditional statements. Note that this
assumption puts little limitation on our approach. Because the
loop considered here is the loop included in one next-state
program that is atomically executed. It is rare for a practical
system to put the whole loop in one atomic step.

Another challenge is handling array manipulation. The
reason is that a new assignment statement of an array does
not necessarily kill all the old values in the array. For instance,
the meaning of the assignment A[i] := A[i] + 5 is two-
fold. First, it increases the value of the ith element in the
array A by 5. Second, all the values of other elements are
unchanged. We cannot simply assign the left-hand side with
a new name, which loses the second meaning. Thus we
define a function φ as follows to handle array assignments.
Suppose an array assignment is array[index] := value and
array0 is the latest name of array before the assignment
in the SSA form. We replace the original assignment with
array1 := φ(array1, array0, index, value) where array1 is
a fresh name. Note that φ can be a polymorphic function so
as to handle multi-dimensional arrays.

array1 := φ(array1, array0, index, value) ={
array1[index] = value∧

∀j ̸= index. array1[j] = array0[j]

Take the next-state program of the first summand in Fig-
ure 3 (i.e., token[u1] := 0; token[v1] := 1; label[v1] :=



1− label[u1];) as an example. Its SSA form is

token1 := φ(token1, token, u1, 0)
token2 := φ(token2, token1, v1, 1)
label1 := φ(label1, label, v1, 1− label[u1])

The SSA form we obtain can be more succinct by apply-
ing copy propagation technique, commonly used in compiler
optimization. It eliminates unnecessary temporary copies of a
value generated by our transformation, and further facilitates
our symmetry detection approach. An assignment is an identity
assignment if it is in the form x := y which assigns the
value of y to x and y is either a variable or a constant. Copy
propagation is the process of replacing the occurrences of
targets of identity assignments with their values.

The SSA form of a program always has the same behaviors
as the original program [11]. After the conversion of a function
to SSA, the next conversion from SSA to a CSP is straight-
forward. Each assignment is directly mapped to a constraint
by interpreting each assignment operator as an equivalence
operator. Both representations are very similar. It is easy to
know the SSA and its CSP representation have equivalent
behaviors as the following proposition states.

Proposition 1. Given an SSA representation P , let CP be the
CSP converted from P . If for an input I the execution of P
produces valuations V for all variables, then I and V is a
solution of CP and vice versa.

For an enabling condition, since it is already a con-
straint, it does not need any transformation. For the init
statement, we convert it into a constraint in a very sim-
ilar way. Suppose the process in the sequential model
is P (Dom1 v1, · · · , Domn vn) and its init statement is
P (a1, · · · , an). It is converted to v1 = a1 ∧ · · · ∧ vn = an.
Then we simply combine all the constraints derived from each
next-state program, enabling condition and the init statement
to build one large CSP for this whole sequential model.

For the running example, the conversion step builds the cor-
responding CSP for its sequential model as shown in Figure 4.
Since its init statement represents all possible evaluations of
global variables, it has no effect on symmetry breaking in the
CSP and thus is skipped for simplicity.

C. Step 3: symmetry detection on CSP

Next we explain the procedure to discover constraint sym-
metries in the merged CSP which we denote as CF in the
following. First, we present the state-of-the-art symmetry
detection method for CSP, on which our detection approach is
based. However, considering the role each constraint plays in
the sequential model, this method is not completely suitable
in terms of correctness and performance. To cope with this
problem, we describe our alternations as follows.

Our approach is based on the automatic symmetry detection
method for CSP proposed by Puget [29]. It allows us to detect
variable symmetries, value symmetries and non-trivial ones
involving both variables and values. For each constraint, the
approach first calculates all the allowed assignments. Then
the graph of this constraint c is constructed in the following

way. A variable node is created for each variable in c. An
array represents a collection of scalar variables. So a distinct
variable node is created for each element of the array. A
constraint node is created for c. A value node is created
for each value of each variable in c. An assignment node is
created for each allowed assignment of c. Edges connect each
value node to its variable node, each assignment node to the
value node representing each variable-value literal occurring
in the assignment, and each assignment node to the constraint
node. So the number of nodes in the colored graph is the sum
of the number of variables, literals, constraints and allowed
assignments, and the number of edges is the sum of the number
of literals, allowed assignments and the number of variables
in allowed assignments.

The graphs for all constraints are combined into a single
graph, called colored graph. The coloring scheme for this
graph is described in three rules:

• all variable nodes with the same domain have the same
unique color;

• for a variable, all of its value nodes have the same unique
color. If two variables have the same color, their value
nodes have the same color;

• for a constraint, its assignment nodes all have the same
unique color. If two constraints have the same color, their
assignment nodes have the same color.

It addresses symmetries by computing the automorphisms of
the colored graph. It has been proved that each automorphism
of this graph corresponds to a constraint symmetry as restated
in the following theorem.

Theorem 2. [29] Let C = (V,D,C) be a CSP. Its colored
graph G is constructed as illustrated above. Suppose σ is an
automorphism of G and s is an assignment of C. For each
constraint c ∈ C, s satisfies c iff σ(s) satisfies c.

Before applying this method to our problem, we have to
address the concern raised by the differences of ordinary CSPs
and the CSP we convert the sequential model into. Some
variables in a sequential model cannot be used at the same
time, local variables in different summands for example. So
for its corresponding CSP, it is unreasonable to detect variable
symmetries between those variables. Therefore, the original
coloring scheme is refined such that variable nodes which have
the same domain are of the same unique color iff

• each of them is a local variable of the same domain in
the same summand,

• or each of them is an original global variable of the same
domain,

• or each of them is the latest version of a global variable
of the same domain.

It is not difficult to show that each automorphism found under
the new coloring strategy is also an automorphism under
the original coloring strategy. So Theorem 2 still holds. The
soundness of our work is stated as follows.

Theorem 3. Let L = (S, init,Σ,→) be its labeled transition
system of a concurrent model M. Each automorphism σ we



V = {u1, v1, u2, v2, leader[N ], token[N ], label[N ], token1[N ], token2[N ], token3[N ], label1[N ]}
D = {AG,AG,AG,AG,BOOL,BIT,BIT,BIT,BIT,BIT,BIT}

C =



v1 = (u1 + 1) mod N∧!leader[u1] ∧ leader[v1] ∧ label[u1] = label[v1]
token1[u1] = 0 ∧ (∀t ∈ AG.t ̸= u1 → token1[t] = token[t])
token2[v1] = 1 ∧ (∀t ∈ AG.t ̸= v1 → token2[t] = token1[t])
label1[v1] = 1− label[u1] ∧ (∀t ∈ AG.t ̸= v1 → label1[t] = label[t])
v2 = (u2 + 1) mod N∧!leader[v2] ∧ label[u2]! = label[v2]
token3[u2] = 0 ∧ (∀t ∈ AG.t ̸= u2 → token3[t] = token[t])
token2[v2] = 1 ∧ (∀t ∈ AG.t ̸= v1 → token2[t] = token3[t])
label1[v2] = label[u2] ∧ (∀t ∈ AG.t ̸= v2 → label1[t] = label[t])

Fig. 4: Constraint satisfaction problem of the token circulation protocol

get in Algorithm 1 is an automorphism of L.

Proof sketch By definition, we must show that (i) if s1
e→

s2, then σ(s1)
e→ σ(s2), and (ii) σ(init) = init.

Suppose P is an equivalent sequential model of M, and
s1

e→ s2 corresponds to the execution of the summand sum
of P . Without loss of generality, we assume there is only one
global variable vg in P and one local variable vl in sum. s1

e→
s2 is assumed to denote executing sum when vg := value1
and vl := value2. That is, when vg := value1 and vl :=
value2, its enabling condition fe is true, event e is executed
and global variables are updated in its next-state function fn
which leads to state s2.

Suppose C is the constraint satisfaction problem converted
from P in Algorithm 1. By Theorem 1, all the constraints
converted from fe and fn are satisfied when vg = value1 and
vl = value2. By Theorem 3, σ is a constraint symmetry of C.
So all of the constraints from fe and fn are also satisfied when
σ(vg = value1) and σ(vl = value2). Again by Theorem 1, we
get σ(s1)

e→ σ(s2). Similarly, we can prove σ(init) = init.

Note that the inverse of the theorem may not hold. For
example, if two processes of the same type identical up to
swapping their process identifiers are intentionally modeled
as processes of two different types, this process symmetry is
not reflected in its corresponding colored graph.

The number of nodes in the colored graph of a CSP is
the sum of the number of literals, which is the product of the
variable domain sizes, and the number of allowed assignments
for constraints. For a constraint with n variables, it may have
O(mn) possible assignments in the worst case, where m is the
size of the largest domain. The time complexity of computing
allowed assignments of one constraint is O(mn), and the time
and space complexity of constructing the colored graph for a
CSP accumulate to t × O(mn) where t is in the number of
constraints.

Figure 5 shows a part of the colored graph obtained from
the CSP of the running example with N = 3. Due to space
restriction and graph complexity, we make the following alter-
nations for simplicity in order to help users better understand
its inherent symmetries while still preserving the essence of the
graph. This graph fragment shown is built from part of the first
constraint in the CSP, i.e., v1 = (u1+1) mod N ∧ label[u1] =
label[v1]. We skip the representation of all nodes generated
from v1 = (u1 + 1) mod N and variable and value nodes for

v1 and u1. Note that rotating three label variables clockwise
still yields the same graph; swapping any literals of the form
label[i] := 0 and label[i] := 1 for all 0 <= i < 3 in all the
assignments yields the same graph.

Fig. 5: Part of the colored graph of the running example’s CSP

Example For the running example, assume there are three
processes with ids 0, 1 and 2, it has 3 process symmetries
from rotating the processes following the direction of the
network, i.e., (0)(1)(2), (0, 1)(1, 2), (0, 2)(1, 2)2; it has 2 data
symmetries from swapping all the possible values of all
label variables, i.e., (0)(1), (0, 1). Further, new symmetries are
introduced by the product of these automorphisms. Therefore,
we discover 6 symmetries in total.

D. Optimization

In the step of symmetry detection, we perform two
lightweight but effective optimization techniques, the first one
to speed up the construction of the colored graph and the
second to remove symmetries which are useless for model
checking.

1) Breaking down array writing constraints: Each array
writing constraint is involved with at least all the variables
of two arrays, which often becomes a performance bottleneck.
In order to reduce the time consumption, one straightforward
way is keeping the number of variables as small as possible.
We transform it into K + 1 simple constraints each involving

2Permutations are written in the cyclic notation. If a1, a2, · · · , an are dis-
tinct elements of Ω, then the cycle (a1, a2, · · · , an) denotes the permutation
σ on Ω, i.e., for 1 ≤ i < n, σ(ai) = ai+1, σ(an) = a1 and for any
b ∈ Ω \ {a1, a2, · · · , an}, σ(b) = b.



much fewer variables in the following way3 where K is the
array size, and refine the coloring strategy such that elements
of different arrays have different colors.

array1[index] = value∧
(∀j ∈ {0, · · · , N − 1}.j ̸= index → array1[j] = array0[j])

⇓
array1[index] = value
array1[0] = array0[0]
array1[1] = array0[1]

· · ·
array1[N − 1] = array0[N − 1]

The soundness of the transformation is stated by the follow-
ing theorem.

Theorem 4. Let C be a CSP. and C′ its corresponding CSP of
C after transforming all array writing constraints. Then any
constraint symmetry of C′ is also a constraint symmetry of
C.

Proof Assume σ is a constraint symmetry of C′. The
constraints in C are separated into two sets: one containing all
the array writing constraints S1 and the other containing all the
rest constraints S2; similarly, the constraints in C′ are separated
into two sets: one containing all the constraints transformed
from an array writing constraints S′

1 and the other containing
all the rest constraints S′

2. Since S2 and S′
2 are identical, σ is

also a constraint symmetry for S2.
We define a function evals which takes an assignment s

and a constraint c, and returns the satisfaction of c when
evaluated as s. Without loss of generality, we assume there
are no multi-dimensional arrays in C. Suppose an array
writing constraint c in S1 is array1[index] = value ∧ (∀j ∈
{0, · · · , N − 1}.j ̸= index → array1[j] = array0[j]).
It is transformed into the list L containing N + 1
constraints {array1[index] = value, array1[0] =
array0[0], · · · , array1[N − 1] = array0[N − 1]} in
S′
1. Let s be an assignment of C. Because all elements

of an array have the same color which is different from
that of any other variable. For any element array0[k]
where k ∈ {0, · · · , N − 1}, σ(array0[k]) = array0[k

′]
where k′ ∈ {0, · · · , N − 1}. This also applies to elements
of array1. There are three conditions to be considered:
(1) if the first constraint in L is evaluated to false
at s, i.e., evals(array1[index] = value) = false,
then evals(c) = false. Because σ is a constraint
symmetry, evalσ(s)(σ(array1[index] = value)) =
evalσ(s)(array1[σ(index)] = value) = false. So
evalσ(s)(σ(c)) = false; (2) Otherwise if there exists
i ∈ {0, · · · , N−1} such that evals(array1[i] = array0[i]) =
false where i ̸= evals(index), then evals(c) = false.
Since evals(array1[i] = array0[i]) = false,
evals(c) = false and evalσ(s)(σ(array1[i] = array0[i])) =
evalσ(s)(array1[σ(i)] = array0[σ(i)]) = false. Because
i ̸= evals(index), evalσ(s)(σ(i)) ̸= evalσ(s)(σ(index)).

3For ease of presentation, we only show how to transform a writing
constraint of a one-dimensional array. It can be easily extended to multi-
dimensional arrays.

Therefore, evalσ(s)(σ(c)) = false; (3) Otherwise, evals(c) =
true. That is, evals(array1[index] = value) = true and
∀j ∈ {0, · · · , N − 1} and j ̸= evals(index) such that
evals(array1[j] = array0[j]) = true. Considering σ
is a constraint symmetry, evalσ(s)(σ(array1[index] =
value)) = evalσ(s)(array1[σ(index)] = σ(value)) = true
and ∀j ∈ {0, · · · , N − 1} and j ̸= evals(index)
such that evalσ(s)(σ(array1[j] = array0[j])) =
evalσ(s)(array1[σ(j)] = array0[σ(j)]) = true. Because
j ̸= evals(index), evalσ(s)(σ(j)) ̸= evalσ(s)(σ(index)). So
evalσ(s)(σ(c)) = true.

Therefore, σ is also a constraint symmetry of C.
2) Removing redundant value symmetries: The colored

graph may contain some values of a variable which do not
satisfy any constraint transformed from an enabling condition
or the init statement. It means that those values are impossible
to appear at any time during the execution of the system.
Take the CSP (V = {x, y}, D = {{0, 1, 2}, {2, 3, 4}}, C =
{x > 1, y = x + 1}) as an example. A value symmetry
σ = (x := 0, x := 1) exists in the CSP. Suppose the constraint
x > 1 is originally derived from the enabling condition and
y = x+ 1 is the next-state program of the same summand in
the sequential model. So neither x := 0 nor x := 1 is valid in
any state, which makes σ useless for reducing the state space.
Therefore, it is safe and appropriate to remove these values
during the graph construction in order to avoid redundant
symmetries later. For each variable’s value, we record whether
it appears in at least one allowed assignment of a constraint
representing an enabling condition or the init statement. If
not, it will be removed.

V. CASE STUDIES

We have implemented the colored graph construction de-
scribed in Section IV. The resulting graph is input to
Saucy [12] which produces the generating set of the automor-
phism group of a graph. For a group, its generating set is
a subset whose elements are denoted by generators such that
each element of the group can be obtained by the combination
of generators of this subset. A generating set is often used as
a compact representation of a group. Then the generating set
is input to GAP [19] system which produces all the elements
in the group. All experiment data is online [1], part of which
is summarized in Table I.

The experimental cases cover a variety of computing sys-
tems. From the perspective of execution patterns, they include
sequential systems, concurrent systems with synchronous com-
munication using shared variables or shared actions, and
distributed systems with asynchronous message passing mech-
anism. From the perspective of communication topologies,
they include networks of layers, rings, trees, stars, complete
graphs and hypercubes. From the perspective of symmetry
types, there are systems with only process symmetries, with
only data symmetries and with both of them.

In Table I, |Colored Graph| denotes the size of the colored
graph generated for each configuration, Construction denotes
the time (in seconds) taken to construct the colored graph;



TABLE I: Symmetry detection results on a Linux laptop with Intel 2.8GHz and 3.8 GB memory

System | Colored Graph | Construction(s) Saucy(s) |Generators| |Aut(G)| Scalar SCD
Reader-writer problem [33]
3 120 0.127 0.004 1 2 N N
Peterson’s mutual exclusion protocol [28]
9 2311 0.695 0.018 8 362880 N Y12 4207 1.037 0.030 11 479001600
A prioritized resource allocator1[14]
2-2-3 393 0.553 0.004 4 24 N Y3-3-4 534 0.902 0.005 7 864
Three-tiered architecture2[14]
3-3-2 419 0.480 0.005 5 144 N Y3-3-3 452 0.515 0.006 6 1296
4-4-3 518 0.508 0.006 8 6912
Message passing in a hypercube network3[14]
5 3586 1.447 0.026 4 3840 N N6 11555 3.317 0.066 5 46080
Dining philosophers
10 556 0.492 0.005 1 10 N N20 1086 1.033 0.007 1 20
Miler’s scheduler [27]
10 487 2.665 0.001 0 0 N N
Non-deterministic two-hop coloring protocol in undirected rings [2]
9 2013 0.788 0.012 5 216 N N12 3105 1.282 0.013 5 288
Self-stabilizing leader election protocol in complete graphs [18]
12 21155 2.684 0.394 11 479001600 N N15 164809 15.783 8.326 14 1307674368000
Self-stabilizing leader election protocol in directed rooted trees [6]
15 466 3.954 0.275 4 16 N N19 580 7.404 0.005 6 128
Self-stabilizing leader election protocol in rings [18]
9 21378 4.781 0.093 1 9 N N12 214169 51.265 1.266 1 12
Hanoi puzzle
3 891 0.523 0.003 1 2 N N6 6520 1.636 0.023 1 2
Scheduling the social golfer problem4[16]
3-3-4 1542 1.374 0.009 9 725760 N N
1 A configuration is written in the form a0 − a1 − · · · − ak−1, where client processes 0, 1, · · · , a0 have priority

level 0, a0 + 1, a0 + 2, · · · , a1 have priority level 1, etc.
2 A configuration is written in the form a1 − a2 − · · · − ak , which denotes that the system consists of k server

processes and ai clients connected to server i.
3 A configuration is denoted by the number of dimensions of the hypercube. Note that the configuration d is

composed of 2d processes.
4 A configuration is written in the form G-S-W where G is the number of groups, S is the number of golfers in

one group and W is the number of weeks.

|Generators| denotes the size of the generating set of the
automorphism group G of the colored graph computed by
Saucy; Saucy denotes the time taken by Saucy to compute
generators; |Aut(G)| denotes the size of G computed by GAP.
For systems whose configurations are not explained in the
table, a configuration of each one is identified by the number of
processes/components. The last two columns denote whether
these symmetries detected by our approach can be detectable
by two popular existing approaches scalarset (Scalar) and
static channel diagrams (SCD) (which are introduced in Sec-
tion VI) without major changes on the original concurrent
model, e.g., rewriting each arithmetic or relational operation on
variables related to process identifiers into the logical disjunc-
tion of all explicit variable values allowed by this operation,
or remodeling the process communication mechanism into
channels only. For a system with data symmetries, such as
two-hop coloring protocol or social golfer problem, existing

approaches are still unable to discover them even if the system
is changed into the form the approaches require.

As Table I shows, the overhead of our approach is quite
low even for the systems with large automorphism groups.
We study the same cases as the static channel diagram ap-
proach [13], [14] (i.e., Peterson’s protocol, resource allocator,
three-tiered architecture and message passing in a hypercube
network) and our approach is able to find all symmetries
reported in their work efficiently. However, the effectiveness
of our approach is not limited to message passing systems or
process symmetries.

A. Performance Improvement

The performance bottleneck of our approach lies in the size
of the colored graph. First, allowed assignments for constraints
often contribute the largest portion of the graph size. For a
constraint with n variables, as discussed in Section IV-D1,



TABLE II: Symmetry reduction results I on a Windows laptop with
Intel 3.4GHz and 8 GB memory with PAT 3.5 [32]

Model States (Without Reduction) States With Reduction Gain
Dining philosophers

10 154450 15489 90.0%
12 1684801 140536 91.7%
14 OM 1313052 -

Three-tiered architecture
3-3-2 7840 462 94.1%
3-3-3 21952 286 98.7%
4-4-3 188272 OT -

Non-deterministic two-hop coloring protocol in undirected rings
3 13824 442 96.8%
4 331776 8058 97.6%
5 OM OT -

in order to reduce its time consumption, one straightforward
way is keeping n as small as possible. So we break down
a constraint into a set of sub-constraints and guarantee that
the logical conjunction of sub-constraints is equivalent to
the original constraint. This method has a side effect: it
increases the number of constraints. Fortunately, this effect
is negligible because the time consumption for computing
allowed assignments is much more sensitive to the number
of variables in a constraint than to the number of constraints,
and the performance bottleneck is its time consumption instead
of its memory. Second, we have observed that users may
sometimes define larger variable domains than necessary. Our
approach does not rely on the exact domain of variables, but
can take advantage of it to construct a smaller colored graph.

B. Symmetry Reduction

We apply detected symmetries to the depth-first exploration
of the whole state spaces of system configurations. A classic
canonicalization function [22] is used to calculate a unique
representative for each equivalence class of states, i.e., apply-
ing all the automorphisms to a visited state to find the lexico-
graphically smallest image. Table II contains the experimental
results before and after symmetry reduction for part of systems
configurations in Table I. In the table, States means the number
of states stored, OM means exploring the configuration ran out
of memory, OT means more than 2 hours, and Gain means the
relative improvement on stored states brought by symmetry
reduction. For the conducted experiments, the saving in terms
of memory is 95.9% in average.

The computational overhead of symmetry reduction stems
from checking whether the unique representative state of a
visited state has been explored. Thus calculating representative
states would be costly in time if there are a large number
of automorphisms. It is known as constructive orbit problem
(COP), which is NP-hard in general [7]. In practice, only
systems with full symmetries are supported by existing sym-
metry reduction approaches, because representatives can be
efficiently calculated in polynomial time.

One way of relaxing the prohibitive time requirement of
COP is to allow multiple representatives for each equivalence
class of states. Table III contains the experimental results for

state space exploration without symmetry reduction, with sym-
metry reduction using unique representative, and with symme-
try reduction using multiple representatives. From the table, it
is shown that multi-representatives symmetry reduction stores
more states than single-representative as expected. Here we
consider the algorithm of calculating multiple representatives
called local search in [15], which is only dependent on the
generators of an automorphism group. A group with a large
number of elements has a much smaller number of generators.
So the multi-representatives approach is much faster than the
single-representative one in most cases. It remains our future
work to solve the COP problem efficiently for certain classes
of automorphism groups in practice.

VI. RELATED WORK

The importance of detecting symmetries for state space
exploration has garnered much interest in recent years and
several methods have emerged. The discussion on each method
will largely be focused on the answers to two questions: (1)
How much effort is required from model designers? (2) How
many kinds of symmetries can be detected?

A. Scalarset Method

One of the oldest and most widespread symmetry detection
approaches is using scalarset. It is first introduced by Ip
and Dill in the explicit model checker Murφ [22]. Scalarset
is a data type which determines an unordered finite set of
consecutive integer values. It is a fully symmetric type, i.e.,
permuting any values of a scalarset type throughout the state
space must result in an automorphism. So this method is only
capable of handling fully symmetric components. For usage,
a user may define a new scalarset type for a class of fully
symmetric components and assign each component’s identifier
to a unique value of this type. Then the verifier automatically
extracts the automorphisms from scalarset types. In this way,
scalarsets provide a convenient and efficient way for users to
define symmetries, considering the number of automorphisms
generated by a scalarset is the factorial of its size. This method
is applied to several other model checkers like Spin [4], [5],
Uppaal [21].

However, it has two disadvantages that impose a heightened
burden on designers. First, the applicability of this method
relies on designers to have expert insights to precisely identify
identical components in a system. Second, in order to make
sure the symmetry extraction method is sound, a much rigor-
ous syntactic requirement is placed on operations of scalarsets
to rule out all possible symmetry breaking constructs. Last but
not least, it is applicable only for fully symmetric systems.

It is worth to mention that the local variables in our
work act as a much more generalized version of the popular
scalarset. They both represent a subrange of values. A local
variable may be the source of symmetries in a model, whereas
a scalarset variable must be the source of symmetries in
a model. Since scalarset variables have to be specified by
designers, the lack of a computer-assisted approach results
in correctly expressing symmetries as wholly the designers’



TABLE III: Symmetry reduction results II on a Windows laptop with Intel 3.4GHz and 8 GB memory with PAT 3.5 [32]

Model Without Reduction With Reduction (Unique) With Reduction (Multi)
States Time (Sec) States Time (Sec) States Time (Sec)

Dining philosophers
10 154450 15.3 15489 14.2 106819 23.2
12 1684801 212 140536 242 1149178 341
14 OM - 1313052 3563 OM -

Three-tiered architecture
3-3-2 7840 1.1 462 8.4 966 1.0
3-3-3 21952 3.6 286 60.4 2290 5.1
4-4-3 188272 42.3 - OT 35524 103

Non-deterministic two-hop coloring protocol in undirected rings
3 13824 10.3 442 15.4 1567 4.6
4 331776 511 8058 668 33415 160
5 OM - - OT 661454 5718

responsibility. But our approach automatically identifies which
local variables are real symmetry makers and which operations
are symmetry breaking constructs so as to remove all the
burden from designers.

B. Static Channel Diagrams

Donaldson and Miler design a fully automatic approach
to detecting process symmetries for channel-based commu-
nication systems [13], [14]. Their approach also involves
constructing a graph called static channel diagram from a
Promela model, whose automorphisms possibly correspond to
the automorphism of the Kripke structure along with the model.
Each node is created for each process or channel. If a process
possibly sends a message to a channel, then a directional
edge is created from the process node to the channel node.
Similarly, if a process possibly receives a message from a
channel, then a directional edge is created from the channel
node to the process node. All process (resp. channel) nodes
representing the same type of processes (resp. channel) have
the same unique color. The generators for the automorphism
group in the static channel diagram are computed using a
graph automorphism algorithm. But a computed generator
may not be a real automorphism in the state space. In order
to preserve the soundness of the detection approach, each
generator obtained from the diagram has to be validated that it
transforms the original program P into an equivalent program
with the complexity O(|P| log |P|).

Similar to scalarset approaches, there is a series of lim-
itations on input Promela programs to rule out symmetry
breaking constructs. One of them is disallowing the use
of process identifiers in relational and arithmetic operations,
which is commonly thought to be the source of breaking
symmetries. However, it is not necessary the case in many
systems such as the motivating example. They propose a
straightforward strategy to relax this restriction, i.e., rewriting
a relational or arithmetic operation into a disjunction of all
possible combinations of variable valuations. But the validity
checking for each generator would suffer a significant loss
in performance because the size of the program becomes at
most O(nk) of the original one, where n is the largest size
of domains of variables representing process identifiers and k

is the highest arity of any relational or arithmetic operations
involving these variables.

Lastly, our method is remotely related to an on-the-fly sym-
metry detection and reduction approach proposed by Wahl and
D’Silva [35]. It starts a reachability checking with the assump-
tion that all processes are fully symmetric. As each transition
is analyzed, the asymmetries it induces are used to partition
the processes. Our approach can deduce how an arbitrary
transition breaks symmetries not limited to process symmetries
prior to model checking. So combining two approaches can
potentially improve the performance of symmetry reduction.

VII. CONCLUSION AND FUTURE WORK

The main contribution of our work is a new automatic
symmetry detection approach. To the best of our knowledge,
our study is the first work to relax all the syntactic restrictions
on the model form, and also the first work to consider various
process symmetries, data symmetries and their combinations.
A variety of case studies showed that the overhead of symme-
try detection is negligible and detected symmetries save the
majority of a state space to be explored.

A line of our future work is to design efficient algorithms
for calculating representative states for automorphism groups
that satisfy certain structural properties and are often used
in practice. All existing symmetry detection approaches only
work on one instance of a parameterized system at a time.
We observe that, for a parameterized system, the distinctive
features of symmetries are often determined by the essence
of the system structure rather than concrete valuations of
the parameters. So the other interesting line of future work
is to provide a once-for-all solution of obtaining universal
symmetries for the entire instances in a parameterized system.
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