
PPR: Pairwise Program Reduction
Mengxiao Zhang

School of Computer Science
University of Waterloo

Canada
m492zhan@uwaterloo.ca

Zhenyang Xu
School of Computer Science

University of Waterloo
Canada

zhenyang.xu@uwaterloo.ca

Yongqiang Tian∗
School of Computer Science

University of Waterloo
Canada

yongqiang.tian@uwaterloo.ca

Yu Jiang
School of Software
Tsinghua University

Beijing, China
jy1989@mail.tsinghua.edu.cn

Chengnian Sun
School of Computer Science

University of Waterloo
Canada

cnsun@uwaterloo.ca

ABSTRACT
Program reduction is a practical technique widely used for debug-
ging compilers. To report a compiler bug with a bug-triggering
program, one needs to minimize the program by removing bug-
irrelevant program elements first. Though existing program re-
duction techniques, such as C-Reduce and Perses, can reduce a
bug-triggering program as a whole, they overlook the fact that the
degree of relevance of each remaining token to the bug varies.

To this end, we propose Pairwise Program Reduction (PPR), a
new program reduction technique for minimizing a pair of pro-
grams w.r.t. certain properties. Given a seed program 𝑃𝑠 , a variant
𝑃𝑣 derived from 𝑃𝑠 , and the properties 𝑃𝑠 and 𝑃𝑣 exhibit separately
(e.g., 𝑃𝑣 crashes a compiler whereas 𝑃𝑠 does not), PPR not only
reduces the sizes of 𝑃𝑠 and 𝑃𝑣 , but also minimizes the differences
between 𝑃𝑠 and 𝑃𝑣 . The final result of PPR is a pair of minimized
programs that still preserve the properties, but the minimized dif-
ferences between the pair highlight the critical program elements
that are highly related to the bug.

To thoroughly evaluate PPR, we manually constructed the first
pairwise benchmark suite from real-world compiler bugs (20 bugs
in GCC and LLVM, 9 bugs in Rustc and 9 bugs in JerryScript). The
evaluation results show that PPR significantly outperforms the
baseline: DD, a variant of Delta Debugging. Specifically, on large
and complex programs, PPR’s reduction results are only 0.6% of
those by DD w.r.t. program size. The sizes of the minimized vari-
ants (i.e., 𝑃𝑣) by PPR are also comparable to those by Perses and
C-Reduce; but PPR offers more for debugging by highlighting the
critical, bug-inducing changes via the minimized differences. Evalu-
ation on Rust and JavaScript demonstrates PPR’s strong generality
to other languages.

∗Corresponding author; also affiliated with Hong Kong University of Science and
Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616275

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Program Reduction, Delta Debugging, Bug Isolation

ACM Reference Format:
Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian
Sun. 2023. PPR: Pairwise Program Reduction . In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San
Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3611643.3616275

1 INTRODUCTION
Compilers are fundamental system software to build all software
including compilers themselves; any bug in compilers may incur
significant, profound damages. Thus it is crucial to detect and fix
compiler bugs promptly. In recent years, researchers have devoted
dedicated efforts to random compiler testing [2, 10, 18, 22–25, 29,
31, 32, 36, 44]. Among all compiler testing techniques, one major,
widely used type of techniques is mutation-based testing [2, 10, 18,
22–24, 32, 36, 40], which generates new test programs (referred to
as variants) by applying random mutations to existing programs
(referred to as seeds), in hopes of provoking compiler bugs.
Program Reduction. Upon finding a program 𝑃 that triggers
a compiler bug, program reduction—an important and highly de-
manded category of techniques for compiler validation and de-
bugging [15, 17, 21, 26, 28, 35, 37, 38, 45]—aims to minimize 𝑃 by
removing code elements that are irrelevant to compiler bugs; the
minimized program is used to facilitate diagnosing and fixing bugs.

Most reduction techniques reduce a program as a whole and assume
that every part of the minimized program is equally relevant to the
bug, but overlook the fact that the degree of relevance of each program
element to the bug varies. For instance, though the state-of-the-
art technique C-Reduce can minimize the original bug-triggering
program of LLVM-21467 [5] to 103 tokens as shown in Figure 1a,
it can still take compiler developers large efforts to debug, as the
critical bug-triggering tokens are not highlighted. In this example,
certain tokens are indeed more relevant to the bug than the others:
the bug is triggered by code highlighted in Figure 1c, whichmodifies

https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0002-0862-2491
https://doi.org/10.1145/3611643.3616275
https://doi.org/10.1145/3611643.3616275
https://doi.org/10.1145/3611643.3616275

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

the same variable b in multiple basic blocks and is more relevant to
the bug than statements such as function calls to div and id.
Program Isolation. As shown above, isolating failure-inducing
program elements can facilitate debugging. To the best of our knowl-
edge, there are two prior program isolation techniques.
DD DD [45] is a variant in the Delta Debugging algorithm fam-
ily.1 Given 𝑃 , it does not only reduce 𝑃 but also highlights the key
failure-inducing elements in 𝑃 . It returns a pair of programs: the
minimized bug-triggering program (referred to as variant) reduced
from 𝑃 and the maximized non-bug-triggering program (referred
to as seed) grown from an empty program. However, DD does not
respect the syntactical constraints of programs and thus does not
perform well on programs: the reduction time can be excessively
long because of generating large numbers of syntactically invalid
programs and the results are usually too large for debugging [28, 37].
Moreover, DD does not use the original seed program, from which
𝑃 is derive, to find the failure-inducing program elements, and thus
the difference between the seed and variant is usually irrelevant to
the root cause of the bug. Figures 1d and 1e show the reduced result
by DD for LLVM-21467: DD highlights that if the function call fn
is removed from the variant, then the bug disappears. Though the
bug is indeed triggered by certain code in fn, the highlighted differ-
ence by DD is far less informative than the difference in Figure 1c.
Moreover, in the reduced variant by DD, fn has 4332 tokens, which
contains excessive irrelevant information and thus complicates
debugging (more details are in §2).
Spirv-fuzz Spirv-fuzz [12] is a testing technique for SPIR-V in-
termediate representation [42]. Given a seed program 𝑃𝑠 , it applies
a sequence of random mutations on 𝑃𝑠 to generate a variant for
testing SPIR-V processors. Different from classical mutation-based
testing, Spirv-fuzz intentionally makes each mutation as small and
independent as possible. Once a variant 𝑃𝑣 finds a bug, DDMin is
used to reduce the sequence of mutations that is applied on 𝑃𝑠 to
generate 𝑃𝑣 , so that the bug-irrelevant mutations can be removed;
in the end, 𝑃𝑣 and the sequence of bug-relevant mutations are
included in the bug report to facilitate debugging.

Although Spirv-fuzz can highlight the critical changes and has
been adopted at Google [11], several weaknesses limit its applica-
tion to testing other language implementations, and motivate this
work. First, Spirv-fuzz relies on a special mutation-base technique:
the mutation operations need to be small and independent, and
the sequence of mutations applied to a seed needs to be recorded,
modifiable, and replayed. Second, it can merely minimize the differ-
ences between the seed and variant, but is not capable of reducing
the common part: The authors also acknowledged this limitation
and that large seed programs might diminish the comprehensibility
of the bug reports, as quoted from [12]: "The comprehensibility
of these bug reports and regression tests depends on a reasonably
small original program".

Despite the importance of program reduction and program iso-
lation in debugging, there is no technique yet that synergistically

1Zeller et al. proposed two algorithms DD and DDMin in [45]. DD aims to isolate
failure-inducing changes by narrowing the difference between a given list that has a
property and an empty list; DDMin removes from the given list the elements that are
irrelevant to the property.

reconciles both. To this end, we propose Pairwise Program Re-
duction (PPR), a novel and effective program reduction technique
considering both program reduction and failure-inducing change
isolation at the same time. Specifically, PPR compares a seed 𝑃𝑠 and
a bug-triggering variant 𝑃𝑣 generated from 𝑃𝑠 , and then reduces
the commonalities and the differences of 𝑃𝑠 and 𝑃𝑣 simultaneously.
The reduction result includes a minimized seed 𝑃∗𝑠 and a minimized
bug-triggering variant 𝑃∗𝑣 with the differences between 𝑃∗𝑠 and 𝑃∗𝑣
minimized as well.

We strongly believe that PPR addresses the shortcomings of DD
and Spirv-fuzz, and is practical in at least the following two aspects:
For Developers of Compilers. Debugging compiler bugs is ardu-
ous, especially debugging miscompilation faults.2 The minimized
differences between 𝑃∗𝑠 and 𝑃∗𝑣 highlight the minimal required
changes from a passing program to a bug-triggering one to in-
duce the bug. Such minimal changes, together with the minimized
bug-triggering program, offer a good starting point to compiler
developers for fault localization and analysis.
For Researchers on Mutation-Based Compiler Testing. Isolat-
ing the critical changes provides insights to researchers on compiler
testing, who frequently need to analyze the efficacy of mutations
(e.g., which mutation operator is more effective in triggering com-
piler bugs) to understand and tune their fuzzing techniques. Prior
mutation-based research work indeed conducted such analysis,
though manually. For example, researchers distilled and posted
critical code mutations that contributed to a bug [2, 36, 40] in their
paper. However, such manual efforts are often labor-intensive and
error-prone, and more importantly can be automated.

We have conducted extensive evaluations of PPR, showcasing its
practicality and superiority over DD. First, we evaluated PPR on 20
large real-world C compiler bugs. On average, the number of tokens
involved in bug-triggering changes is reduced from 27,880 to only
24, and the overall input size is narrowed from 52,712 to 278 tokens.
This result is remarkably small compared to 47,850 tokens from DD,
and even comparable to results of the state-of-the-art reduction
techniques, i.e., Perses [37] and C-Reduce [35]. For efficiency, PPR
is faster than DD on average. Besides C/C++ programs, further
evaluation shows PPR’s generality to other languages.
Contributions. We make the following major contributions.

• We propose the novel, general concept of Pairwise Program Re-
duction for program reduction and failure diagnosis. It comple-
ments classical program reduction approaches by identifying
critical bug-triggering differences.
• We propose the first algorithm for pairwise program reduction,
including three effective and general reducers to reduce both
differences and commonalities between a pair of programs.
• To comprehensively evaluate the performance of PPR, we de-
signed benchmarks ranging from small programs via simple mu-
tations to large programs via complex fuzzing techniques.
• To enable future research on this line of research, we released
the source code of PPR and the benchmarks publicly [46].

2A miscompilation is a category of compiler bugs, where the buggy compiler silently
compiles a well-defined program into a binary that has unexpected semantics.

PPR: Pairwise Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 #include <stdint.h>

2 uint8_t g;

3 int16_t (div)(int16_t a, int16_t b) {

4 return b == 0 ?: a / b;

5 }

6 int64_t (id)() { return 0; }

7 int8_t fn(a) {

8 int32_t d = 1;

9 uint8_t b;

10 for (;;) {

11 uint16_t c = id(b |= g);

12 if (div(c,

13 div(10, 65535)))

14 b |= g;

15 else

16 d &= a;

17 b |= g;

18 }

19 }

20
21 int main() { fn(0); }

(a) By C-Reduce.

1 #include <stdint.h>

2 uint8_t g;

3 int16_t div(int16_t a, int16_t b) {

4 return b == 0 ? a : a / b;

5 }

6 int64_t id(a) { return a; }

7 int8_t fn(a) {

8 uint8_t b;

9 for (;;) {

10 uint16_t c = 65532UL;

11 id(b |= g);

12 if (div(c,

13 div(0x2FAAL, 65535UL)))

14
15
16 a &= 1L;

17
18
19 }

20 }

21 int main() { fn(0); }

(b) Seed by PPR.

1 #include <stdint.h>

2 uint8_t g;

3 int16_t div(int16_t a, int16_t b) {

4 return b == 0 ? a : a / b;

5 }

6 int64_t id(a) { return a; }

7 int8_t fn(a) {

8 uint8_t b;

9 for (;;) {

10 uint16_t c = 65532UL;

11 id(b |= g);

12 if (div(c,

13 div(0x2FAAL, 65535UL)))

14 b |= g;

15 else {

16 a &= 1L;

17 }

18 b |= g;

19 }

20 }

21 int main() { fn(0); }

(c) Variant by PPR.

......

int8_t fn() {

......

}

......

int main() {

......

fn;

}

(d) Seed by DD.

......

int8_t fn() {

......

}

......

int main() {

......

fn();

}

(e) Variant by DD.

Figure 1: Reduction results by C-Reduce (a), PPR (b and c) and DD (d and e) for LLVM-21467. The differences between the seed
and variant are highlighted in blue . All programs are slightly adjusted and aligned for clarity. We simplify results from DD for
illustration due to the large size of the original version.

2 MOTIVATION
We use LLVM-21467 as a motivating example to illustrate the bene-
fits of using PPR for analyzing compiler bugs, compared to classical
program reduction and the program isolation technique DD.

LLVM-21467 is a bug in LLVM-3.4.2. The original bug-triggering
variant contains 28,012 tokens in total, and provokes an infinite loop
when being compiled by Clang-3.4.2 with the -O2 flag. As explained
in the bug report [27], the optimization pass FoldOpIntoPhi folds
certain instructions into PHI nodes, for intermediate analysis in
SSA form [43]. When processing a variable in a basic block, it tries
to invoke itself if the next reachable block has the same variable.
When FoldOpIntoPhi encounters two mutually reachable basic
blocks modifying the same variable, like b |= g on line 14 and
line 18 in Figure 1c, an infinite recursion occurs.
Classical Program Reduction (C-Reduce). In this example, the
variant is reduced to 103 tokens by C-Reduce shown in Figure 1a.
While this outcome seems favorable at first glance—with over 99% of
the code removed—there still remain slightly more than a hundred
tokens. Consequently, it becomes challenging for developers to
determine which part of the code is more suspicious than the rest.
Pairwise Program Reduction. By contrast, PPR not only min-
imizes bug-triggering program in Figure 1c, but also provides its
corresponding, minimized seed for comparison in Figure 1b, as
well as a minimal set of changes. In this case, reduced seed/variant
has 89/100 tokens, comparable to the result by C-Reduce w.r.t. size.
More importantly, the reduced differences reveal that the change
of control flow and multiple assignments to the same variable are
relevant to the bug, as highlighted in Figure 1c. PPR detects all crit-
ical changes successfully, offering developers with a better starting
point for fault diagnosis.
DD. Results fromDD in Figure 1d and in Figure 1e achieve smaller
difference size than PPR (The only difference is deleting () from

a function call fn() in the variant). However, such a difference
only indicates that the bug is caused by calling fn, which provides
far less information than PPR. Moreover, reduced seed and variant
given by DD (27,830/27,832 tokens) are several orders larger than
those from PPR (89/100 tokens)—the final result still has tens of
thousands of tokens, and thus are difficult to be used for debugging.

This example demonstrates the benefits of PPR in both bug-
triggering program reduction and critical changes isolation: com-
pared to C-Reduce, PPR achieves a similar reduction size but pro-
vides extra information to ease debugging; compared to DD, PPR
finds out small program pairs with differences closer to reveal the
essence of the bug.

2.1 Practicality
Besides the motivating example, several facts on compiler test-
ing inspire our work and make the concept of PPR practical and
general. First, in mutation-based testing, the seed from which a
bug-triggering variant is derived is always available. Regardless
how drastic the seed is mutated, there are still unchanged code
snippets, making differencing algorithms applicable. Second, many
changes by mutation are superfluous and irrelevant to the bug,
and removing them has no impact on reproducing the bug. Third,
the generated variants are usually syntactically valid, and thus
can be reduced efficiently and effectively with tree-based program
reduction algorithms [28, 37].

Spirv-fuzz used at Google is another strong demonstration of
the practicality and significance of minimizing failure-inducing
changes for debugging language implementations. Different from
Spirv-fuzz, PPR generalizes to any programming language and is
fuzzer-independent: it can be generalized to new languages, and
does not require a customized mutation-based testing technique
to work. Moreover, Spirv-fuzz cannot reduce the commonality and

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

can only minimize the sequence of mutations applied on the seed
program, which hinders its usefulness if the seed is large. In contrast,
PPR can minimize the seed, the variant, and the differences between
the seed and variant in a single reduction process.

3 PRELIMINARIES AND FORMALIZATION
This section introduces necessary background and formalizes the
problem of pairwise program reduction.

3.1 Classical Program Reduction
Given a program 𝑃 that has a property, let P denote the universe of
all possible programs that are derivable from 𝑃 by deleting certain
tokens (𝑃 ∈ P as we can delete zero tokens from 𝑃). Let B =

{true, false}, then the property of 𝑃 can be defined as a predicate
𝜓 : P → B; for any program 𝑝 ∈ P (e.g., 𝑝 = 𝑃), 𝜓 (𝑝) = true if 𝑝
exhibits the property, otherwise𝜓 (𝑝) = false. As formally defined
by Perses [37], the number of tokens in a program 𝑝 is denoted
as |𝑝 |. The goal of program reduction is to find a program 𝑝 that
satisfies the property and has the fewest tokens in 𝑝:

argmin |𝑝 |
𝑝∈P∧𝜓 (𝑝)

≡ {𝑝 |𝜓 (𝑝) ∧ ∀𝑥 ∈ P.𝜓 (𝑥) ∧ |𝑝 | ≤ |𝑥 |}

Program reduction is an NP-complete problem, and all existing
algorithms are based on heuristics. Typical such algorithms are:
DDMin. DDMin [45] takes as input a list of elements and a
property𝜓 that the list has, and returns a new list by removing the
elements that are irrelevant to𝜓 from the input list. When applying
DDMin to reduce a program with𝜓 , we can convert the program
into a list of lines, tokens, or characters, and let DDMin to remove
the𝜓 -irrelevant elements. However, DDMin does not consider the
syntactical constraints of programs during reduction, making it less
effective and less efficient than tree-based program reduction.
Tree-Based ProgramReduction. Different fromDDMin, syntax-
guided program reduction [17, 28, 37?] converts the program under
reduction into a parse tree [1]w.r.t. the formal syntax of the program.
Such algorithms traverse the tree in a certain order and repeatedly
apply DDMin to reduce a list of tree nodes each time. Due to this
tree representation of programs, tree-based program reduction
algorithms usually run faster than DDMin and yield smaller results.
C-Reduce. C-Reduce is a widely-used reduction tool customized
for C/C++ programs. It translates a program into AST with Clang,
and performs a series of source-to-source transformation via LibTool-
ing to simplify the bug-triggering program. C-Reduce can also re-
duce other programming languages, but many transformations are
well-crafted only for C/C++.

3.2 Differences Between a Pair of Programs
Program differencing algorithms compute the differences between
a pair of programs. Based on how programs are represented for
differencing, there are mainly two types of differencing algorithms:
list-based [9, 30] and tree-based [13, 14, 33].
List-Based Differencing. A list-based differencing algorithm,
denoted as Δ𝐿 (𝑙1, 𝑙2), takes as input two lists, and outputs a list of
edit operations (i.e., insert, delete and replace) to edit and transform

𝑙1 to 𝑙2. For instance, given two programs

𝑙1 = [unsigned , int , b , = , 1 , ;]
𝑙2 = [int , b , , , c , = , 3 , ;]

Δ𝐿 (𝑙1, 𝑙2) deduces and returns a list of the following four operations:
(1) delete unsigned , (2) insert , after b , (3) insert c after b , and
(4) replace 1 with 3 .
Tree-Based Differencing. A tree-based differencing algorithm,
denoted as Δ𝑇 (𝑡1, 𝑡2), infers the differences between two programs
by representing programs as trees. It takes as input two trees 𝑡1 and
𝑡2, and returns a list of operations that converts 𝑡1 to 𝑡2. For example,
given two programs in Figure 2, edit operation list [delete Decl2 ,
insert Stmt1 , replace b with a on Expr1] is returned. More details
can be found in [13].
Patching. Patching is an important step to convert a program
to another based on differences computed by aforementioned al-
gorithms. Given 𝑑 = Δ𝐿 (𝑙1, 𝑙2), patching is the inverse function,
converting 𝑙1 to 𝑙2 with the difference 𝑑 , i.e., Patch(𝑙1, 𝑑) = 𝑙2. This
algorithm is applicable in two scenarios. First, given 𝑑− , a reduced
version of 𝑑 , Patch(𝑙1, 𝑑−) returns 𝑙−2 , closer to 𝑙1 than the original
𝑙2. Second, if 𝑙−1 is a subset of 𝑙1, i.e., certain tokens are deleted,
Patch(𝑙−1 , 𝑑) returns 𝑙

−
2 with those tokens removed and differences

applied. The patching process for tree-based differences is similar.

3.3 Pairwise Program Reduction
Pairwise program reduction is akin to the classical program re-
duction but considering a pair of programs. Let 𝑃𝑠 and 𝑃𝑣 be the
original seed and variant programs that exhibits property𝜓𝑠 and
𝜓𝑣 separately, P𝑠 (and P𝑣) be the universe of all possible programs
derivable from 𝑃𝑠 (and 𝑃𝑣) by deleting certain tokens. Let 𝑑 be the
difference between seed and variant programs, D be the search
space over 𝑑 (i.e., D includes all possible differences by removing
edit operations from 𝑑). |𝑑 | refers to the number of edit operations
in 𝑑 . The goal of pairwise program reduction is defined as

𝑃𝑃𝑅(𝑝𝑠 , 𝑝𝑣) ≡
{𝑝𝑠 ∈ P𝑠 , 𝑝𝑣 ∈ P𝑣 |𝜓𝑠 (𝑝𝑠) ∧𝜓𝑣 (𝑝𝑣) ∧ ∀𝑥 ∈ P𝑣 .𝜓 (𝑥) ∧ |𝑝𝑣 | ≤ |𝑥 |}

s.t. 𝑝𝑣 = Patch(𝑝𝑠 , 𝑑∗)
𝑑∗ = argmin

𝑑∈D
|𝑑 |

𝑝𝑣 = Patch(𝑝𝑠 , 𝑑∗) means applying difference 𝑑∗ to a program 𝑝𝑠
to derive a new program 𝑝𝑣 . The goal is to minimize both 𝑝𝑣 and
𝑑 . Given that this is a multi-objective optimization problem, for
clarity, we prioritize reducing 𝑑 to 𝑑∗, and then minimize 𝑝𝑣 with a
minimal 𝑑∗ in the definition and implementation.

4 APPROACH
This section describes PPR in detail. Algorithm 1 shows the general
workflow of PPR to reduce the seed 𝑃𝑠 and the variant 𝑃𝑣 w.r.t.
properties𝜓𝑠 and𝜓𝑣 . Specifically, 𝑃𝑠 exhibits a property𝜓𝑠 , e.g., 𝑃𝑠
is a well-defined program without undefined behaviors and does
not trigger a compiler bug. By contract, 𝑃𝑣 , derived from 𝑃𝑠 via
mutation, exhibits another property𝜓𝑣 . For example, GCC crashes
when compiling 𝑃𝑣 . The output of PPR is the minimized 𝑃∗𝑠 and 𝑃∗𝑣
derived from 𝑃𝑠 and 𝑃𝑣 respectively with𝜓𝑠 (𝑃∗𝑠) ∧𝜓𝑣 (𝑃∗𝑣).

PPR: Pairwise Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

int a = 3;

int b = 4;

if (b) {

print(a);

}

(a) 𝑝1

int a = 3;

if (a) {

a++;

print(a);

}

(b) 𝑝2

TranslationUnit

Decl1

InitDecl1

int a = 3;

Decl2

InitDecl2

int b = 4;

IfStmt

if Expr1

(b)

{ StmtList1

Stmt2

print(a);

}

(c) 𝑡1, the parse tree of 𝑝1.

TranslationUnit

Decl1

InitDecl1

int a = 3;

IfStmt

if Expr1

(a)

{ StmtList1

Stmt1

a++;

Stmt2

print(a);

}

(d) 𝑡2, the parse tree of 𝑝2.

Figure 2: Two programs and their tree-based difference. insert, delete and replace from seed and variant are highlighted in blue,
red to yellow separately, while the common part is black.

Algorithm 1: PPR (𝑃𝑠 , 𝑃𝑣,𝜓𝑠 ,𝜓𝑣)

Input: 𝑃𝑠 : the seed that does not trigger the bug.
Input: 𝑃𝑣 : the bug-triggering variant derived from 𝑃𝑠 .
Input:𝜓𝑠 : P→ B: the property to be preserved by 𝑃𝑠 .
Input:𝜓𝑣 : P→ B: the property to be preserved by 𝑃𝑣 .
Output: (𝑃∗𝑠 , 𝑃∗𝑣): the minimized seed and variant with minimal

differences.
1 repeat/* Monotonically minimize the size of 𝑃𝑠, 𝑃𝑣 and the

differences between the two programs. */

2 𝑃∗𝑠 ← 𝑃𝑠 , 𝑃
∗
𝑣 ← 𝑃𝑣

// Minimize tree-based differences.

3 (𝑃𝑠 , 𝑃𝑣) ← MinTdiff(𝑃𝑠 , 𝑃𝑣,𝜓𝑠 ,𝜓𝑣)
// Minimize list-based differences.

4 𝑃𝑣 ← MinLdiff(𝑃𝑠 , 𝑃𝑣,𝜓𝑣)
// Minimize the commonality between 𝑃𝑠 and 𝑃𝑣.

5 (𝑃𝑠 , 𝑃𝑣) ← MinCommonality(𝑃𝑠 , 𝑃𝑣,𝜓𝑠 ,𝜓𝑣)

6 until |𝑃𝑠 | = |𝑃∗𝑠 | and |𝑃𝑣 | = |𝑃∗𝑣 |
7 return (𝑃∗𝑠 , 𝑃∗𝑣)

PPR iteratively and monotonically reduces 𝑃𝑠 and 𝑃𝑣 until nei-
ther of them can be further reduced. In each iteration on line 2 -
line 5, PPR reduces the programs in the following three steps:
(1) PPR calls the reducer MinTdiff (i.e., Algorithm 2) on line 3 to

minimize the tree-based differences between 𝑃𝑠 and 𝑃𝑣 .
(2) PPR calls the reducer MinLdiff (i.e., Algorithm 3) on line 4 to

minimize the list-based differences between 𝑃𝑠 and 𝑃𝑣 .
(3) PPR calls the reducer MinCommonality (i.e., Algorithm 4) on

line 5 to reduce the common parts of 𝑃𝑠 and 𝑃𝑣 .
The first two steps are to minimize the differences between 𝑃𝑠 and
𝑃𝑣 so that the bug-irrelevant differences can be removed; the third
one is to remove the bug-irrelevant program elements on 𝑃𝑠 , and
remove the corresponding part on 𝑃𝑣 indirectly.

A single iteration of calling the three reducers usually cannot
reduce the programs to the minimality, since the deletion of some
elements may create new reduction opportunities to remove other
elements. For example, if all the invocations of a function have been
deleted, then it is possible to delete the definition of this function; in
other words, the definition of a function can be deleted only if there
is no call to the function. Since all the three reducers monotonically
decrease the size of programs, the loop is guaranteed to terminate,
when neither 𝑃𝑠 nor 𝑃𝑣 can be further reduced.

To exemplify how the three reducers work, in Figure 3, we use
code snippets in GCC-66691 [4] to demonstrate how PPR reduces

them step by step. This crash bug in GCC-5.1.0 is discovered with
a mutation-based testing technique [36]. As shown in Figure 3a,
the original changes include 25 tokens; but after applying PPR, the
deletion of break statement is proved to be the only critical change
highly relevant to the bug, as highlighted in Figure 3d.

Algorithm 2: MinTdiff(𝑃𝑠 , 𝑃𝑣,𝜓𝑠 ,𝜓𝑣)
Input: 𝑃𝑠 : the seed program.
Input: 𝑃𝑣 : the variant program.
Input:𝜓𝑠 : P→ B: the property to be preserved by 𝑃𝑠 .
Input:𝜓𝑣 : P→ B: the property to be preserved by 𝑃𝑣 .
Output: (𝑃∗𝑠 , 𝑃∗𝑣): the seed and variant program with minimized

tree-based differences.
1 𝑑 ← Δ𝑇 (𝑃𝑠 , 𝑃𝑣)

2 𝑃∗𝑠 ← 𝑃𝑠 , 𝑃
∗
𝑣 ← 𝑃𝑣

3 foreach edit ∈ 𝑑 do
4 switch edit do
5 case delete a subtree 𝑡 from 𝑃𝑠 do

// Minimize t on 𝑃𝑠, as t is unique on 𝑃𝑠.

6 𝑃∗𝑠 ← MinSubtree(𝑃∗𝑠 ,𝜓𝑠 , 𝑡)
7 case insert a subtree 𝑡 to 𝑃𝑣 do

// Minimize t on 𝑃𝑣, as t is unique on 𝑃𝑣.

8 𝑃∗𝑣 ← MinSubtree(𝑃∗𝑣 ,𝜓𝑣, 𝑡)
9 case replace a subtree 𝑡 with another subtree 𝑠 do

// Undo the replacement on 𝑃𝑣.

10 𝑃 ′𝑣 ← (𝑃∗𝑣 \ 𝑠) ∪ 𝑡
11 if 𝜓𝑣 (𝑃 ′𝑣) then 𝑃∗𝑣 ← 𝑃 ′𝑣

12 return (𝑃∗𝑠 , 𝑃∗𝑣)

4.1 Minimizing Tree-Based Differences
Algorithm 2 minimizes the tree-based differences between 𝑃𝑠 and
𝑃𝑣 . In this process, PPR first deduces the sequence of tree-based edit
operations 𝑑 from 𝑃𝑠 to 𝑃𝑣 on line 1, and then reduces the subtree
involved in each edit operation in 𝑑 on line 3-line 11. PPR processes
edit operations differently based on their types.
• (line 5–6) delete a subtree 𝑡 from 𝑃𝑠 : PPR attempts to remove
nodes of 𝑡 from 𝑃𝑠 by calling MinSubtree(𝑃∗𝑠 ,𝜓𝑠 , 𝑡), so that the
unique subtrees from 𝑃𝑠 can be minimized. In Figure 3b, e--;
and f = g[0][9]; on 𝑃𝑠 are removed by this step.
• (line 7–8) insert a subtree 𝑡 to 𝑃𝑣 : Similarly, PPR attempts to
remove subtrees of 𝑡 from 𝑃𝑣 to minimize the unique subtree of
𝑃𝑣 . In Figure 3b, while(b == 0); on 𝑃𝑣 is removed by this step.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

1 // seed.c

2 for (a = 0; (a != 22); ++a) {

3 int32_t b = 7L;

4 int32_t c = 0x2474AFADL;

5 int32_t d = (-4L);

6 e--;

7 f = g[0][9];

8 if (b)

9 break;

10
11 }

1// variant.c

2for (a = 0; (a != 22); ++a) {

3int32_t b = 7L;

4int32_t c = 0x2474AFADL;

5int32_t d = (-4L);

6while(b == 0);

7{{

8if (b)

9;

10}}

11}

(a) Original programs.

1 for (a = 0; (a != 22); ++a) {

2 int32_t b = 7L;

3 int32_t c = 0x2474AFADL;

4 int32_t d = (-4L);

5 e--;

6 f = g[0][9];

7 if (b)

8 break;

9
10 }

1for (a = 0; (a != 22); ++a) {

2int32_t b = 7L;

3int32_t c = 0x2474AFADL;

4int32_t d = (-4L);

5while(b == 0);

6{{

7if (b)

8;

9}}

10}

(b) After calling MinTdiff.

1 for (a = 0; (a != 22); ++a) {

2 int32_t b = 7L;

3 int32_t c = 0x2474AFADL;

4 int32_t d = (-4L);

5 e--;

6 f = g[0][9];

7 if (b)

8 break;

9
10 }

1for (a = 0; (a != 22); ++a) {

2int32_t b = 7L;

3int32_t c = 0x2474AFADL;

4int32_t d = (-4L);

5while(b == 0);

6{{

7if (b)

8;

9}}

10}

(c) After calling MinLdiff.

1 for (a = 0; (a != 22); ++a) {

2 int32_t b = 7L;

3 int32_t c = 0x2474AFADL;

4 int32_t d = (-4L);

5 e--;

6 f = g[0][9];

7 if (b)

8 break;

9
10 }

1for (a = 0; (a != 22); ++a) {

2int32_t b = 7L;

3int32_t c = 0x2474AFADL;

4int32_t d = (-4L);

5while(b == 0);

6{{

7if (b)

8;

9}}

10}

(d) After calling MinCommonality.

Figure 3: The process of PPR reduces a code snippet of GCC-
66691 step by step. Deletion and insertion of tokens are high-
lighted in red and blue separately. Tokens overlaid by gray
are those deleted by PPR.

• (line 9–11) replace a subtree 𝑡 with 𝑠 in 𝑃𝑣 : PPR attempts to undo
the replacement by replacing the subtree 𝑠 with the subtree 𝑡 .

Minimizing a Subtree. Given a program 𝑃 , the property𝜓 of 𝑃 ,
and a subtree of 𝑃 , the function MinSubtree removes the descen-
dant nodes of subtree that are irrelevant to𝜓 . MinSubtree is similar
to existing tree-based reduction techniques such as HDD [28] and
Perses [37]. The major difference is that both HDD and Perses start
the reduction process from the root node of 𝑃 , whereas MinSubtree
starts the reduction process from the root node of the given subtree.

MinSubtree can be implemented by extending HDD or Perses to
start reduction from a specified tree node.

4.2 Minimizing List-Based Differences
Algorithm 3 describes how PPR minimizes list difference between
𝑃𝑠 and 𝑃𝑣 . At first, the list-based difference 𝑑 are inferred on line 1.
Then PPR uses DDMin to minimize 𝑑 . Note that we simplify this
step by enumerating all possible deletions by DDMin for illustration
purpose on line 3. DDMin splits the list into partitions, tries deleting
each partition or its complement, and splits each partition into
halves for finer-grained deletion. The actual procedure is that every
time DDMin removes some elements, Patch is applied to verify
whether the remaining differences still generate bug-triggering
variant, and thus dynamically determine the next step.

Although both tree-based and list-based difference reduction
aim at minimizing difference between 𝑃𝑠 and 𝑃𝑣 , they complement
each other. The former is more efficient by leveraging the formal
syntax, the latter adopts DDMin, which is less effective but simpler
and more general. In the example, pairs of redundant curly brackets
{{ and }} inserted to 𝑃𝑣 are removed (Figure 3c). Such changes are
neglected by tree differencing algorithms due to the limitation of
the used tree differencing algorithms.

Algorithm 3: MinLdiff(𝑃𝑠 , 𝑃𝑣,𝜓𝑣)
Input: 𝑃𝑠 : the seed program.
Input: 𝑃𝑣 : the variant program.
Input:𝜓𝑣 : P→ B: the property to be preserved by 𝑃𝑣 .
Output: 𝑃∗𝑣 :𝜓𝑣 (𝑃∗𝑣) , a variant with minimized difference from 𝑃𝑠 .

1 𝑑 ← Δ𝐿(𝑃𝑠 , 𝑃𝑣)

2 𝑃∗𝑣 ← 𝑃𝑣

// Diff candidates sorted by size in ascending order.

3 candidates← all possible deletions by DDMin
4 foreach 𝑑 ∈ candidates do
5 𝑃∗𝑣 ← Patch(𝑃𝑠 , 𝑑)

6 if 𝜓𝑣 (𝑃∗𝑣) then
7 break

8 return 𝑃∗𝑣

4.3 Minimizing Commonality of 𝑃𝑠 and 𝑃𝑣

Algorithm 4 shows how PPR reduces the common part of 𝑃𝑠 and 𝑃𝑣
synchronously. The intuition is to preserve list-based difference 𝑑 ,
reduce 𝑃𝑠 tentatively, and patch 𝑑 to each reduced seed candidate
to derive the corresponding reduced 𝑃𝑣 candidate, and check them
against property separately. The difference 𝑑 , i.e., the edit sequence
from 𝑃𝑠 to 𝑃𝑣 , is deduced and kept on line 1. The root node of 𝑃𝑠 is
added to worklist on line 3, and then is traversed and reduced on
line 4–line 12. PPR uses workflow of tree-based program reduction
algorithm to search for smaller candidates of 𝑃 ′𝑠 on line 6. Similar to
Algorithm 3, we enumerate all possible candidates for simplification.
Each time a 𝑃 ′𝑠 is generated, PPR patches the precomputed 𝑑 onto
it to derive a corresponding 𝑃 ′𝑣 on line 8. If both 𝑃𝑠 and 𝑃𝑣 satisfy
the property, PPR updates the best results, obtains the remaining
components rest, and pushes them into𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 for future traversal.

In Figure 3d, the common part is reduced, including bug-irrelevant
statement if(b) and unused variables b, c, and d.

PPR: Pairwise Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Algorithm 4: MinCommonality(𝑃𝑠 , 𝑃𝑣,𝜓𝑠 ,𝜓𝑣)
Input: 𝑃𝑠 : the seed program, must be parsable.
Input: 𝑃𝑣 : the variant program.
Input:𝜓𝑠 : P→ B: the property to be preserved by 𝑃𝑠 .
Input:𝜓𝑣 : P→ B: the property to be preserved by 𝑃𝑣 .
Output: (𝑃∗𝑠 , 𝑃∗𝑣): the directly minimized seed and variant.

1 𝑑 ← Δ𝑇 (𝑃𝑠 , 𝑃𝑣)

2 𝑃∗𝑠 ← 𝑃𝑠 , 𝑃
∗
𝑣 ← 𝑃𝑣

3 worklist← { root node of 𝑃𝑠 }
4 while |worklist | > 0 do
5 𝑡 ← Pop(worklist)

// Seed candidates sorted by size in ascending order.

6 candidates← all possible deletions on 𝑡

7 foreach (𝑃 ′𝑠 , rest) ∈ candidates do
8 𝑃 ′𝑣 ← Patch(𝑃 ′𝑠 , 𝑑)

9 if 𝜓𝑠 (𝑃 ′𝑠) ∧𝜓𝑣 (𝑃 ′𝑣) then
10 𝑃∗𝑠 ← 𝑃 ′𝑠 , 𝑃

∗
𝑣 ← 𝑃 ′𝑣

11 Push(worklist, rest)
12 break

13 return (𝑃∗𝑠 , 𝑃∗𝑣)

5 EVALUATION
In this section, we evaluate the effectiveness and efficiency of PPR.
Specifically, we investigated the following research questions.
• RQ1: Effectiveness of PPR on reduction and isolation.
• RQ2: Efficiency of PPR on reduction and isolation.
• RQ3: Effectiveness of each individual reducer in PPR.
• RQ4: The impact of the order of reducers in PPR.

5.1 Experimental Setup
We implement PPR based on top of Perses [37]. All experiments are
conducted on an Ubuntu 20.04 server with Intel Xeon Gold 5217
CPU@3.00GHz and 384GB RAM.
Benchmark-PPR. Since there is no existing benchmark suite
for pairwise program reduction, we constructed Benchmark-PPR
to answer the above questions. We collected 20 pairs of seed and
variant programs from previous mutation-based C compiler testing
studies [23, 36]. According to these studies [23, 36], these seeds
are generated by CSmith [44] and the variants were derived from
the seed programs using a sequence of mutations. Table 1 shows
the information of Benchmark-PPR. The columns Bug ID shows
the bugs that are triggered by the variant programs. The columns
Original under Seed Size,Variant Size andDifference Size show
the original size of seed, variant and their difference.

These variants triggered different types of bugs in GCC or LLVM,
including crash, hang and miscompilation. Moreover, cases in this
benchmark suite involve diverse mutations. For instance, LLVM-
25900 and GCC-66375 were generated by merely inserting code
snippets; GCC-58731 was derived via deletion. Cases like LLVM-
22382 involves insertion, deletion and modification. Additionally,
the similarity between a seed and a program varies. In GCC-66412,
only 3% of the program is mutated, while in LLVM-25900, the final
variant only shares 22% in common with the seed.
Baseline. We use DD as the evaluation baseline since it is the
only existing tool having the same target as PPR. Spirv-fuzz is not

suitable for this benchmark suite as it is customized for a low-level
language and it only reduces the difference. Although reducing a
pair of programs constraint by differences in between is harder than
reducing a single one, we still compare PPR with state-of-the-art
classical program reduction algorithms, i.e., Perses and C-Reduce,
to demonstrate PPR’s performance is still acceptable.

5.2 RQ1. Effectiveness of PPR
We measure the effectiveness of the PPR using the Reduction
Rate 𝑅, i.e., the ratio of tokens in seed/variant/difference that are
removed in the reduction. A higher𝑅 for seed, variant and difference
programs is preferred, as it indicates more bug-irrelevant elements
are removed to facilitate debugging process.

Columns PPR of Table 1 show the effectiveness of PPR on
Benchmark-PPR. On average, the size of seed and variant is re-
duced from 39,956 tokens to 259 tokens and from 52,712 tokens
to 278 tokens, respectively. Meanwhile, the average difference be-
tween seed and variant is reduced from 27,880 tokens to only 24
tokens. The corresponding reduction rates 𝑅 of PPR for seeds, vari-
ants and differences are 99.35%, 99.47% and 99.91%, respectively.
These results demonstrate that PPR are effectively in reducing the
seed, variant and their differences. To show the effectiveness of the
main loop in Algorithm 1, we also measure PPR with only single
iteration. As shown in Columns PPR𝑠 , reducing only one iteration
produces larger programs and differences compared to multiple
iterations .

We also compare PPR with classical program reduction tools,
i.e., Perses and C-Reduce. The size of reduced variant by PPR is 278
tokens on average (varying from 81 tokens to 645 tokens), while
the average size of variant by Perses and C-Reduce are 274 and 233,
respectively. In 7 and 2 out of 20 cases, PPR even generates smaller
programs than Perses and C-Reduce, respectively. This shows that
the sizes of variant reduced by PPR are comparable with the ones by
classical program reduction such as Perses and C-Reduce. In other
words, PPR does not sacrifice the reduction effectiveness on the
bug-triggering programs (i.e., variant programs) when effectively
reducing the difference between seed and variant programs.

Columns DD of Table 1 show the effectiveness of DD. On aver-
age, DD only achieves 7.61% reduction rate on variant programs.
For seed and difference, DD cannot produce acceptable results,
and reduction rate is not applicable. Our explanation is that DD
performs binary search to delete certain consecutive tokens from
the variant to derive a subset (seed) that does not trigger the bug,
i.e., final seed and differences do not stem from the original ones.
Besides, programs with highly nested structure in Benchmark-PPR
cannot be effectively handled by DD. Specifically, in 15 out of 20
cases, the difference between the seed and variant programs are
reduced to a few tokens, but the size of seed programs are still
more than hundreds of thousands of tokens, making it impossible
to comprehend and debug. For the other 5 cases, the seed programs
are still zero token. In other words, by removing consecutive tokens
from the variant, DD cannot always find a syntactically valid seed
that does not trigger the bug.

In summary, the usefulness of DD in pairwise program reduction
is limited, since “a small difference provides insights only if the
whole program is small and comprehensible” [12]. By contrast, PPR

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

Table 1: The effectiveness of PPR, PPR𝑠 , DD, Perses and C-Reduce on Benchmark-PPR, including final size and reduction rate.
The cells with “0” under DD of Seed Size indicate that the reductions did not finish in 24h, and thus failed to find out a seed. In
the last line, reduction rate R does not apply to Seed and Difference under DD, as they are all derived from Variant, and thus
there is no original version to compare to.

Seed Size (token #) Variant Size (token #) Difference Size (token #)
Bug ID Original PPR PPR𝑠 DD Original PPR PPR𝑠 DD Perses C-Reduce Original PPR PPR𝑠 DD

LLVM-18556 17,845 212 313 24,723 28,250 279 397 24,725 223 277 10,653 67 84 2
LLVM-18596 31,575 180 524 0 43,890 226 616 37,484 237 223 23,152 46 148 37,484
LLVM-19595 34,898 131 871 0 31,023 138 1,169 26,809 137 119 19,312 7 350 26,809
LLVM-21467 22,798 89 318 27,830 28,012 100 337 27,832 138 103 11,540 11 19 2
LLVM-21582 33,128 486 1,096 33,312 38,775 548 1,348 33,316 639 409 14,010 71 325 4
LLVM-22337 64,803 258 523 63,215 70,545 268 542 63,216 259 210 26,236 10 94 1
LLVM-22382 44,838 100 1,337 16,994 21,361 137 1,407 16,998 117 119 29,455 47 496 4
LLVM-23309 51,404 425 645 34,168 38,920 423 640 34,170 436 350 18,484 16 65 2
LLVM-25900 17,504 196 256 79,224 79,229 226 300 79,229 226 115 61,725 30 46 5
LLVM-26350 36,002 198 253 0 124,058 224 296 115,598 165 221 88,056 26 43 115,598
LLVM-26760 44,250 32 172 199,067 209,824 81 257 199,068 81 59 165,574 49 85 1
GCC-58731 51,285 218 218 0 30,313 213 213 24,654 215 231 20,972 5 5 24,654
GCC-60452 24,259 263 278 14,807 16,452 256 269 14,808 221 233 7,807 7 9 1
GCC-61047 23,043 259 366 16,319 17,179 251 348 16,336 270 64 5,864 8 18 17
GCC-61383 24,478 242 603 26,773 27,017 262 635 26,775 202 201 8,221 20 78 2
GCC-65383 70,001 148 370 42,315 44,215 150 382 42,317 138 83 27,057 28 94 2
GCC-66186 44,373 277 277 45,472 47,708 306 306 45,474 304 297 3,335 29 29 2
GCC-66375 62,375 427 427 0 65,715 429 429 59,102 417 417 3,340 2 2 59,102
GCC-66412 69,849 394 461 70,592 72,000 399 466 70,594 326 361 2,151 5 5 2
GCC-66691 30,408 646 678 15,551 19,753 645 676 15,553 721 570 10,663 1 2 2

Mean 39,956 259 499 35,518 52,712 278 552 48,703 274 233 27,880 24 100 13,185
Mean R 99.35% 98.75% 99.47% 98.95% 7.61% 99.48% 99.56% 99.91% 99.64%

can effectively reduce the seed and variant programs and minimize
the difference between them.

RQ1: PPR generates programs several orders of magnitude
smaller than DD, and has a comparable performance to the
state-of-the-art tools, i.e., Perses and C-Reduce, in terms of the
sizes of the reduced variants.

5.3 RQ2. Efficiency of PPR
To answer this research question, we measured the time of PPR in
reduction and isolation on Benchmark-PPR, as shown in Table 2. To
provide developers in-time results, short reduction time is preferred.
In all 20 cases, PPR are able to finish the reduction and isolation in
24 hours, ranging from 0.84 hour to 18.38 hours. On average, it takes
PPR 4.55 hours to finish the reduction. By contrast, the execution
times from DD are particularly polarized. Some cases are finished
in a fewminutes, while in five cases, DD cannot finish the reduction
in 24 hours. This is because removing consecutive tokens blindly
from the variant to search for a seed is risky — it may happen
to find an appropriate seed and terminate quickly, result in tiny
differences but huge seed programs; it may also unluckily fail to find
any syntactically valid seed in reasonable time. More importantly,
no matter fast or slow, DD always generates unacceptably large
programs, making it infeasible to debug with.

We also measured to what extent do PPR brings time overhead
than classical program reduction. Table 2 shows that Perses and
C-Reduce averagely take 1.29 hours and 2.76 hours in classical pro-
gram reduction, which is shorter than PPR. This is expected since
Perses and C-Reduce only reduce the variant while PPR addition-
ally reduces the seed, and the difference in between. We believe this
trade-off is worthwhile since the extra minimum-sized differences

Table 2: The execution time of PPR, DD, Perses and C-Reduce
on Benchmark-PPR.

Time (hour)
Bug ID PPR DD Perses C-Reduce

LLVM-18556 3.03 2.28 (0.75x) 1.55 (0.51x) 4.54 (1.50x)
LLVM-18596 5.41 24.00 (4.44x) 1.62 (0.30x) 4.20 (0.78x)
LLVM-19595 9.62 24.00 (2.49x) 1.41 (0.15x) 3.69 (0.38x)
LLVM-21467 3.35 0.05 (0.01x) 2.15 (0.64x) 4.79 (1.43x)
LLVM-21582 5.72 0.60 (0.11x) 2.21 (0.39x) 3.89 (0.68x)
LLVM-22337 6.41 2.88 (0.45x) 1.54 (0.24x) 2.51 (0.39x)
LLVM-22382 7.54 15.10 (2.00x) 0.19 (0.03x) 0.56 (0.07x)
LLVM-23309 3.16 4.66 (1.47x) 1.32 (0.42x) 3.39 (1.07x)
LLVM-25900 4.26 0.25 (0.06x) 0.79 (0.18x) 1.73 (0.41x)
LLVM-26350 17.66 24.00 (1.36x) 2.85 (0.16x) 3.47 (0.20x)
LLVM-26760 9.59 13.57 (1.42x) 1.50 (0.16x) 1.67 (0.17x)
GCC-58731 1.02 24.00 (23.60x) 0.62 (0.61x) 2.17 (2.13x)
GCC-60452 0.93 0.97 (1.04x) 0.41 (0.44x) 1.61 (1.73x)
GCC-61047 0.80 0.56 (0.69x) 0.47 (0.58x) 1.20 (1.49x)
GCC-61383 2.12 0.12 (0.06x) 0.78 (0.37x) 2.24 (1.06x)
GCC-65383 4.04 0.34 (0.08x) 0.95 (0.23x) 2.43 (0.60x)
GCC-66186 0.85 0.27 (0.31x) 1.00 (1.18x) 2.41 (2.84x)
GCC-66375 2.05 24.00 (11.69x) 1.95 (0.95x) 4.27 (2.08x)
GCC-66412 2.24 0.27 (0.12x) 1.50 (0.67x) 1.66 (0.74x)
GCC-66691 1.18 1.62 (1.38x) 1.08 (0.91x) 2.75 (2.33x)

Mean 4.55 8.18 (2.68x) 1.29 (0.46x) 2.76 (1.10x)

provided by PPR can further ease the debugging process. In fact,
PPR is even faster than C-Reduce in 10 out of 20 cases.

RQ2: On average, PPR takes 4.55 hours in reduction, which
is acceptable when compared with those traditional program
reduction algorithms.

PPR: Pairwise Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

5.4 RQ3. Effectiveness of Each Reducer in PPR
To investigate the efficacy of each reducer, we conducted an ablation
study on PPR. Specifically, we created three alternatives of PPR,
i.e., PPR𝑇𝐷− , PPR𝐿𝐷− and PPR𝐶𝑂− . Compared to PPR, each of
them disables one of the reducers in Algorithm 1, i.e., MinTdiff
(TD), MinLdiff (LD) and MinCommonality (CO), respectively. We
measured and compared their effectiveness with PPR.

Table 3: Results when disabling a reducer or changing the
order of reducers. For each scenario, we list the average final
size and reduction rate. The cells with "-" indicates the reduc-
tion did not finish in 24h.

Seed Variant Difference

Original 39955.80 52711.95 27880.35

PPR 259.05(99.35%) 278.05(99.47%) 24.25(99.91%)
PPR𝑇𝐷− - - -
PPR𝐿𝐷− 294.90(99.26%) 311.75(99.41%) 27.20(99.90%)
PPR𝐶𝑂− 31653.10(20.78%) 31690.60(39.88%) 72.85(99.74%)

CO-TD-LD 791.90(98.02%) 871.55(98.35%) 423.50(98.48%)
LD-TD-CO - - -

Table 3 shows the results. Without MinTdiff, PPR𝑇𝐷− fails to
terminate in a reasonable time. This is because the difference is
large (>10,000 tokens) and complex in most of the cases, reducing
only by DDMin is ineffective and slow. Therefore, it is critical to
reduce difference with the guidance of syntax in MinTdiff. The
size of the reduced difference of PPR𝐿𝐷− is 3 tokens larger than PPR
on average, which demonstrates the fact that MinLdiff serves as a
complement of MinTdiff to further reduce the difference. Without
MinCommonality, the reduction rates of seed and variant drop
from 99.35%, 99.47% to 20.78%, 39.88%, respectively. The explanation
to this change is that difference reducers are only responsible for
reducing difference, only MinCommonality is capable of removing
unnecessary common code shared by seed and variant.

RQ3: All reducers in PPR contribute to effectiveness of PPR,
especially the MinTdiff and MinCommonality.

5.5 RQ4. The Impact of the Order of Reducers
To understand how the order of reducers impacts the reduction,
we experimented with two alternative orders — reducing the com-
monality before reducing the difference, i.e., MinCommonality->
MinTdiff-> MinLdiff (CO-TD-LD), and swapping the order of
tree-based and list-based difference reducition, i.e., MinLdiff->
MinTdiff-> MinCommonality (LD-TD-CO).

If MinCommonality is invoked ahead of all difference reducers,
the average size of final seed and variant are 791.90 and 871.55,
which are 2.06x and 2.13x larger than those from the original order
shown in Table 3. The difference size is 423.50, which becomes 16x
larger than the original and is almost half of the final seed/variant
size on average. Further investigation explains such change: if the
common code snippets instead of the difference are reduced first,
then the remaining difference will take a larger proportion in the
program, making tree-differencing algorithms harder to match the

common part. Such impact propagates through iterations and finally
produces a pair of diverged program, i.e., seed and variant look very
different from each other.

If MinLdiff is invoked before MinTdiff, PPR fails to terminate
in reasonable time. Such result is in line with the behavior when
MinTdiff is disabled, and demonstrates the fact that syntax guided
reduction is critical in reducing large difference.

RQ4: Empirically, difference should be reduced before reduc-
ing the common parts. As for the order of difference reducers,
the tree-based reducer is more effective and efficient, and thus
should be given a higher priority.

6 DISCUSSION
6.1 Usefulness of PPR in Fuzzer Design
Besides providing insights to compiler developers when debug-
ging, PPR also offers useful feedback to those who are designing
fuzzing techniques. GCC-66186 is the example showcased in the
paper of Hermes [36], a compiler fuzzing tool, for illustrating the
effect of their proposed mutations. The code inserted by Hermes is
highlighted in blue .

To identify this bug-triggering part, the authors of Hermes re-
duced the variant with C-Reduce and then manually searched for
patterns from the original mutation set, which involves 17 code
blocks, 3,335 tokens in total. Our algorithm, in contrast, automates
the procedure, finishes it in 0.85 hour, and presents the same mini-
mized bug-triggering changes shown in Figure 4.

1 // seed.c

2 for (b = 0; b <= 7; b += 1)

3 for (d = 0; d <= 7;) {

4
5
6
7
8 if (f[b])

9 break;

10 }

1// variant.c

2for (b = 0; b <= 7; b += 1)

3for (d = 0; d <= 7;) {

4if (g < 0)

5for (; d <= 7; d += 1)

6if (f[c])

7break;

8if (f[b])

9break;

10}

Figure 4: Final result of GCC-66186 (code snippet). Code high-
lighted in blue is the final differences from seed to variant.

6.2 Generality on Other Languages
PPR can be parameterized towards any language. To demonstrate
PPR’s effectiveness on language other than C, we further conducted
experiments using two prevalent programming languages, Rust and
JavaScript. To build a benchmark suite similar to Benchmark-PPR,
we applied random node-level deletion, insertion and replacement
on a pool of seed programs to fuzz rustc 1.58.1 and JerryScript-
2.4.0 separately, and collected 9 bug-triggering programs and their
corresponding seed programs for each language. Then we run PPR
and DD on this benchmark suite.

As shown in Table 4, PPR effectively reduces the seed and variant
programs by more than 90%. For variants, PPR achieves 91.86% and
94.58% reduction rates on Rust and JavaScript respectively, higher
than 82.12% and 69.71% from DD. For differences, PPR reaches 4
tokens on average on both Rust and JavaScript, far lower than 57

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

Table 4: Results of PPR and DD on Rust and JavaScript.

Seed Size Variant Size Difference Size
Bug ID Original PPR DD Original PPR DD Original PPR DD
RUSTC-1 157 53 0 135 50 69 22 3 69
RUSTC-2 104 40 0 100 41 78 4 1 78
RUSTC-3 552 6 0 558 8 43 6 2 43
RUSTC-4 475 23 0 497 27 44 24 4 44
RUSTC-5 184 7 0 203 16 22 22 11 22
RUSTC-6 104 51 0 99 48 46 13 3 46
RUSTC-7 83 10 0 94 14 44 11 4 44
RUSTC-8 183 11 0 182 13 134 5 2 134
RUSTC-9 992 10 0 996 16 32 22 6 32
Mean 315 23 0 318 26 57 14 4 57
Mean R 92.55% 91.86% 82.12% 72.09%
JERRY-1 558 28 0 536 20 46 22 8 46
JERRY-2 215 11 31 191 7 32 24 4 1
JERRY-3 356 13 80 338 12 81 18 1 1
JERRY-4 93 12 91 104 15 92 11 3 1
JERRY-5 272 14 68 291 17 70 19 3 2
JERRY-6 62 10 47 80 11 49 18 1 2
JERRY-7 192 30 44 184 23 72 12 7 28
JERRY-8 199 10 40 169 11 75 36 1 35
JERRY-9 469 11 113 504 14 209 39 7 96
Mean 268 15 57 266 14 81 22 4 24
Mean R 94.25% 94.58% 69.71% 82.41%

and 24 tokens from DD. Moreover, for all cases in Rust, DD fails
to find out a program for seed. Our explanation is that Rust has a
strict syntactical or semantical rule for program, so it is not likely
to find a valid subset of the variant without the guidance of syntax.

6.3 Threats to Validity
The threat to internal validity mainly lies in the correctness of the
implementation of PPR. To mitigate this, authors have carefully
reviewed the implementation and tested it on various test cases.

The generality of our approach and results can be a threat to
external validity. To mitigate this, we have evaluated PPR on 20
pairs of C programs, which reflect diversity in compilers, bug types,
mutation strategies and mutation degrees. Additionally, we evalu-
ated PPR on another two languages. The results demonstrated the
effectiveness and generality of PPR on diverse programs.

7 RELATEDWORK
We discuss three lines of related work.
Test Input Minimization and Generalization. Delta Debug-
ging is the foundational technique for systematically minimiz-
ing bug-triggering inputs and changes. Hierarchical Delta Debug-
ging [28] further refines this approach by applying DDMin iter-
atively on different levels of a program’s parse tree from top to
bottom. Perses [37?] enhances reduction efficiency by normalizing
grammars and using transformed grammars to guide the reduction
process, resulting in more effective reduction compared to HDD.
Vulcan [?] further improves the performance by introducing ag-
gressive program transformations. Specific languages also have tai-
lored reduction tools; C-Reduce [35], designed for C/C++ programs,
while J-Reduce focuses on Java bytecode [19, 20]. DDSET [16] in-
troduces automated generalization, abstracting concrete programs
into a mixture of terminal and abstract symbols to capture failure-
inducing patterns. SmartCheck [34] and Extrapolate [3] specialize
in generalizing Haskell programs.

All the work above mainly focus on reducing or generalizing sin-
gle failure-inducing inputs and can be classified as classical program

reduction algorithms. By contrast, pairwise program reduction re-
duces both failure-inducing input and failure-inducing changes
simultaneously, in which way we believe can complement classical
program reduction on compiler debugging.
Failure-Inducing Change Isolation. Delta Debugging sparked
a range of related researches [6–8, 12, 47] in the realm of isolat-
ing failure-inducing changes. Crisp [8] assists Java developers in
locating such changes by enabling iterative selection, application,
and undoing of affecting changes to pinpoint failure-inducing ones.
AutoFlow [47] employs static and dynamic analysis for automated
isolation of failure-inducing changes. Donaldson et al. introduced
Spirv-fuzz [12], an effective reduction and deduplication approach
for compiler testing, capable of reducing failure-inducing transfor-
mation sequences to smaller ones that still trigger failures. Unique
in its approach, PPR not only isolates failure-inducing changes but
also minimizes commonalities between two programs.
Slicing-Based Fault Localization . Technique sharing simi-
larity with PPR is dual slicing, a slicing-based approach to locate
the source of errors in software. By comparing execution traces
of programs of different versions, dual slicing techniques [39, 41]
can identify the differences and localize the root cause of bugs or
regression faults on a program, e.g., Wang et al. [39] studies typical
programs such as grep and coreutils. However, PPR differs from
program slicing w.r.t. the study subjects, as it focuses on programs
as the input of a compiler/interpreter, instead of programs on their
own. Moreover, PPR performs both reduction and isolation on a
pair of program inputs, while dual slicing only isolates the root
cause of errors in the program. Unlike dual slicing, which requires
white-box techniques for execution traces, program reduction meth-
ods like PPR are black-box approaches, suitable for bugs within the
compilers, rather than in program inputs.

8 CONCLUSION
In this paper, we propose pairwise program reduction (PPR), a
novel perspective to complement classical program reduction tech-
niques. Unlike Perses and C-Reduce, PPR takes as input a pair of
programs. It reduces not only the seed and variant programs, but
also the differences between them. To evaluate PPR, we construct
Benchmark-PPR containing programs that trigger bugs in GCC and
LLVM. The experiment conducted with Benchmark-PPR shows that
final programs from PPR are several orders of magnitude smaller
than those from DD, and even comparable to classical program
reduction w.r.t. size. PPR provides more insightful difference than
DD for both compiler developers and fuzzing designers. Finally,
evaluation on Rust and JavaScript demonstrates PPR’s generality
on other languages.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers in ESEC/FSE’23 for their in-
sightful feedback and comments, which significantly improved this
paper. This research is partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) through the
Discovery Grant, a project under Waterloo-Huawei Joint Innova-
tion Lab, and CFI-JELF Project #40736.

PPR: Pairwise Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers:

principles, techniques, & tools. Pearson Education India.
[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In NDSS. https://doi.org/10.14722/ndss.2019.23412

[3] Rudy Braquehais and Colin Runciman. 2017. Extrapolate: generalizing counterex-
amples of functional test properties. In Proceedings of the 29th Symposium on
the Implementation and Application of Functional Programming Languages. 1–11.
https://doi.org/10.1145/3205368.3205371

[4] GCC Bugzilla. 2015. Bug 66691. Retrieved 2022-07-04 from https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=66691

[5] LLVM Bugzilla. 2014. Bug 21467 - clang hangs on valid code at -Os and above on
x86_64-linux-gnu. Retrieved 2022-08-24 from https://bugs.llvm.org/show_bug.
cgi?id=21467

[6] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 223–234.
https://doi.org/10.1145/3338906.3338957

[7] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced compiler bug
isolation via memoized search. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 78–89. https://doi.org/10.1145/
3324884.3416570

[8] Ophelia C Chesley, Xiaoxia Ren, and Barbara G Ryder. 2005. Crisp: A debug-
ging tool for Java programs. In 21st IEEE International Conference on Software
Maintenance (ICSM’05). IEEE, 401–410.

[9] James Coglan. 2017. The patience diff algorithm. Retrieved 2022-07-05 from
https://blog.jcoglan.com/2017/09/19/the-patience-diff-algorithm

[10] Alastair F Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–29.

[11] Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, An-
dré Perez Maselco, and Antoni Karpiński. 2020. Spirv-fuzz. Retrieved 2023-
01-30 from https://github.com/google/graphicsfuzz/blob/master/docs/finding-a-
vulkan-driver-bug-using-spirv-fuzz.md

[12] Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez
Maselco, and Antoni Karpiński. 2021. Test-case reduction and deduplication
almost for free with transformation-based compiler testing. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. 1017–1032. https://doi.org/10.1145/3453483.3454092

[13] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. 313–324. https://doi.org/10.1145/2642937.2642982

[14] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
distilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering 33, 11 (2007), 725–743. https://doi.org/10.
1109/TSE.2007.70731

[15] GCC. 2020. A Guide to Testcase Reduction. Retrieved 2022-07-04 from https:
//gcc.gnu.org/wiki/A_guide_to_testcase_reduction

[16] Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun,
and Andreas Zeller. 2020. Abstracting failure-inducing inputs. In Proceedings of
the 29th ACM SIGSOFT international symposium on software testing and analysis.
237–248. https://doi.org/10.1145/3395363.3397349

[17] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 861–871.

[18] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security 12). 445–458.
https://doi.org/10.5555/2362793.2362831

[19] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary reduction of depen-
dency graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 556–566. https://doi.org/10.1145/3338906.3338956

[20] Christian Gram Kalhauge and Jens Palsberg. 2021. Logical bytecode reduction.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 1003–1016. https://doi.org/10.1145/
3453483.3454091

[21] Gray Kwong, Jesse Ruderman, and Jesse Schwartzentruber. 2022. Lithium algo-
rithm. Retrieved 2022-12-24 from https://github.com/MozillaSecurity/lithium

[22] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via
equivalence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216–226. https:
//doi.org/10.1145/2594291.2594334

[23] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs
via guided stochastic program mutation. ACM SIGPLAN Notices 50, 10 (2015),
386–399. https://doi.org/10.1145/2858965.2814319

[24] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
2015. Many-core compiler fuzzing. ACM SIGPLAN Notices 50, 6 (2015), 65–76.
https://doi.org/10.1145/2737924.2737986

[25] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for
C and C++ compilers with YARPGen. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–25. https://doi.org/10.1145/1993498.1993532

[26] LLVM. 2022. How to submit an LLVM bug report. Retrieved 2022-07-04 from
https://llvm.org/docs/HowToSubmitABug.html

[27] David Majnemer. 2014. InstCombine: Remove infinite loop caused by
FoldOpIntoPhi. Retrieved 2022-07-04 from https://reviews.llvm.org/
rG7e2b9882b147bf9c26faa7b04b56884ec444bd64

[28] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th International Conference on Software Engineering. 142–
151. https://doi.org/10.1145/1134285.1134307

[29] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
testing via a theory of sound optimisations in the C11/C++ 11 memory model.
ACM SIGPLAN Notices 48, 6 (2013), 187–196. https://doi.org/10.1145/2499370.
2491967

[30] Eugene W Myers. 1986. AnO (ND) difference algorithm and its variations. Algo-
rithmica 1, 1 (1986), 251–266.

[31] Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2012. Random
testing of C compilers targeting arithmetic optimization. InWorkshop on Synthesis
And System Integration of Mixed Information Technologies (SASIMI 2012). 48–53.
https://doi.org/10.1145/2499370.2491967

[32] Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing random
testing of arithmetic optimization of C compilers by scaling up size and number
of expressions. IPSJ Transactions on System LSI Design Methodology 7 (2014),
91–100. https://doi.org/10.2197/ipsjtsldm.7.91

[33] Mateusz Pawlik and Nikolaus Augsten. 2011. RTED: a robust algorithm for the
tree edit distance. arXiv preprint arXiv:1201.0230 (2011). https://doi.org/10.14778/
2095686.2095692

[34] Lee Pike. 2014. SmartCheck: automatic and efficient counterexample reduction
and generalization. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell. 53–64. https://doi.org/10.1145/2775050.2633365

[35] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation.
335–346. https://doi.org/10.1145/2254064.2254104

[36] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 849–863.
https://doi.org/10.1145/2983990.2984038

[37] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: Syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. 361–371. https://doi.org/10.1145/3180155.
3180236

[38] Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang.
2021. Probabilistic Delta debugging. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 881–892. https://doi.org/10.1145/3468264.3468625

[39] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jinsong Dong, Qinghua
Zheng, and Ting Liu. 2019. Explaining regressions via alignment slicing and
mending. IEEE Transactions on Software Engineering 47, 11 (2019), 2421–2437.
https://doi.org/10.1109/TSE.2019.2949568

[40] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 724–735. https://doi.org/10.1109/ICSE.2019.00081

[41] Dasarath Weeratunge, Xiangyu Zhang, William N Sumner, and Suresh Jagan-
nathan. 2010. Analyzing concurrency bugs using dual slicing. In Proceedings
of the 19th International Symposium on Software Testing and Analysis. 253–264.
https://doi.org/10.1145/1831708.1831740

[42] Wikipedia. 2022. Standard Portable Intermediate Representation. Retrieved
2023-01-25 from https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_
Representation

[43] Wikipedia. 2022. Static single-assignment form. Retrieved 2022-08-31 from
https://en.wikipedia.org/wiki/Static_single-assignment_form

[44] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. 283–294.

[45] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.
https://doi.org/10.1109/32.988498

[46] Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun.
2023. Artifact for "PPR: Pairwise Program Reduction". https://doi.org/10.5281/
zenodo.8267114

[47] Sai Zhang, Yu Lin, Zhongxian Gu, and Jianjun Zhao. 2008. Effective identifica-
tion of failure-inducing changes: a hybrid approach. In Proceedings of the 8th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering. 77–83. https://doi.org/10.1145/1512475.1512492

https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.1145/3205368.3205371
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66691
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66691
https://bugs.llvm.org/show_bug.cgi?id=21467
https://bugs.llvm.org/show_bug.cgi?id=21467
https://doi.org/10.1145/3338906.3338957
https://doi.org/10.1145/3324884.3416570
https://doi.org/10.1145/3324884.3416570
https://blog.jcoglan.com/2017/09/19/the-patience-diff-algorithm
https://github.com/google/graphicsfuzz/blob/master/docs/finding-a-vulkan-driver-bug-using-spirv-fuzz.md
https://github.com/google/graphicsfuzz/blob/master/docs/finding-a-vulkan-driver-bug-using-spirv-fuzz.md
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.5555/2362793.2362831
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1145/3453483.3454091
https://doi.org/10.1145/3453483.3454091
https://github.com/MozillaSecurity/lithium
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2858965.2814319
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/1993498.1993532
https://llvm.org/docs/HowToSubmitABug.html
https://reviews.llvm.org/rG7e2b9882b147bf9c26faa7b04b56884ec444bd64
https://reviews.llvm.org/rG7e2b9882b147bf9c26faa7b04b56884ec444bd64
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/2775050.2633365
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1109/TSE.2019.2949568
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/1831708.1831740
https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_Representation
https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_Representation
https://en.wikipedia.org/wiki/Static_single-assignment_form
https://doi.org/10.1109/32.988498
https://doi.org/10.5281/zenodo.8267114
https://doi.org/10.5281/zenodo.8267114
https://doi.org/10.1145/1512475.1512492

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Motivation
	2.1 Practicality

	3 Preliminaries and Formalization
	3.1 Classical Program Reduction
	3.2 Differences Between a Pair of Programs
	3.3 Pairwise Program Reduction

	4 Approach
	4.1 Minimizing Tree-Based Differences
	4.2 Minimizing List-Based Differences
	4.3 Minimizing Commonality of P s and P v

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1. Effectiveness of PPR
	5.3 RQ2. Efficiency of PPR
	5.4 RQ3. Effectiveness of Each Reducer in PPR
	5.5 RQ4. The Impact of the Order of Reducers

	6 Discussion
	6.1 Usefulness of PPR in Fuzzer Design
	6.2 Generality on Other Languages
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

