
Perses: Syntax-Guided Program Reduction

Chengnian Sun

University of California

Davis, CA, USA

cnsun@ucdavis.edu

Yuanbo Li

University of California

Davis, CA, USA

yboli@ucdavis.edu

Qirun Zhang

University of California

Davis, CA, USA

qrzhang@ucdavis.edu

Tianxiao Gu

University of California

Davis, CA, USA

txgu@ucdavis.edu

Zhendong Su

University of California

Davis, CA, USA

su@ucdavis.edu

ABSTRACT
Given a program P that exhibits a certain property ψ (e.g., a C

program that crashes GCC when it is being compiled), the goal

of program reduction is to minimize P to a smaller variant P ′ that
still exhibits the same property, i.e., ψ (P ′). Program reduction is

important and widely demanded for testing and debugging. For

example, all compiler/interpreter development projects need effec-

tive program reduction to minimize failure-inducing test programs

to ease debugging. However, state-of-the-art program reduction

techniques — notably Delta Debugging (DD), Hierarchical Delta

Debugging (HDD), and C-Reduce — do not perform well in terms of

speed (reduction time) and quality (size of reduced programs), or are

highly customized for certain languages and thus lack generality.

This paper presents Perses, a novel framework for effective, ef-
ficient, and general program reduction. The key insight is to exploit,
in a general manner, the formal syntax of the programs under re-

duction and ensure that each reduction step considers only smaller,
syntactically valid variants to avoid futile efforts on syntactically

invalid variants. Our framework supports not only deletion (as for

DD and HDD), but also general, effective program transformations.

We have designed and implemented Perses, and evaluated it for
two language settings: C and Java. Our evaluation results on 20 C

programs triggering bugs in GCC and Clang demonstrate Perses’s
strong practicality compared to the state-of-the-art: (1) smaller size
— Perses’s results are respectively 2% and 45% in size of those

from DD and HDD; and (2) shorter reduction time — Perses takes

23% and 47% time taken by DD and HDD respectively. Even when

compared to the highly customized and optimized C-Reduce for

C/C++, Perses takes only 38-60% reduction time.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00

https://doi.org/10.1145/3180155.3180236

KEYWORDS
program reduction, delta debugging, debugging

ACM Reference Format:
Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong

Su. 2018. Perses: Syntax-Guided Program Reduction. In ICSE ’18: ICSE ’18:
40th International Conference on Software Engineering , May 27-June 3, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3180155.3180236

1 INTRODUCTION
Program reduction is important and widely used. Given a program

P that exhibits a property, the objective of program reduction is to

generate a smaller program P ′ from P that still exhibits the same

property. The reduction process continuously generates smaller

program variants, and checks them against the property. A minimal

variant that perserves the property is returned at the end.

A common usage scenario for program reduction is reducing

test programs that trigger compiler bugs. It is well-known that

debugging typical application software is painstaking and daunting.

Debugging compilers can be even more difficult as compilers are

among the most complex software systems (e.g., GCC’s codebase
is close to 20 million lines). It is worse when the bug-triggering

program contains a large amount of irrelevant code to the bug as

compiler developers need to manually distill useful information

from the test program. Most of the time, the size difference between

the original and the distilled version can be considerable. For ex-

ample, a recent study on the characteristics of bugs in GCC and

LLVM [21] has shown that, on average, minimized test programs

contain only 30 lines of code to trigger compiler bugs. In contrast,

the original bug-triggering test programs may have hundreds or

thousands of lines of code [9, 11, 22, 25]. Therefore, it is important

to automatically compute the distilled version. Indeed, compiler

developers strongly encourage submitting small, reproducible test

programs — both GCC and LLVM advocate test reduction in their

bug reporting processes [4, 13].

Existing Reduction Techniques. The state-of-the-art program

reduction techniques are Delta Debugging [24], Hierarchical Delta

Debugging [16], and C-Reduce [17].

Delta Debugging (DD): Zeller and Hildebrandt [24] proposed DD

to minimize failure-inducing test inputs. It is general, and works

on not only programs, but also arbitrary inputs as DD can operate

at the individual byte level. Initially, the test input is split into a list

of elements at a certain granularity (e.g., byte, lexeme or line). New

https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su

inputs are then systematically generated by deleting elements from

the list, and checked whether they still trigger the same failure. The

algorithm terminates with a minimal failure-inducing input.

DD is general, but not suited for reducing programs because,

by design, it does not leverage nor respect syntatic structural con-

straints available in programs and enforced by a programming

language’s formal syntax. Thus, DD inevitably considers a large

number of candidate inputs that are syntactically invalid, leading

to poor reduction performance.

Hierarchical Delta Debugging (HDD): Misherghi and Su [16] pro-

posed HDD to improve the effectiveness of DD for tree-structured

inputs. Different from DD, HDD converts the input into a tree w.r.t.
the input’s format. In the particular case of program reduction,

HDD converts a program into its parse tree or abstract syntax tree

(AST), performs breadth-first search on the tree, and invokes the

DD algorithm on each level to prune tree nodes from that level.

Although HDD’s tree-based reduction considers fewer syntacti-

cally invalid programs than DD and thus outperforms it, it provides

no guarantee and still generates many syntactically invalid inputs

(e.g., removing the variable name in a declaration). The reason is

that HDD only uses the formal syntax of a language (i.e., its gram-

mar) to convert a test input into its tree representation, but does

not exploit the grammar further to guide reduction. As HDD’s core

reduction is based on DD, it generates smaller programs only via

deletion, thus may be incapable of generating smaller programs

that require other transformations (see Section 2 for illustration).

C-Reduce: Regehr et al. proposed C-Reduce [17], a highly customized

reducer for C/C++, that embodies a set of C/C++ program transfor-

mations implemented via the Clang LibTooling [14] library.

Although C-Reduce is powerful at minimizing C/C++ programs,

the reduction process may take significant time. To mitigate its

performance issue, Le et al. combined DD and C-Reduce to reduce

C test programs in the EMI compiler testing work [9]. More impor-

tantly, C-Reduce is not general — to support another programming

language, one needs to re-design and re-implement program trans-

formations targetting the language, which is obviously nontrivial.

In short, DD is fast, but often cannot produce good quality

(i.e., small) reductions; C-Reduce offers high-quality reductions

for C/C++ programs, but lacks generality and takes much reduction

time; and HDD is in between — it produces better reductions than

DD, and runs faster than C-Reduce.

Syntax-Guided Program Reduction. This paper addresses the

aforementioned shortcomings of existing techniques by proposing

a novel framework, Perses, to enable general, effective, and effi-

cient program reduction. Our conceptual insight is to utilize the

formal syntax (i.e., grammar) of a programming language to guide

reduction. Our technical insight is to leverage the grammar to (1)

generate only syntactically valid inputs, and (2) support generic,

effective program transformations.

In more detail, program reduction is about searching for suitable

programs in a search space P,1 which can be partitioned into two

disjoint sets: the set of syntactically valid programs Pvalid, and the

set of syntactically invalid ones Pinvalid, i.e.,

P = Pinvalid ⊎ Pvalid

1P is the universe of candidate programs that a program reducer can derive from P ,
where P is the initial program to reduce.

where ⊎ denotes the disjoint union operator. DD and HDD
2
have

non-empty Pinvalid, because as aforementioned DD does not con-

sider program syntax at the preprocessing step (i.e., converting a
test program into a list) or during reduction, and HDD does not

either during reduction. Both algorithms generate a considerable

number of syntactically invalid programs, only being a waste of

reduction time. On the other hand, both reduction algorithms only

delete elements from test programs, which limits the search space

of syntactically valid programs, i.e., Pvalid.
Our use of grammars is fundamentally different from that of

HDD. HDD only uses grammars to parse programs into tree struc-

tures, whereas Perses further analyzes and leverages grammars

during reduction. This brings us two advantages:

Pinvalid = ∅: From the definition of the grammar, during reduction

Perses can determine whether a tree node is deletable. If no, we

can avoid generating variants by deleting that node. This makes it

very easy for Perses to ensure Pinvalid = ∅, which consequently

reduces the number of unnecessary property tests.

Enlarging Pvalid: Perses leverages the grammar to support more

advanced program transformations, which thus increases Pvalid.
For example, according to the C grammar, a conditional state-

ment if (...) {print("");} can be simplified to if (...)
print("");, as the true branch of an if statement is a statement,

and the compound statement {print("");} and the function call

print(""); are both statements. Though increased Pvalid may in-

crease the number of property tests, it enables Perses to generate

more valid, diverse, possibly smaller variants than DD and HDD.

It is easy for Perses to support a new language by just providing

its grammar in Backus-Naur form (BNF). However, it is very likely

that the original grammar in arbitrary form may hinder the effec-

tiveness of Perses. Thus we define a normal form of grammars to

facilitate reduction, referred to as Perses Normal Form (PNF). We

also design an algorithm to automatically convert any grammar

into its equivalent PNF.
Our evaluation results of Perses on 20 large C programs that

trigger bugs in GCC and Clang demonstrates that Perses’s strong
practicality compared to the state-of-the-art: (1) smaller size —

Perses’s results are respectively 2% and 45% in size of those from

DD and HDD; and (2) shorter reduction time — Perses takes 23%
and 47% time taken by DD and HDD respectively. Even when com-

pared to the highly customized and optimized C-Reduce for C/C++,

Perses takes only 38-60% reduction time. To demonstrate the gener-

ality of Perses, we also evaluate Perses on 6 small Java programs

triggering bugs in Javac and Eclipse Compiler for Java, and the re-

sults are consistent with those on C programs. Perses constantly

outperforms HDD in terms of both time and reduction quality.

Contributions. This paper makes the following contributions.

• We propose Perses, a framework for effective and efficient pro-

gram reduction. It is the first general program reducer that lever-

ages formal syntax to guide program reduction. It guarantees no

generation of syntactically invalid programs, and supports more

program transformations to produce smaller reduction results.

2
We exclude C-Reduce from comparison and discussion in the remainder of the paper

except Section 5, as C-Reduce is language-specific and this paper focuses on language-

independent program reducers.

Perses: Syntax-Guided Program Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

• We define Perses Normal Form of grammars to facilitate pro-

gram reduction, and also propose an algorithm to automatically
convert any context free grammar into an equivalent PNF.

• Our evaluation results on real-world benchmarks demonstrate

significant improvement of Perses over the state of the art.

• Perses provides a new perspective for program reduction. With

the knowledge of formal syntax, we can design more program

transformations to produce better reduction results.

2 A MOTIVATING EXAMPLE
We illustrate Perses with a contrived C program. The full algo-

rithm is detailed in Section 4. Figure 1a shows a program that prints

three lines (‘1’, ‘Hello world!’, and ‘End’). Assume that we are in-

terested in the behavior of printing ‘Hello world!’. Then Perses
outputs a minimized program that only prints ‘Hello world!’.

Different from HDD which performs reduction level by level,

Perses does node by node. It maintains a priority queueQ to store

the tree nodes for reduction. Each time, it retrieves the node with

the most tokens fromQ , and reduces that node with various syntax-
preserving program transformations. After the node is reduced, the

remaining children of the node are added to Q for future reduction.

Initially, Perses parses this program into the parse tree shown

in Figure 1e. Then, it performs the following reduction steps:

Step 1 (1.func_def): Perses reduces the root of the parse tree, i.e.,
‘1.func_def’. However, removing it does not possess the property.

So all its children are added to Q .

Step 2 (2.compound_stmt): The function body ‘2.compound_stmt’

is dequeued for reduction, because it has the most tokens in Q . For

this compound statement, we cannot delete it, as the function body

is compulsory for a function definition. However, we can replace it

with one of its descendants which is also a compound statement.

In this case, we can replace it with ‘6.compount_stmt’, the true
branch of ‘if(a)’ on line 3. After replacement, the new variant is

listed below. Although it is syntactically correct, it does not compile

as the identifier ‘a’ is not defined. So this reduction step fails, and

we add the three immediate children to Q .
int main() { printf("%d\n", a);

printf("Hello "); printf("world!\n"); printf("End\n"); }

Step 3 (3.stmt_star): The suffix ‘_star’ indicates that this node is

a Kleene-Star node, and represents that it can have zero or more

statements as immediate children. In other words, any child of this

node can be deletedwithout violating the C program syntax. For this

node, Perses uses DD to delete irrelevant children. Unfortunately,

all three children cannot be deleted, and then are added to Q .

Step 4 (4.if_stmt): The largest node inQ is ‘4.if_stmt’. Its par-

ent is ‘3.stmt_star’ that expects zero or more statements. So we

can find a statement to replace ‘if_stmt’, and the program syntax

will still be valid. We search all its children, and find its true branch

to be a statement, i.e., node ‘6.compoudt_stmt’. So we obtain the

first successful reduced variant shown in Figure 1b.

Step 5 (5.compound_stmt): To reduce this node, we attempt to

use one of its children to replace it. As it replaces ‘4.if_stmt’, its
parent becomes the node ‘3.stmt_star’ which expects zero or

more statements. Then we can use ‘6.stmt_star’ (which is also a

Kleene-Star node that expects zero or more statements) to replace

this compound statement. In detail, ‘6.stmt_star’ becomes a child

of ‘3.stmt_star’, and this transformation does not invalidate the

grammar, because the tokens owned by ‘3.stmt_star’ still consti-
tute a list of statements. This transformation preserves the property,

and the result is shown in Figure 1c.

Step 6 (6.stmt_star): As it is a Kleene star node, we use DD to re-

duce it. And nodes ‘8.printf@4’ and ‘11.printf@7’ are removed.

Following Steps: After ‘8.printf@4’ (i.e., the print statement on

line 4) is removed, the dependency on variable a is also removed.

When Perses picks ‘12.int a = 1;’ from Q , this statement can

be safely removed without introducing any compilation error.

Figure 1d shows the final result, and Figure 1f shows the final

pruned parse tree. Only the two print statements and the return

statement are kept in the result. The if statement is removed by

replacing it with its child. This transformation is not possible in

either HDD or DD except with case-by-case specialized solutions. In

contrast, our approach is systematic, and involve no ad-hoc designs.

All transformations in Perses are designed based on the semantics

of language grammars, e.g., deleting some children of Kleene Star

nodes, replacing a statement node with another statement node.

3 PRELIMINARIES
This section formalizes program reduction, introduces DD, and

defines Perses Normal Form.

3.1 Program Reduction
Let B = {true, false}, P be a program that exhibits a property,

P be the search space of programs defined by concrete program

reduction algorithms over P . 3 We define a property test function

ψ : P → B, such that ψ (P) = true and for any program p ∈ P,
ψ (p) = true if p exhibits the property, otherwiseψ (p) = false. The
size of p is denoted as |p |, which is the number of tokens in p.

Given a program P and its property testψ (s.t.,ψ (P) = true), the
goal of program reduction is to search for a minimized program

p ∈ P, such that ψ (p) ∧ |p | < |P |. Ideally, the goal of reducing P
(denoted as Reduce(P)) is defined as

argmin

p∈P∧ψ (p)
|p | ≡ {p |p ∈ P ∧ψ (p) ∧ ∀x ∈ P.|p | ≤ |x |}

1-Minimality and 1-Tree-Minimality. However, obtaining the

global minimality is NP-complete [16, 24]. Therefore, in practice,

the reduction problem is relaxed to compute the minimum result

within a program reducer’s capacity. For example, DD defines 1-

minimality [24]. That is, p ∈ P is 1-minimal if any variant p′ derived
from p by removing a single element from p does not pass the prop-

erty test, i.e.,ψ (p′) = false. HDD also defines a similar notion [16]:

A program is 1-tree-minimality if any node of the tree representa-

tion of the program cannot be further simplified by the reducer.

3.2 Delta Debugging Algorithm
DD is integral to Perses, and we briefly introduce its reduction

algorithm ddmin. Given an input and a propertyψ , DD first converts

the input into a list L of elements. Then ddmin determines a subset

3
Note that the search space P is not the universe of all programs. As aforementioned

in Section 1, it is defined by the concrete reduction algorithm over P , and P ∈ P.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su

1 int main() {

2 int a = 1;

3 if (a) {

4 printf("%d\n", a);

5 printf("Hello ");

6 printf("world!\n");

7 printf("End\n");

8 }

9 return 0;

10 }

(a) Original.

1 int main() {

2 int a = 1;

3 if (a) {

4 printf("%d\n", a);

5 printf("Hello ");

6 printf("world!\n");

7 printf("End\n");

8 }

9 return 0;

10 }

(b) Perses: first success.

1 int main() {

2 int a = 1;

3 if (a) {

4 printf("%d\n", a);

5 printf("Hello ");

6 printf("world!\n");

7 printf("End\n");

8 }

9 return 0;

10 }

(c) Perses: second success.

1 int main() {

2 int a = 1;

3 if (a) {

4 printf("%dn", a);

5 printf("Hello ");

6 printf("world!\n");

7 printf("Endn");

8 }

9 return 0;

10 }

(d) Perses: final result.

1.func_def

’int’ ’main’ ’(’ ’)’ 2.compound_stmt

’{’ 3.stmt_star

12.int a = 1; 4.if_stmt

’if’ ’(’ expr

’a’

’)’ 5.compound_stmt

’{’ 6.stmt_star

8.printf@4 9.printf@5 10.printf@6 11.printf@7

’}’

13.return 0;

’}’

(e) The parse tree of Figure 1a, simplified for illustration purpose.

1.func_def

’int’ ’main’ ’(’ ’)’ 2.compound_stmt

’{’ 3.stmt_star

12.int a = 1; 4.if_stmt

’if’ ’(’ expr

’a’

’)’ 5.compound_stmt

’{’ 6.stmt_star

8.printf@4 9.printf@5 10.printf@6 11.printf@7

’}’

13.return 0;

’}’

(f) The pruned parse tree after reduction.

Figure 1: An example program.

ofL such that no one element can be deleted fromLwhile preserving
ψ , i.e., the reduced L is 1-minimal. It involves three steps.

Step 1: Split L into n partitions. For each partition u, test if u only

without the other partitions can preserve the property. If yes, re-

move the complement of u from L, and resume at Step 1.

Step 2: Test if the complement of each partition u preserves the

property. If yes, remove u from L, and resume at Step 1.

Step 3: Try to split each remaining partition into halves. That is,

increase the number of partitions from n to 2n. Then resume at Step

1 with the newly split smaller partitions. If each partitions cannot

be further split, the remaining elements in L are the reduced result,

and ddmin terminates.

3.3 Input Grammar Forms
Perses takes as input language grammars specified in Backus-Naur

Form (BNF) notation. Unless otherwise stated, we always assume

the grammars are expressed in BNF notation. Perses also supports
the context-free grammar rules with three additional quantifier

over terminals and nonterminals.

Kleene Star (∗). The quantified terminal or nonterminal should

occur zero or multiple times. For example, A* can generate empty

strings, ‘A’, ‘AA’, and so on.

Kleene Plus (+). The quantified terminal or nonterminal should

occur one or multiple times. For example, A+ is similar to A* except

that A+ does not accept empty strings.

Optional (?). The quantified terminal or nonterminal should

occur either zero times or once. For example, A? accepts either

empty strings or ‘A’.

In particular, a grammar rule is defined as a quantified rule iff at

least one of its right-hand side symbols is equipped with a quanti-

fier. The three quantifiers simplify the grammar representation and

have been widely used in many popular parser generators such as

ANTLR [2] and JavaCC [7]. Perses leverages the three quantifiers

to perform syntax guided program reduction. We say that a non-

terminal A is quantifiable if A could be transitively described by a

quantified rule. For instance, “B F D∗” is a quantified rule and the

nonterminal B is quantifiable. Suppose that we have another rule

“AF BC”. The nonterminal A is also quantifiable since A could be

transitively described by a quantified rule “AF D∗C” by replacing

the B symbol with “D∗”. Next, we formally introduce the grammar

normal form used in Perses.

Definition 3.1 (Perses Normal Form). A context-free grammar
CFG is in Perses normal form (PNF) if all its production rules are of
the following form:

(i) AF B1B2 . . . Bn , or
(ii) AF B1∗, or
(iii) AF B1+, or
(iv) AF B1?, or
(v) S F ϵ ,

where S denotes the start symbol,A denotes a nonterminal, Bi denotes
either a terminal or a nonterminal for all i ∈ [1,n], and n > 1.
Moreover, all quantifiable nonterminals are transitively described by
at least one quantified rule.

The PNF could be viewed as a restricted form of the extended

Backus-Naur form. Every context-free grammar could be normal-

ized to PNF. The normalization algorithm is detailed in Section 4.1.

Perses: Syntax-Guided Program Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Intuitively, rule (i) in Definition 3.1 refers to any non-epsilon rule in

a context-free grammar. The epsilon rules could be safely removed

during normalization [1]. Rules (ii)-(iii) correspond to any recursive

rules with either left- or right-recursion. The normalization algo-

rithm finds at least one such recursive rules for each quantifiable

nonterminal. Rule (iv) could be distilled from the rules with optional

terminal or nonterminals. Figure 2 shows the grammar in PNF for

the program in Figure 1a. For illustration purpose it is simplified

by covering a small subset of the C programming language.

⟨func_def ⟩ ::= ⟨type⟩ ⟨identifier ⟩ ‘(’ ‘)’ ⟨compound_stmt ⟩
⟨stmt ⟩ ::= ⟨if_stmt ⟩

| ⟨decl_stmt ⟩
| ⟨expr_stmt ⟩
| ⟨compound_stmt ⟩

⟨if_stmt ⟩ ::= ⟨cond_plus⟩ ⟨decl_stmt ⟩
| ⟨cond_plus⟩ ⟨expr_stmt ⟩
| ⟨cond_plus⟩ ⟨compound_stmt ⟩

⟨cond_plus⟩ ::= ⟨if_cond ⟩ +
⟨if_cond ⟩ ::= ’if’ ’(’ ⟨expr ⟩ ’)’
⟨decl_stmt ⟩ ::= ⟨type⟩ ⟨identifier ⟩ ‘=’ ⟨expr ⟩ ‘;’
⟨expr_stmt ⟩ ::= ⟨expr ⟩ ‘;’
⟨compound_stmt ⟩ ::= ‘{’ ⟨stmt_star ⟩ ‘}’
⟨stmt_star ⟩ ::= ⟨stmt ⟩ *

Figure 2: A normalized grammar in PNF for the program
in Figure 1a. We omit the rules of nonterminals ⟨type⟩,
⟨identifier⟩ and ⟨expr⟩ for brevity.

4 APPROACH

Grammar
Normalizer

Java
Grammar

JavaScript
Grammar

C
Grammar

Other
Grammar

PNF

Parse Tree

Reducer

Program

Property Minimized
Program

Figure 3: Overall Workflow of Perses.

Figure 3 shows the overview workflow of Perses. Conceptu-
ally, Perses supports any unambiguous context-free grammars. To

support a specific language, Perses converts its grammar to the

normal form i.e., Definition 3.1. When Perses is used to reduce

a program P w.r.t. a property. Perses first uses the normalized

grammar to parse P into a parse tree T . Then T is fed to the core

reduction algorithm consisting of a set of program transformations.

Guided by the property test, the reducer gradually deletes irrelevant

elements from the tree, and output the minimized program upon

termination.

⟨A⟩ ::= ⟨B⟩ ⟨C ⟩
| ⟨D⟩
| ϵ

⟨B⟩ ::= ⟨A⟩ ⟨D⟩
| ⟨C ⟩ ⟨D⟩

⟨C ⟩ ::= c

⟨D⟩ ::= d

(a) Original grammar.

⟨S⟩ ::= ⟨A⟩ | ϵ
⟨A⟩ ::= ⟨B⟩ ⟨C ⟩

| ⟨D⟩
⟨B⟩ ::= ⟨A⟩ ⟨D⟩

| ⟨C ⟩ ⟨D⟩
| ⟨D⟩

⟨C ⟩ ::= c

⟨D⟩ ::= d

(b) Preprocessing.

⟨S⟩ ::= ⟨A⟩
| ϵ

⟨A⟩ ::= ⟨B⟩ ⟨C ⟩
| ⟨D⟩

⟨B⟩ ::= ⟨B⟩ ⟨C ⟩ ⟨D⟩
| ⟨D⟩ ⟨D⟩
| ⟨C ⟩ ⟨D⟩
| ⟨D⟩

⟨C ⟩ ::= c

⟨D⟩ ::= d

(c) Transformation.

⟨S⟩ ::= ⟨A⟩ | ϵ
⟨A⟩ ::= ⟨B⟩ ⟨C ⟩ | ⟨D⟩
⟨B⟩ ::= ⟨G⟩+ | ⟨D⟩ ⟨E⟩ ⟨F ⟩
⟨C ⟩ ::= c

⟨D⟩ ::= d

⟨E⟩ ::= ⟨D⟩?
⟨F ⟩ ::= ⟨G⟩∗

⟨G⟩ ::= ⟨C ⟩ ⟨D⟩

(d) Normalization.

Figure 4: An illustrative example for PNF normalization.

4.1 PNF Normalization
This section describes our normalization algorithm for computing

the Perses normal form (PNF). Our normalization algorithm takes

as input any context-free grammar in BNF notation and outputs an

equivalent grammar in PNF. The basic idea of our normalization

algorithm is to compute quantified rules based on grammar trans-

formations. We notice that the “∗” and “+” quantifiers correspond

to the sequence repetitions in regular expressions. The repetition is

typically specified using left- or right-linear context-free grammars.

As a result, we could compute the “∗” and “+” quantified rules from

those left- or right-recursion rules. The “?” quantified rules could

be computed by comparing the differences of each pair of rules.

Our normalization algorithm involves three essential steps. We

briefly describe these steps with an example in Figure 4. Figure 4a

shows the original grammar where ⟨A⟩ is the start symbol. The

original grammar is not in the PNF. In particular, the nonterminal

⟨B⟩ is quantifiable since it could potentially be described by a “+”-

quantified rule obtainable from the left-recursion rule “⟨B⟩ F
⟨B⟩⟨C⟩⟨D⟩”. However, the grammar in Figure 4a does not contain

any quantified rule. We then discuss PNF normalization as follows.

• Preprocessing. Our preprocessing procedure eliminates the ϵ pro-
ductions and unreachable rules. We also assign a random or-

dering to all nonterminals in the grammar. The preprocessed

grammar is given in Figure 4b. In particular, ⟨S⟩ becomes the

new start symbol.

• Transformation. To facilitate our next normalization step, we

prefer left- or right-recursive productions. During the transfor-

mation procedure, for each nonterminal we try to describe it by a

left- or right-recursive production rule according to the original

grammar. Figure 4c shows the example after the transformation,

nonterminal ⟨B⟩ is transformed into a left-recursion form.

• Normalization. In the normalization step, the corresponding left-

or right-recursive production rules are transformed into quan-

tified rules. Once all quantifiable nonterminals have been tran-

sitively described using quantified rules, We convert the result

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su

Algorithm 1: PNF Normalization — Normalization(G)

Input: G : a context-free grammar in BNF notation.

Output: G′: an equivalent grammar in PNF.

1 Preprocess (G)

2 G1 ← GrammarNormalizationLeft(G)
3 G′ ← GrammarNormalizationRight(G1)

4 return G′

5 Function GrammarNormalizationLeft(G):
Input: G : a context-free grammar in BNF notation.

Output: G : an equivalent grammar without quantifiable nonterminals in

form of left recursion.

6 let Gcfg be an empty digraph

7 foreach Ni → Njα do Gcfg ← Gcfg ∪ {(Ni , Nj)}

8 SCC← Compute_SCC(Gcfg)

9 foreach scci ∈ SCC do
10 Gi ← ∅
11 foreach A ∈ scci do insert all rules of the form A→ α to Gi
12 G′i ← GrammarTransformationLeft(Gi)

13 G′i ← QuantifierIntroductionLeft(G′i)
14 G ← (G\G i) ∪G′i
15 return G
16 Function GrammarTransformationLeft(G):

Input: G : a context-free grammar in BNF notation.

Output: G : an equivalent grammar with direct left recursion

17 foreach nonterminal Ni ∈ G do
18 repeat
19 foreach rule Ni → Njαi ∈ G do
20 if j < i then
21 remove Ni → Njαi from G
22 foreach rule Nj → α j ∈ G do
23 add Ni → α jαi to G

24 until Grammar G remains unchanged.
25 return G
26 Function QuantifierIntroductionLeft(G):

Input: G : a context-free grammar in BNF notation.

Output: G : an equivalent grammar with quantifiers.

27 foreach nonterminal Ni ∈ G do
28 StarIntroductionLeft (G , Ni)
29 foreach Ni → α1α ′(α ′)∗α2 do
30 remove Ni → α1α ′(α ′)∗α2 from G
31 letU1, U2 be new auxiliary nonterminals

32 G ← G ∪ {Ni → α1U1α2, U1 → U +
2
, U2 → α ′ }

33 foreach pair of (Ni → αi , Ni → α j), where |αi | ≤ |α j | do
34 if α j = α1α ′α2 and αi = α1α2 then
35 remove Ni → αi and Ni → α j from G
36 letU3, U4 be new auxiliary nonterminals

37 G ← G ∪ {Ni → α1U3α2, U3 → U4?, U4 → α ′ }

38 return G
39 Function StarIntroductionLeft(G , N):

Input: G : a set of grammar productions

Input: N : a nonterminal

Output: G : a set of grammar productions with ∗-quantified rules

40 A← ∅ and B ← ∅
41 foreach rule N → α ∈ G do
42 if α = Nα1 then A← A ∪ {α1 }
43 else B ← B ∪ {α }
44 remove N → α from G
45 foreach bi ∈ B do
46 denote set A as {a1, a2, . . . , aj }
47 letU1, U2 be new auxiliary nonterminals

48 G ← G ∪ {N ← biU1, U1 → U ∗
2
, U2 → a1 | a2 | . . . | aj }

49 return G

grammar to PNF by introducing necessary auxiliary nontermi-

nals. Figure 4d gives the example grammar in PNF.

AlgorithmOverview. Algorithm 1 describes our PNF normaliza-

tion algorithm, where each Ni represents a nonterminal and each

αi represents a sequence of terminals and nonterminals.

Algorithm 2: The Main Algorithm — Reduce(P ,ψ)

Input: P : the program to be reduced.

Input:ψ : P→ B: the property to be preserved.

Output: A minimum program p ∈ P s.t.ψ (p)
1 best← ParseTree(P)
2 worklist← {RootNode(best)}
3 while |worklist | > 0 do
4 largest← GetAndRemoveLargestFrom(worklist)
5 if largest is Kleene-Star Node then
6 (best, pending) ← ReduceStar(best, ψ , largest)
7 else if largest is Kleene-Plus Node then
8 (best, pending) ← ReducePlus(best, ψ , largest)
9 else if largest is Optional Node then

10 (best, pending) ← ReduceStar(best, ψ , largest)
11 else if largest is Regular Rule Node then
12 (best, pending) ← ReduceRegular(best, ψ , largest)
13 else continue // Skip token nodes

14 worklist← worklist ∪ pending

15 return best

In particular, lines 1-4 describe the main normalization algorithm.

After preprocessing, many quantifiable nonterminals may still not

be transitively described using quantified rules. Our algorithm then

processes the grammar in two passes. The first pass handles the left

recursion rules, and the second pass handles the right recursion

rules. In principle, the two passes are almost identical. Therefore,

we only discuss the first pass.

On line 5, the function GrammarNormalizationLeft processes
all left recursion rules. We first build a directed graph Gcfg by con-

structing edges (Ni ,Nj) from a nonterminal Ni to the leftmost non-

terminal Nj according to its productions (lines 6-7). Then, we find

the strongly connected components (SCC) in Gcfg using Tarjan’s

algorithm (line 8). Each SCC corresponds to at least one recursive

rule. Therefore, the algorithm performs grammar transformation

and grammar normalization for each SCC (lines 12-13).

Grammar Transformation. The function on line 16 performs

grammar transformation. In particular, it transforms any indirect

recursion rule to an equivalent rule with left recursion. It utilizes

the assigned ordering (line 20), and iteratively replaces the lower

order nonterminals with its production rules (line 21-23). The pro-

cedure terminates when there is no indirect recursion rules w.r.t.
the ordering (line 24).

Grammar Normalization. The grammar normalization proce-

dure on line 26 introduces the quantifiers and outputs an equivalent

grammar in the PNF form. Specifically, it converts the recursive

rules into “∗”-quantified rules (line 39), “+”-quantified rules (line 29-

32), or “?”-quantified rules (line 33-37). Lines 32, 37 and 48 introduce

the quantified rules to the output grammar. Finally, all rules are in

the PNF according to Definition 3.1. The transformation procedure

fully exploits all dependencies among the nonterminals, and the

normalization procedure introduces the quantified rules w.r.t. the
definition. It is straightforward to see that Algorithm 1 preserves

the grammar equivalence.

4.2 Main Reduction Algorithm
Algorithm 2 lists the main procedure to reduce a program P w.r.t.ψ .
The output is a minimum variant derived from P that still passesψ .
Initially, P is converted into a parse tree best with the PNF grammar.

Then all the following reduction is performed on this parse tree.

Perses: Syntax-Guided Program Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

The overall reduction process is a prioritized traversal of best.
Algorithm 2 maintains a worklist of tree nodes pending reduction,

and each time pops out the node with the most tokens to reduce on

line 4. We treat quantified nodes and regular rule nodes differently.

For example, if the node largest is a Kleene-Star node, we reduce
it with the function ReduceStar on line 6 that returns a pair of

which the first is the reduced result and the second is the pending

nodes for future reduction. The other nodes are treated similarly

only with different functions. When reducing largest finishes, we
update the worklist by adding the pending nodes on line 14, and

proceed to the next largest node in worklist.

4.3 Reducing Quantified Nodes
For a Kleene-Star, Kleene-Plus or Optional node, we use ddmin to

delete its children, as each child is independent of the others in

terms of syntax validity, which fits in the assumption of DD well.

Reducing Kleene-Star and Optional Nodes. We treat Kleene-

Star and Optional nodes in the same way, as Optional nodes are a

special case of Kleene-Star. Algorithm 3 shows the general reduction

procedure. We use ddmin to perform Delta Debugging on all the

children of tree to remove the children that are irrelevant toψ . At
last, we return the minimized tree by removing irrelevant nodes

from tree and the remaining children of node as the result.

Algorithm 3: ReduceStar(tree,ψ , node)
Input: tree: the parse tree to be reduced.

Input:ψ : P→ B: the property to be preserved.

Input: node: the parse tree node to be reduced.

Output: (best, pending): best is the minimum tree by reducing tree, and
pending is a set of remaining descendants of node.

1 all← Children(node)
2 remaining← ddmin(all, ψ)
3 best← tree.CopyAndRemove(all \ remaining)
4 return (best, remaining)

Reducing Kleene-Plus Node. Reducing Kleene-Plus nodes is

similar to reducing Kleene-Star nodes, i.e., Algorithm 3. It also uses

ddmin as the underlying reduction algorithm. The main difference

is that when reducing the children of node, we need to maintain

one constraint induced by the semantics of Kleene-Plus — at least

one child of node is not deleted. For example, when we are about to

test a variant by deleting all the children of node, we need to keep

one child, e.g., the first child, in order to avoid syntax errors.

4.4 Reducing Regular Rule Nodes
Algorithm 4 shows how a regular rule node is reduced. The general

idea is to replace the tree node node that is being reduced with

one of its compatible descendants. The compatibility is determined

based on the subsume relation defined as follows.

Definition 4.1 (Subsume Relation). Given two symbols A and
B (terminals or non-terminals) in a grammar, B is subsumed by A
(denoted as B <: A) if one of the following conditions holds:
• A = B
• B can be derived from A

For example, ⟨stmt⟩ <: ⟨stmt⟩, and ⟨if_stmt⟩ <: ⟨stmt⟩. Intu-
itively, ⟨if_stmt⟩ <: ⟨stmt⟩means that any parse tree of ⟨if_stmt⟩

can be syntactically safe to be used in the context where a parse tree

of ⟨stmt⟩ is expected. We define three auxiliary functions related

to rule types for a node n.

Rule(n) returns the production rule that creates the node n. For ex-

ample, the rule of the node ‘4.if_stmt’ in Figure 1e is ⟨if_stmt⟩.
ExpectedRule(n) returns the expected production rule at the po-

sition of n in the context of its parent Parent(n). For example,

the expected production rule for node ‘4.if_stmt’ in Figure 1e

is ⟨stmt⟩, because its parent ‘3.stmt_star’ expects each of its

children to be ⟨stmt⟩.
QuantifiedRule(n) only applies to Kleene nodes (n is either Kleene-

Star or Kleene-Plus). It returns the quantified production rule of

n. For example, QuantifiedRule returns ⟨stmt⟩ for the node
‘3.stmt_star’, because it expects a list of ⟨stmt⟩ children.

With the subsume relation and auxiliary functions, we can iden-

tify two types of compatible descendants to replace node.

Regular Nodes (lines 2-5) A regular descendant node n of node
is a replacement candidate if its production rule Rule(n) is sub-
sumed by that of node, i.e., Rule(n) <: ExpectedRule(node).
Take Figure 1e as an example. Assume that we are reducing

‘4.if_stmt’. Its expected rule type is ⟨stmt⟩ as aforementioned.

Then its descendant ‘5.compound_stmt’ is a compatible node,

as the rule type of this descendant is ⟨compound_stmt⟩ which
is a kind of statements.

Kleene Node (lines 6-10) If the parent of node is either Kleene-
Star or Kleene-Plus, then a descendant n is compatible if n is

also a Kleene node and its quantified rule type is subsumed

by the expected rule of node, namely QuantifiedRule(n) <:
ExpectedRule(node).
For example, in Figure 1e, the node ‘6.stmt_star’ can replace

‘4.if_stmt’, because the parent ‘3.stmt_star’ of ‘4.if_stmt’
quantifies a list of ⟨stmt⟩ nodes, and using ‘6.stmt_star’ to
replace ‘4.if_stmt’ still maintains the syntactical invariant,

that is, ‘3.stmt_star’ still quantifies a list of ⟨stmt⟩ nodes,
though the newly added node ‘6.stmt_star’ introduces a layer
of indirection.

Note that the number of compatible nodes for node can be enor-

mous. In order to limit the search space, we require the path L
between node (exclusive) and its compatible node n (inclusive) sat-

isfy the following two constraints: (1) The number of nodes in L
is bounded; (2) There is no other compatible node on L before n.
In other words, n is the first compatible node on L. The function
BoundedBFS on line 18 implements these two constraints. In this

work, we use 4 as the maximum length of L, i.e., line 4 and line 9.

4.5 Fixpoint Reduction Mode
A single run of the reduction function Reduce does not guarantee

that the reduced program is 1-tree-minimal (cf. Section 3.1), because
the deletion of one node may enable the deletion of another node.

For example, assume two functions foo andmain; foo has more

tokens than main; main calls foo; main has the property of interest,
and foo is irrelevant to this property. When Reduce is reducing

this program, it first reduces foo. However foo is referenced by

main, so it cannot be completely deleted. Later, when main is being

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su

Algorithm 4: ReduceRegular(tree,ψ , node)
Input: tree: the parse tree to be reduced.

Input:ψ : P→ B: the property to be preserved.

Input: node: the parse tree node to be reduced.

Output: (best, pending): best is the minimum tree by reducing tree, and
pending is a set of remaining descendants of node.

1 candidates← ∅
2 begin searching for replacement candidates

3 subsume_pred← λn .Rule(n) <: ExpectedRule(node)
4 replacement_candidates← BoundedBFS(node, subsume_pred, 4)
5 candidates← candidates ∪ replacement_candidates

6 if IsKleene(Parent(node)) then
7 kleene_pred← λn .IsKleene(n)
8 ∧QuantifiedRule(n) <: ExpectedRule(node)
9 quantified_candidates← BoundedBFS(node, kleene_pred, 4)

10 candidates← candidates ∪ quantified_candidates

11 best← node
12 foreach c ∈ candidates do
13 t ← tree.CopyAndReplace(node, c)
14 if ψ (t) ∧ |t | < |tree.CopyAndReplace(node, best) | then
15 best← {c }

16 if best = node then return (tree, Children(node))
17 else return (tree.CopyAndReplace(node, best), best)

18 Function BoundedBFS(node, pred, max_depth):
Input: node: the starting node of breadth-first search
Input: pred : TreeNodes→ B: predicate to match tree nodes.

Input: max_depth: depth bound.

Output: result: the matched tree nodes.

19 Queue queue← Children(node)
20 result← ∅
21 while |queue | > 0 ∧max_depth > 0 do
22 max_depth← max_depth − 1
23 queue_size← |queue |
24 for i ← 0 to queue_size do
25 n ← Dequeue(queue)
26 if pred (n) then
27 result← result ∪ {n }
28 continue;

29 if max_depth > 0 then
30 foreach c ∈ Children(n) do Enqueue(queue, c)

31 return result

reduced, the call to foo is deleted. Then foo can be removed. But

it has been visited so Reduce will not delete it in the current run.

Therefore, similar to HDD* [16], we propose a fixpoint reduction

mode, in which Reduce is repeatedly applied to the reduced result

until no more tree nodes can be removed from the result. And the

final result will be 1-tree-minimal.

5 EVALUATION
We evaluate Perses with 20 large C programs that trigger bugs in

GCC and Clang, and compare it with DD, HDD, and C-Reduce. On

average, Perses outperforms the other reducers nearly in every

aspect, e.g., reduced file size (55-98% smaller except C-Reduce), num-

ber of property tests (47-93% fewer), reduction time (34-77% shorter

exception MultiDelta), and reduction speed (1.1-2.6x speedup), .

To demonstrate the generality of Perses, we instantiate Perses
with an ANTLR Java grammar. The evaluation on six benchmarks

confirms again that Perses outperforms HDD in various metrics.

All experiments are conducted on a Ubuntu machine with an Intel

Core i7-4770 CPU and 16 GB memory.

5.1 Evaluation on C Programs
Benchmark Collection. The benchmark C programs are col-

lected from the official bug repositories of two mainstream C com-

pilers (GCC and Clang). We have randomly selected 20 recent bug

reports and requested the unreduced testcase from the original

reporter. The selected bug reports include both crash and miscom-

pilation bugs. Moreover, all selected bug reports are reproducible

w.r.t. at least one stable release of the two compilers.

Tools for Comparison. We run Perses and PersesF (Perses
in fixpointmode) in comparisonwith the following tools:Delta [15]
(a line-based Delta Debugging tool), DeltaF (Delta in fixpoint

mode), MultiDelta [15] (A variant of Delta that is aware of blocks

in programs), C-Reduce [17], HDD [16] and HDDF
(HDD in fix-

point mode).

5.1.1 Reduction Quality. Table 1 shows the reduction quality

results. It also gives the original token count of a test program and

that of the minimized program by a reducer. In general, Perses
produces much smaller results than the other reducers except C-

Reduce (55-98% smaller). The row size in Table 3 shows the av-

erage improvement of Perses and PersesF over other reducers.

For example, the size of the result by PersesF is only 2% of that of

Delta, and 45% of HDD
F
. Compared to C-Reduce, Perses produces

167 tokens more than C-Reduce on average. However, this is ex-

pected, because C-Reduce is a C/C++ language specialized reducer

which performs aggressive semantic program transformations.

5.1.2 Reduction Efficiency. Efficiency is another key criterion

to evaluate a reducer. Table 2 and a part of Table 1 shows the details

of efficiency-wise data.
4
This section further quantifies efficiency

in the following three different metrics.

Number of Property Tests. This is the metric used in [16]. If the

property test runs in constant time, then this metric can reliably

reflect the runtime complexity of reducers. Table 1 lists this metric.

PersesF runs property tests 5095 times on average, which is 2.26x
fewer than MultiDelta, 15.4x fewer than Delta

F
, 5.37x fewer than

C-Reduce and 3.31x fewer than HDD
F
. The row #tests in Table 3

lists the detailed improvement.

Reduction Time. This measures how long a reducer takes to

terminate. It depends on the number of property tests and the time

of each property test. The row time in Table 3 shows the time ratio

between Perses and the other reducers. ExceptMultiDelta, Perses
constantly takes shorter time to terminate (34-77% shorter). As far

as MultiDelta, though taking similar time as MultiDelta. Perses
produces much smaller results than MultiDelta.

Reduction Speed. Reduction speed is the number of tokens that

a reducer can delete per second. The row speed in Table 3 lists

the speed ratio between Perses and the other tools. Both Perses
and PersesF run faster than the others. Especially Perses is the

fastest (1.5-3.6x faster than the rest).

4
In Table 1 Delta and Delta

F
performs only two property tests, and in Table 2 they

spend zero seconds on this benchmark. This is because all the tokens of the original

test program are placed in a single line, and the line-oriented strategy of Delta just

treats the program as a single line, which demonstrates the limitation of DD.

Perses: Syntax-Guided Program Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Size information of original and reduced programs, and number of property tests.

Bug O (#)
Delta MultiDelta Delta

F
C-Reduce HDD HDD

F Perses PersesF

R (#) Q (#) R (#) Q (#) R (#) Q (#) R (#) Q (#) R (#) Q (#) R (#) Q (#) R (#) Q (#) R (#) Q (#)

clang-22382 21,068 4,426 4,741 3,086 8,061 3,011 12,259 79 19,569 1,554 7,681 221 9,362 1,479 2,517 152 3,601

clang-22704 184,444 5,318 12,847 3,099 11,524 2,732 22,499 58 19,339 1,312 6,562 105 7,783 1,208 2,374 106 3,163

clang-23309 38,647 5,097 7,620 5,861 10,355 3,641 17,758 132 32,875 2,418 11,370 1,197 25,097 2,030 3,115 456 7,394

clang-23353 30,196 3,681 5,310 2,365 6,846 1,493 11,164 67 17,400 1,535 7,977 143 9,711 1,317 2,636 117 3,565

clang-25900 78,960 4,948 14,023 2,514 6,718 2,052 22,952 105 21,448 1,686 7,774 496 15,391 1,387 2,325 265 5,145

clang-26760 209,577 10,992 58,786 9,227 13,842 6,427 67,623 47 19,868 1,386 7,102 424 11,583 1,299 2,198 124 3,489

clang-27137 174,538 18,008 29,861 10,224 21,919 5,914 54,991 52 31,036 4,772 22,561 664 36,554 4,287 5,937 276 8,466

clang-27747 173,840 7,519 19,443 1,633 4,941 919 30,016 116 20,852 775 3,919 312 8,474 863 1,549 121 2,662

clang-31259 48,799 3,753 8,410 3,225 9,791 2,339 14,743 132 28,445 1,863 8,648 697 13,712 1,340 2,357 328 4,726

gcc-59903 57,581 6,592 8,242 7,152 12,276 5,699 19,759 103 54,443 2,086 9,551 754 17,575 2,228 3,241 206 6,509

gcc-60116 75,224 45,160 50,314 8,110 11,739 20,884 574,790 127 40,698 2,979 13,594 1,543 30,523 2,459 3,604 379 7,254

gcc-61383 32,449 14,728 24,857 5,322 8,860 2,817 139,024 92 37,402 2,117 10,354 586 19,969 1,855 2,859 293 6,671

gcc-61917 85,359 35,428 55,073 5,072 10,801 4,788 409,674 63 31,251 1,678 7,940 358 11,688 1,751 2,786 144 4,298

gcc-64990 148,931 5,504 14,056 9,787 25,203 3,317 26,118 82 23,535 1,924 9,195 519 14,972 1,854 3,179 478 6,112

gcc-65383 43,942 5,486 7,712 4,086 9,686 3,724 14,354 83 24,537 1,733 8,235 308 11,926 1,353 2,327 185 3,769

gcc-66186 47,481 5,701 8,575 3,949 11,228 3,680 21,287 133 30,932 1,898 8,928 620 15,933 1,656 2,542 330 5,629

gcc-66375 65,488 5,599 10,071 2,921 9,299 2,948 23,442 60 29,041 2,153 10,040 860 19,890 1,635 2,688 427 5,624

gcc-70127 154,816 7,783 20,412 6,154 14,714 2,671 38,771 84 27,268 2,505 11,895 658 19,324 1,534 2,779 317 5,024

gcc-70586 212,259 12,225 28,960 11,019 19,247 6,272 44,879 145 29,520 3,257 15,247 988 34,330 2,469 3,696 393 7,479

gcc-71626 6,133 6,133 2 235 4,078 6,133 2 46 7,730 538 3,504 53 3,931 596 1,193 53 1,335

mean 94,486 10,704 19,465 5,252 11,556 4,573 78,305 90 27,359 2,008 9,603 575 16,886 1,730 2,795 257 5,095

median 70,356 5,917 13,435 4,579 10,578 3,479 23,197 83 27,856 1,880 8,788 552 15,181 1,584 2,662 270 5,084

Columns O , R , Q list the number of original tokens, the number of tokens after reduction, and the number of queries, respectively.

Table 2: Reduction time and reduction speed.

Bug

Delta MultiDelta Delta
F

C-Reduce HDD HDD
F Perses PersesF

T (s) E (#/s) T (s) E (#/s) T (s) E (#/s) T (s) E (#/s) T (s) E (#/s) T (s) E (#/s) T (s) E (#/s) T (s) E (#/s)

clang-22382 471 35 462 39 710 25 904 23 532 37 588 35 378 52 442 47

clang-22704 2,556 70 1,991 91 2,915 62 2,182 85 2,816 65 2,873 64 1,143 160 1,205 153

clang-23309 1,375 24 1,096 30 1,751 20 5,586 7 1,998 18 3,733 10 831 44 1,394 27

clang-23353 644 41 570 49 804 36 1,010 30 1,046 27 1,112 27 476 61 543 55

clang-25900 2,707 27 726 105 3,111 25 1,575 50 890 87 1,253 63 522 149 776 101

clang-26760 14,248 14 2,613 77 13,700 15 2,868 73 2,459 85 2,665 78 1,200 174 1,365 153

clang-27137 16,382 10 6,706 25 18,501 9 7,787 22 16,122 11 18,430 9 7,150 24 8,296 21

clang-27747 7,107 23 635 271 7,640 23 1,456 119 638 271 912 190 601 288 797 218

clang-31259 1,446 31 1,149 40 1,674 28 2,887 17 2,078 23 3,504 14 748 63 2,155 22

gcc-59903 2,813 18 2,918 17 3,851 13 4,632 12 1,980 28 2,352 24 1,116 50 1,448 40

gcc-60116 8,955 3 1,330 50 57,722 1 4,888 15 2,704 27 4,441 17 1,409 52 2,475 30

gcc-61383 2,631 7 1,001 27 7,964 4 3,799 9 1,709 18 3,237 10 805 38 1,959 16

gcc-61917 10,732 5 1,576 51 33,502 2 2,847 30 1,565 53 1,685 50 1,043 80 1,154 74

gcc-64990 5,875 24 4,446 31 6,402 23 3,292 45 4,572 32 4,931 30 1,901 77 2,914 51

gcc-65383 904 43 703 57 1,162 35 2,295 19 1,069 39 1,365 32 474 90 660 66

gcc-66186 1,363 31 2,082 21 1,777 25 5,317 9 2,368 19 4,189 11 1,228 37 3,220 15

gcc-66375 3,553 17 2,686 23 4,407 14 8,442 8 4,325 15 8,998 7 1,297 49 3,136 21

gcc-70127 9,044 16 3,265 46 9,822 15 6,191 25 8,495 18 14,101 11 1,827 84 3,580 43

gcc-70586 16,733 12 5,955 34 16,791 12 5,312 40 9,416 22 12,612 17 3,398 62 6,376 33

gcc-71626 0 — 133 44 0 — 232 26 163 34 174 35 68 81 74 82

mean 5,477 24 2,102 56 9,710 20 3,675 33 3,347 46 4,658 37 1,381 86 2,198 63

median 2,760 23 1,453 42 4,129 20 3,090 24 2,038 28 3,055 26 1,080 63 1,421 45

Columns T , E list the time of reduction, and the efficiency in tokens per second, respectively.

Table 3: Ratio of variousmetrics between Perses and others.

Delta MultiDelta Delta
F

C-Reduce HDD HDD
F

size

Perses 16% 33% 38% 1,922% 86% 300%

PersesF 2% 5% 6% 285% 13% 45%

#tests

Perses 14% 24% 4% 10% 29% 17%

PersesF 26% 44% 7% 19% 53% 30%

time

Perses 25% 66% 14% 38% 41% 30%

PersesF 40% 105% 23% 60% 66% 47%

speed

Perses 3.6x 1.5x 4.3x 2.6x 1.9x 2.3x

PersesF 2.6x 1.1x 3.2x 1.9x 1.4x 1.7x

5.2 Evaluation on Java Programs
We demonstrate the generality of Perses by instantiating it with

an ANTLR Java grammar to reduce Java programs. To the best of

our knowledge, Perses is by far the most effective program reducer

for Java, as there is no C-Reduce-like tool for Java.

We manually checked the official bug repositories of OpenJDK

and Eclipse Compiler for Java (ECJ), and collected 5 bugs that can be

reproduced and have unreduced input programs attached in the bug

reports. Table 4 shows the reduction results. Perses outperforms

HDD. In general, Perses is 2.07x faster, produces 1.13x smaller

results, and reduces 3.99x fewer queries than HDD.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su

Table 4: Results of Java benchmarks.

Bug O (#)
HDD

F
Perses

F

R (#) Q (#) T (s) R (#) Q (#) T (s)

ecj-352665 1,142 180 2,921 364 157 834 166

ecj-361938 438 16 114 10 16 29 9

ecj-404146 348 170 1,787 147 155 403 78

jdk-8068399 447 81 998 127 69 207 60

jdk-8145466 462 53 368 42 44 77 20

Total 2,837 500 6,188 690 441 1,550 333

Columns O , R , Q and T list the number of original tokens, the number

of tokens after reduction, the number of queries, and the reduction time,

respectively.

6 DISCUSSION
Generality to Programming Languages. Perses is a general

reduction framework, and it makes no assumption about specific

programming languages. It takes as input language grammars, and

thus is able to exploit any language-specific syntactical properties

(e.g., which nodes can be replaced with other nodes, or deleted) of

the programs under reduction. All transformations presented in

Section 4 are based on the PNF. Any context-free grammar could

be converted to PNF. Therefore, Perses is applicable to any pro-

gramming language. This is why we can easily, effectively support

reducing Java programs in addition to C as presented in Section 5.2,

which requires little effort on integrating the Java grammar.

Generality to Other Test Inputs. Although we only focus on

program reduction in this paper, Perses is capable of reducing

other structured test inputs (e.g., XML and HTML documents).

Perses is expected to perform at least as well as HDD. We focus

on program reduction since programs have much more complex

constraints (in terms of both quantity and complexity) over their

syntactical structures than either XML or HTML. These complex

constraints significantly increase the difficulty of reduction and

increase the search space of invalid variants Pinvalid as well.

Extensibility. The transformations described in Section 4 are

the first attempt to instantiate the Perses reduction framework.

More transformations can be designed. Perses currently supports

reducing production rules either by deletion (cf., Section 4.3) or

replacement (cf., Section 4.4). We can define new transformations

to increase Pvalid. for example, replacing long string literals with

an empty string, converting an expression by appending ‘;’ to
an expression statement to replace an existing large statement.

Before Perses, due to the omission of the information in grammar

definitions, it is impossible to design such an extensible reduction

tool in a general way . Perses makes this feasible.

7 RELATEDWORK
The most related work to Perses is Hierarchical Delta Debug-

ging [16] that exploits the tree structure of the test inputs. Hodován

et al. proposed an approach to speed up HDD in [5]. Delta De-

bugging [24] is the seminal work on testcase reduction. However,

neither of them address the syntactical validity for program re-

duction. As a result, they waste a considerable amount of time in

exploring the invalid search space Pinvalid. Many delta-debugging-

based frameworks leverage the underlying language feature to

achieve almost optimal program reduction for a specific language.

For instance, JS Delta [8] relies on the WALA static analysis infras-

tructure [6] to reduce JavaScript programs. C-Reduce [17] employs

a set of heuristics for efficient program reduction based on the

C/C++ semantics obtained from Clang. Our evaluation shows that

in terms of the reduction throughput (i.e., the number of tokens

deleted per second), Perses is 1.67× faster than C-Reduce.

For reducing C programs, it is possible to combine both Perses
and C-Reduce. Specifically, we could run Perses to quickly remove

irrelevant program elements, and then use C-Reduce to obtain the

almost optimal reduction result. Le et al. introduce a meta-reducer

by combining Berkeley Delta [15] and C-Reduce in their EMI test-

ing project [9–11, 20]. Perses can improve the performance of the

meta-reducer by replacing Berkeley Delta. Recently, Herfert et al.
propose a Generalized Tree Reduction (GTR) algorithm which com-

bines a generic set of transformations for a particular language by

learning from a corpus of example data [18]. Perses is a general

framework and does not require any prior knowledge on the in-

put data. Perses could also be used for reducing other structured

testcases such as minimizing structured text formats for security

testing [12, 19]. Binkley et al. propose an Observational Program

Slicing (OPS) technique to reduce a program based on the results

of property checks [3, 23]. To reduce a program, the OPS technique

uses line deletion whereas Perses manipulates trees. Perses is more

general and supports arbitrary program properties.

8 CONCLUSION
In this paper, we propose a novel, effective program reduction

framework Perses. Same as HDD, it is general to any programming

languages and performs reduction on the parse trees of programs.

But differently, it is aware of the syntactical constraints between

nodes, and thus guarantees no generation of syntactically invalid

programs during reduction and enables more effective program

transformations. It significantly outperforms DD, HDD and even

C-Reduce—a specialized reducer for C/C++ programs—in terms of

size of reduced programs and efficiency of reduction.

In order to further demonstrate the generality of Perses, we
instantiate with an Antlr grammar for Java. The evaluation on six

bugs in Java compilers shows that Perses runs much faster than

HDD and produced much smaller results, which is consistent with

the evaluation on C programs.

We believe that Perses’s integration of syntactical knowledge

opens a new way towards general, effective, and efficient program

reduction. Consequently, in the future more program transforma-

tions can be easily designed and implemented within Perses, either
general or specific to a certain programming language.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

This research was supported in part by the United States National

Science Foundation (NSF) Grants 1319187, 1528133, and 1618158,

and by a Google Faculty Research Award. The information pre-

sented here does not necessarily reflect the position or the policy

of the Government and no official endorsement should be inferred.

REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison-Wesley.

Perses: Syntax-Guided Program Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[2] ANTLR. 2017. The ANTLR Parser Generator. (2017). http://www.antlr.org/,

accessed: 2017-08-05.

[3] David Binkley, Nicolas Gold, Mark Harman, Syed S. Islam, Jens Krinke, and

Shin Yoo. 2014. ORBS: language-independent program slicing. In Proceedings
of the 2014 ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 109–120.

[4] GCC. 2017. A Guide to Testcase Reduction. (2017). https://gcc.gnu.org/wiki/A_

guide_to_testcase_reduction, accessed: 2017-08-05.

[5] Renáta Hodován, Akos Kiss, and Tibor Gyimóthy. 2017. Coarse Hierarchical

Delta Debugging. In Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on. IEEE, 194–203.

[6] IBM. 2017. The T.J. Watson Libraries for Analysis. (2017). http://wala.sourceforge.

net/, accessed: 2017-08-05.

[7] JavaCC. 2017. The Java Parser Generator. (2017). https://javacc.org/, accessed:

2017-08-05.

[8] JS Delta. 2017. JS Delta. (2017). https://github.com/wala/jsdelta, accessed:

2017-08-05.

[9] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-

alence Modulo Inputs. In Proceedings of the 2014 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[10] Vu Le, Chengnian Sun, and Zhendong Su. 2014. Randomized Stress-Testing of

Link-Time Optimizers. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA).

[11] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via

Guided Stochastic Program Mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). ACM, New York, NY, USA, 386–399.

[12] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:

large-scale detection of DOM-based XSS. In CCS. 1193–1204.
[13] LLVM. 2017. How to submit an LLVM bug report. (2017). https://llvm.org/docs/

HowToSubmitABug.html, accessed: 2017-08-05.

[14] LLVM/Clang. [n. d.]. Clang documentation – LibTooling. ([n. d.]). https:

//clang.llvm.org/docs/LibTooling.html, accessed: 2017-08-06.

[15] Scott McPeak, Daniel S. Wilkerson, and Simon Goldsmith. [n. d.]. Berkeley Delta.

([n. d.]). http://delta.tigris.org/, accessed: 2017-08-20.

[16] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.

In Proceedings of the 28th International Conference on Software Engineering (ICSE
’06). ACM, New York, NY, USA, 142–151. https://doi.org/10.1145/1134285.1134307

[17] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 2012
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 335–346.

[18] Jibesh Patra Satia Herfert and Michael Pradel. 2017. Automatically Reducing

Tree-Structured Test Inputs. In ASE. To appear.

[19] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:

Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Ap-

plications. In NDSS.
[20] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live

code mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016. 849–863.

[21] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward Under-

standing Compiler Bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). 294–305.

[22] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-

standing bugs in C compilers. In Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 283–294.

[23] Shin Yoo, David Binkley, and Roger D. Eastman. 2014. Seeing Is Slicing: Observa-

tion Based Slicing of Picture Description Languages. In Proceedings of the 2014
IEEE International Working Conference on Source Code Analysis and Manipulation.
175–184.

[24] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.

org/10.1109/32.988498

[25] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-

meration for rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 347–361.

http://www.antlr.org/
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://javacc.org/
https://github.com/wala/jsdelta
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
http://delta.tigris.org/
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 A Motivating Example
	3 Preliminaries
	3.1 Program Reduction
	3.2 Delta Debugging Algorithm
	3.3 Input Grammar Forms

	4 Approach
	4.1 PNF Normalization
	4.2 Main Reduction Algorithm
	4.3 Reducing Quantified Nodes
	4.4 Reducing Regular Rule Nodes
	4.5 Fixpoint Reduction Mode

	5 Evaluation
	5.1 Evaluation on C Programs
	5.2 Evaluation on Java Programs

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

