
Practical GUI Testing of Android Applications via
Model Abstraction and Refinement

1Tianxiao Gu 1Chengnian Sun 2Xiaoxing Ma 2Chun Cao
2Chang Xu 2Yuan Yao 3Qirun Zhang 2Jian Lu 1,4Zhendong Su

1University of California, Davis, USA 3Georgia Institute of Technology, USA 4ETH Zurich, Switzerland
2State Key Laboratory for Novel Software Technology, Nanjing University, China

{txgu,cnsun}@ucdavis.edu, {xxm,caochun,changxu,y.yao,lj}@nju.edu.cn, qrzhang@gatech.edu, zhendong.su@inf.ethz.ch

Abstract—This paper introduces a new, fully automated model-
based approach for effective testing of Android apps. Different
from existing model-based approaches that guide testing with a
static GUI model (i.e., the model does not evolve its abstraction
during testing, and is thus often imprecise), our approach dynam-
ically optimizes the model by leveraging the runtime information
during testing. This capability of model evolution significantly
improves model precision, and thus dramatically enhances the
testing effectiveness compared to existing approaches, which our
evaluation confirms. We have realized our technique in a practical
tool, APE. On 15 large, widely-used apps from the Google Play
Store, APE outperforms the state-of-the-art Android GUI testing
tools in terms of both testing coverage and the number of detected
unique crashes. To further demonstrate APE’s effectiveness and
usability, we conduct another evaluation of APE on 1,316 popular
apps, where it found 537 unique crashes. Out of the 38 reported
crashes, 13 have been fixed and 5 have been confirmed.

Index Terms—GUI testing; mobile app testing; CEGAR;

I. INTRODUCTION

Mobile application (app) testing heavily involves human
effort [1]. For example, a human tester writes code to simulate
GUI actions (e.g., clicking a button) to drive the execution of
Android apps [2]. This process is not only time-consuming
but also error-prone. Moreover, when the GUI changes, the
tester has to make nontrivial modifications to their existing
test scripts [1]. To mitigate these problems, many automated
GUI testing techniques have recently been proposed [3], [4].
Automated GUI Testing for Android Apps. Monkey [5],
a GUI fuzzing tool developed by Google, generates purely
random events [6] as test input without any guidance. Thus,
it does not guarantee steering test exploration to uniformly
traverse the GUIs (i.e., low activity coverage [7]), and
cannot incorporate user-defined rules such as inputting a
password [7] or prohibiting logging out. Additionally, the
generated events are low-level, with hard-coded coordinates,
and usually excessively long, which complicates reproduction
and debugging [3], [8]. To overcome Monkey’s limitations,
techniques such as evolutionary algorithms [9] and symbolic
execution [10] have been adapted to guide input generation.
However, such approaches are computationally expensive and
do not yet scale in practice [11].

An alternative approach for performing Android GUI testing
is model-based [4], [12], [13]. A model is usually a finite state
machine, where each state has a set of model actions, and

each transition between states is labeled with a model action
of the source state. In practice, almost no app comes with
a model. Existing testing tools thus build a GUI-based model
by abstracting/mapping GUI actions to model actions and GUI
views to states, respectively.

A model offers at least three types of benefits to GUI testing.
First, a model can be used to guide the exploitation of an app.
A testing tool can traverse the model using specific guidance
to systematically generate action sequences and then replay the
action sequences to test the app [4]. Second, a model-based
testing tool generates input sequences composed of high-level
model actions rather than low-level events, which can facilitate
replaying [14]. Third, a proper abstraction can be applied to the
model, which in turn can help mitigate the explosion of GUI
actions. Through abstraction, many GUI actions with the same
behavior can be mapped to the same model action. Since these
GUI actions behave the same, the testing tool does not need to
exercise each of them and can instead select a representative
GUI action among them when executing the model action.
State Abstraction. Mapping each GUI action to a model
action is the most critical step in state abstraction. A state
is usually identified by the set of its model actions since
states with the same set of model actions can be merged [15].
All existing model-based approaches apply a static abstraction
based on certain heuristics throughout the testing of an app.
Designing a proper abstraction is challenging. First, if the
model is overly fine-grained, the testing tool cannot systemat-
ically explore the model due to state explosion. Second, if
the model is overly coarse-grained, the testing tool cannot
gather sufficiently accurate knowledge on model actions to
realize effective guidance (i.e., difficult to replay model action
sequences on the tested app). In particular, an ineffective
abstraction may map multiple GUI actions with different
behaviors (e.g., leading to different target states) to the same
model action. Therefore, a model action cannot be replayed
as expected if the testing tool chooses a GUI action behaving
differently from the one chosen during model construction.
Accordingly, all subsequent actions in the sequence depending
on the model action can neither be successfully replayed.
Our Approach. This paper proposes APE, a new, practical
model-based automated GUI testing technique for Android
apps via effective dynamic model abstraction. At the be-
ginning, a default abstraction is used to initiate the testing

process. This initial abstraction may be ineffective. Based
on the runtime information observed during testing, APE
gradually refines the model by searching for a more suitable
abstraction, an abstraction that effectively balances the size
and precision of the model. This dynamic nature distinguishes
our approach from all existing state-of-the-art techniques as
they rely solely on static abstractions. Instead of operating on a
fixed abstraction granularity, our approach dynamically adjusts
the granularity as needed. Specifically, APE represents the dy-
namic abstraction with a decision tree, and tunes it on-the-fly
with the feedback obtained during testing. This decision tree-
based representation of model abstractions greatly improves
testing effectiveness, as demonstrated in our comprehensive
evaluation (Section IV).

We compared APE with the state-of-art testing tools (i.e.,
Monkey [5], SAPIENZ [3], and STOAT [4]) on 15 large,
widely-used apps from the Google Play Store. APE comple-
ments the state-of-art-tools (see Section IV-C). APE achieved
higher code coverage and detected more unique crashes (i.e.,
unique stack traces defined in Section IV-C) than the other
tools on the 15 benchmark apps. Specifically, APE consistently
resulted in 26–78%, 17–22% and 14–26% relative improve-
ments over the three tools in terms of average activity cover-
age, method coverage, and instruction coverage, respectively.
Though these apps have been well tested, within one hour
APE managed to find 62 unique crashes by testing their GUIs,
whereas Monkey found 44, SAPIENZ 40, and STOAT 31. To
further demonstrate the usability and effectiveness of APE, we
conducted another large-scale evaluation on 1,316 apps from
the Google Play Store. APE found 537 crashes from 281 apps
in total. We reported 38 crashes to developers with detailed
steps to reliably reproduce these crashes, where 13 crashes
have already been fixed and 5 crashes have been confirmed
(fixes pending).
Contributions. This paper makes the following contributions:
• We propose a novel, fully automated, model-based tech-

nique for Android GUI testing. The major difference
of our approach from existing techniques is the ability
to dynamically evolve GUI models toward ones that
discard all irrelevant GUI details while faithfully reflect
the runtime states of the app under test.

• We realize dynamic model abstraction via a novel type of
decision trees, which can expressively represent a wide
range of abstractions and thus enables APE to effectively,
dynamically refine and coarsen abstractions to balance
model precision and size.

• Our extensive evaluation demonstrates that APE out-
performs the state-of-the-art tools. It can automatically
explore many more GUIs (i.e., activities) than the other
tools. Therefore, according to our evaluation results, it
not only increased code coverage but also found more
unique crashes.

• We implement the proposed technique into a practical
tool, APE, and make it publicly available.1

1http://gutianxiao.com/ape

Paper Organization. The remainder of this paper is orga-
nized as follows. Section II introduces necessary background.
Section III presents the approach. Section IV details our
extensive evaluation. Section V surveys related work, and
Section VI concludes.

II. BACKGROUND

This section introduces relevant background on model-based
Android GUI testing and its challenges.

A. GUI of Android Apps

In an Android app, an activity [16] is a composition of
widgets. These widgets are organized into a tree-like structure,
named GUI tree in this paper [4], [12], [17]. A widget can be
a button, a text box, or a container with a layout. It supports
various GUI actions such as clicking and swiping. A widget
has four categories of attributes describing its type (e.g., class),
appearance (e.g., text), functionalities (e.g., clickable and
scrollable), and the designated order among sibling widgets
(i.e., index). Each attribute is a key-value pair. We use i, c,
and t to denote the key of an index, class, and text attribute,
respectively. For example, an index attribute whose value is 0
can be denoted by i = 0.

(a) (b)

. . .

. . .

0,ListView,

0,TextView,XLSX

1,TextView,PPTX

2,TextView,DOCX

. . .

Ti

wi
0

wi
1

wi
2

wi
3

(c)

. . .

. . .

0,ListView,

0,TextView,DOCX

1,TextView,XLSX

2,TextView,PPTX

. . .

Tj

w
j
0

w
j
1

w
j
2

w
j
3

(d)

Fig. 1: Figs. 1a and 1b are two GUI snapshots of Google
Drive. Figs. 1c and 1d are their corresponding GUI trees.

A GUI tree T is a rooted, ordered tree where each node
w is a GUI widget that has a set of attributes, denoted by
attributes(w). The Android SDK has provided a tool [18]
to obtain the GUI tree of an activity. Figs. 1c and 1d show

http://gutianxiao.com/ape

the corresponding (simplified) GUI trees for Figs. 1a and 1b,
respectively. Since only bold parts are of interest in this
paper, we assumed that Ti and Tj are rooted at wi0 and wj0,
respectively.

B. Attribute Path
A testing tool needs to properly identify widgets to accu-

mulate testing knowledge on them. The memory address of
the runtime object representing the widget cannot be used to
identify the widget because the same GUI may be created
and disposed many times. In a GUI tree T , given a widget
wn, a node path ω = 〈w1, w2, · · · , wn〉 is a sequence of tree
nodes (i.e., widgets) that are on the traversal path from one
of its ancestors w1 to wn. This node path is referred to as
an absolute node path if the first node w1 is the root of the
tree, and otherwise a relative node path, which is similar to
the concept of absolute and relative file paths in file systems.
An absolute node path uniquely identifies a widget in the tree.
For example, wi1’s unique node path in Fig. 1c is 〈wi0, wi1〉.

Definition 1 (Attribute Path): Given a widget wn and one
of its node paths ω = 〈w1, w2, · · · , wn〉, an attribute path
π = 〈a1, a2, · · · , an〉 is a projection of ω, such that,

∀ni=1ai ⊆ attributes(wi).

That is, each ai is a subset of the attributes of the correspond-
ing widget wi.

Definition 2 (Full Attribute Path): An attribute path π =
〈a1, a2, · · · , an〉 is a full attribute path if
• its ω = 〈w1, w2, · · · , wn〉 is an absolute node path, and
• ∀ni=1ai = attributes(wi).

To distinguish from an arbitrary attribute path, we use σ
to denote a full attribute path. In this paper, a widget can
be uniquely identified (in the tree) by its full attribute path,
because the order of the widgets on the full attribute path
resembles the hierarchy of widgets in the tree, and the index
attribute of each widget determines the unique location of
the widget among its siblings. Therefore, a GUI tree T can
essentially be represented with, and is equivalent to, the set
of full attribute paths of all its widgets. Table I shows the full
attribute path for each widget in Fig. 1.

Definition 3 (Attribute Path Reduction): An attribute path
reducer is a function R that takes as input an attribute path
π = 〈a1, a2, · · · , an〉, and returns a new attribute path π′ =
〈bm, · · · , bn〉, such that,

1 ≤ m ≤ n ∧ ∀ni=mbi ⊆ ai.
In other words, π′ is a suffix of π, and each element of π′ is
a subset of the corresponding element of π.
Widget Assumption. A GUI action is identified by its widget
σ and action type τ , i.e., 〈σ, τ〉. For a simpler presentation, we
assume that every widget supports only one GUI action and
omit action types and functionality attributes throughout the
paper. The relation between widgets and GUI actions becomes
bijective, and we use them (i.e., σ and 〈σ, τ〉) interchangeably.
Note that this assumption is for illustration only — our
technique also supports widgets with multiple actions by using
functionality attributes (see Section III-B).

GUI Model

Abstraction

Exploration Strategy

Model-Based
Testing Tool App

inject events

dump a GUI tree

Fig. 2: The typical workflow of model-based GUI testing.

C. Model-Based Android GUI Testing

Fig. 2 depicts the typical workflow of a model-based testing
tool [4], [12], [15], [17]. Such a tool interacts iteratively with
the app under test. Initially, the testing tool starts with an
empty state machine as the model. During each iteration, the
testing tool (1) obtains the current GUI tree of the app, (2)
identifies an existing, corresponding state, or creates a new
state for this GUI tree, and (3) picks a model action and
determines a concrete GUI action to interact with the app.

A model-based testing tool aims at exploring the app to
discover new widgets and exploiting the app to exercise
interactions among the discovered widgets. In practice, modern
Android apps usually have a large number of widgets. To
mitigate this scalability challenge, a model-based testing tool
further attempts to identify equivalent GUI actions and abstract
them to a same model action to reduce the search space.
However, it is nontrivial to determine whether two widgets
are equivalent. A full attribute path usually contains irrelevant
information, which prevents two “semantically” equivalent
widgets from being discovered. For example, wi1 in Fig. 1c
and wj2 in Fig. 1d are essentially equivalent but have different
full attribute paths, as shown in Table I. Relying solely on
full attribute paths, a testing tool will view the two widgets
differently, and the model size is consequently increased.
State Abstraction. State abstraction refers to the procedure
that identifies equivalent GUI trees and actions, and maps them
to the same state and the same model action, respectively. In
general, state abstraction is realized based on the similarity of
full attribute paths of GUI actions [4], [12], [15]. Specifically,
state abstraction determines two GUI actions as equivalent
if (1) they have the same action type and (2) their full
attribute paths can be reduced to the same attribute path
π by removing irrelevant attributes under certain reduction
rules. The corresponding model action is denoted as π (〈π, τ〉
when action type τ is considered). Similarly, state abstraction
determines two GUI trees as equivalent if all of their GUI
actions can be reduced to the same set of attribute paths. The
corresponding model state is denoted as the set of all model
actions (i.e., the set of attribute paths π) [15].

However, an automated testing tool has no prior knowledge
of the apps under test and can only define reduction rules
heuristically. Note that a testing tool can apply different
reductions to different widgets to achieve a proper abstrac-
tion granularity. For example, STOAT [4] assumes that child
widgets of ListView behave equivalently and realizes this
heuristic in its state abstraction. Specifically, STOAT removes
all attributes from child widgets of ListView, and removes
only types and texts from other widgets. For the examples in

TABLE I: Model actions (i.e., reduced attribute paths) by different abstractions.

Tree Widget Full Attribute Path STOAT AMOLA (C-Lv4) AMOLA (C-Lv5) Text-Only

Ti

wi
0 〈{i = 0, c =LV, t =∅}〉 〈{i = 0}〉 〈{i = 0}〉 〈{i = 0, t =∅}〉 〈{i = 0}〉

wi
1 〈{i = 0, c =LV, t =∅}, {i = 0, c =TV, t =XLSX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 0}〉 〈{i = 0, t =∅}, {i = 0, t =XLSX}〉 〈{i = 0}, {t =XLSX}〉

wi
2 〈{i = 0, c =LV, t =∅}, {i = 1, c =TV, t =PPTX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 1}〉 〈{i = 0, t =∅}, {i = 1, t =PPTX}〉 〈{i = 0}, {t =PPTX}〉

wi
3 〈{i = 0, c =LV, t =∅}, {i = 2, c =TV, t =DOCX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 2}〉 〈{i = 0, t =∅}, {i = 2, t =DOCX}〉 〈{i = 0}, {t =DOCX}〉

Tj

wj
0 〈{i = 0, c =LV, t =∅}〉 〈{i = 0}〉 〈{i = 0}〉 〈{i = 0, t =∅}〉 〈{i = 0}〉

wj
1 〈{i = 0, c =LV, t =∅}, {i = 0, c =TV, t =DOCX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 0}〉 〈{i = 0, t =∅}, {i = 0, t =DOCX}〉 〈{i = 0}, {t =DOCX}〉

wj
2 〈{i = 0, c =LV, t =∅}, {i = 1, c =TV, t =XLSX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 1}〉 〈{i = 0, t =∅}, {i = 1, t =XLSX}〉 〈{i = 0}, {t =XLSX}〉

wj
3 〈{i = 0, c =LV, t =∅}, {i = 2, c =TV, t =PPTX}〉 〈{i = 0},∅〉 〈{i = 0}, {i = 2}〉 〈{i = 0, t =∅}, {i = 2, t =PPTX}〉 〈{i = 0}, {t =PPTX}〉

* LV and TV are abbreviations for ListView and TextView, respectively.

Fig. 1, STOAT maps all child widgets of ListView to the
same model action (i.e., 〈{i = 0},∅〉). As shown in Table I
and Fig. 3a, STOAT assigns both Figs. 1a and 1b to the same
state (i.e., 1) since they have the same set of model actions.
In contrast, AMOLA supports five static abstractions and its
C-Lv5 criterion [12] takes into account both the indices and
text content, and identifies a model action for each widget.
As shown in Table I and Fig. 3c, AMOLA assigns Figs. 1a
and 1b to two states, i.e., 3 and 4 , respectively.

1

W
P

X

〈{i=0},∅〉

2
W

P

X〈{i=0}, {i=0}〉

〈{i=0}, {i=2}〉

〈{i=0}, {i=1}〉

5
W

P

X〈{i=0}, {t=DOCX}〉

〈{i=0}, {t=PPTX}〉

〈{i=0}, {t=XLSX}〉

3
X

P

W〈{i=0, t=∅}, {i=0, t=XLSX}〉

〈{i=0, t=∅}, {i=1, t=PPTX}〉

〈{i=0, t=∅}, {i=2, t=DOCX}〉

4

〈{i=0, t=∅}, {i=0, t=DOCX}〉
〈{i=0, t=∅}, {i=1, t=XLSX}〉

〈{i=0, t=∅}, {i=2, t=PPTX}〉

(a) STOAT (b) AMOLA (C-Lv4)

(c) AMOLA (C-Lv5)

(d) Text-Only

Fig. 3: Partial models. Each circle is a state and each edge is a
state transition labeled with a model action. States W , X and
P are w.r.t. GUI trees of file viewers for DOCX, XLSX and

PPTX, respectively. Other states are w.r.t. GUI trees in Fig. 1.
Model actions of ListView (i.e., wi0 and wj0) are omitted.

A good state abstraction should balance trade-offs between
the model size and model precision. On one hand, the state
abstraction should be coarse to avoid state explosion by
tolerating differences of GUIs that are irrelevant to testing.
For example, AMOLA builds very fine-grained models, but
the models can quickly explode in size as they incorporate
much testing-irrelevant GUI information. In constrast, STOAT
does not have this problem as it builds a coarse-grained model.

On the other hand, the state abstraction should precisely
model the runtime states of an app in order to interact with the
app. For example, AMOLA (C-Lv4) keeps indices only, and
thus can distinguish different file items in the same GUI but
not among different GUIs. STOAT cannot distinguish different
file items even in the same GUI. As shown in Fig. 3a,
the model action 〈{i = 0},∅〉 actually represents a set of
inequivalent widgets and leads to three different target states
(i.e., W , X and P). When the guidance in STOAT prompts
it to open a DOCX file (i.e., reach the state W), the actually

opened file may be PPTX or XLSX (i.e., the actual target states
may be X or P). This divergent behavior will misguide the
testing tool.

A proper way to identify model actions here is to include
the file name (text) only. this state abstraction identifies three
actions and a single state (i.e., 5 in Fig. 3d) for GUIs in
Figs. 1a and 1b and also avoids mapping inequivalent widgets
to the same model action. Unfortunately, none of the existing
techniques supports such a proper abstraction. To address
these difficulties, we propose a technique that can dynamically
optimize the abstraction during testing. Specifically, we start
the testing from a default abstraction. During the testing, we
systematically and efficiently improve the abstraction toward
the one that balances the size and precision of the model.

III. APPROACH

A. Model

Definition 4 (Model): A model M in APE is a tuple
(S,A, T ,L), where
• S, the set of states. S ∈ S is a set of attribute paths.
• A, the set of model actions. Each model action π ∈ A is

an attribute path, and A =
⋃
S∈S S.

• T : S×A×S , the set of state transitions. Each transition
(S, π, S′) has a source state S, a target state S′, and a
transition label that is a model action π.

• L: the abstraction function, which reduces a full attribute
path σ to an attribute path π, i.e., L(σ) = π.

We also record every GUI transition between iterations. Each
GUI transition is a tuple of (T, σ, T ′), where T and T ′ are
GUI trees and σ is the chosen GUI action for simulation.

To facilitate presentation, we derive two variants from L,
LL and LL, to process a GUI tree and a GUI transition,
respectively. Given a GUI tree T (i.e., a set of full attribute
paths), LL can be used to find its corresponding state S,

S = LL(T) = {π|π = L(σ) ∧ σ ∈ T}.

And given a GUI transition (T, σ, T ′), LL can be used to find
its corresponding state transition (S, π, S′),

(S, π, S′) = LL((T, σ, T
′)) = (LL(T),L(σ),LL(T ′)).

Algorithm 1 sketches the workflow of model-based testing
shown in Fig. 2. Initially, the model M is empty. At the
beginning of each iteration, S and π refer to the state and
the chosen model action in the previous iteration. Next,

Algorithm 1: Model construction.
Input: Testing budget B, initial abstraction function L.
Output: The model M .

1 (M,S, π)← ((∅,∅,∅,L),∅,∅) . Initialization.
2 while B > 0 do
3 B ← B − 1 .Decrease the testing budget.
4 T ′ ← CaptureGUITree() .Use uiautomator.
5 M ← UptAndOptModel(M,S, π, T ′) . See Algorithm 2.
6 S ← LL(T

′) .Get the current state.
7 π ← SelectAndSimulateAction(S) . See Section III-D.

8 return M

function UptAndOptModel adds the state LL(T ′) and the
state transition (S, π,LL(T ′)) to the model and also attempts
to optimize the model as needed. Finally, we update S
with the current state LL(T ′) and determine a new model
action π on LL(T ′). The model action is determined with
the function SelectAndSimulateAction, which will be
informally described in Section III-D. When executing π, we
first determine a set of GUI actions that map to π (i.e.,
{σ|σ ∈ T ∧ L(σ) = π}) and then randomly choose one of
them to simulate.

B. Dynamic Abstraction Functions

As aforementioned in Section I, the key novelty of APE is
its dynamic abstraction function that can dynamically adap-
t/change the model abstraction to balance model precision
and size based on runtime information. However, realizing
dynamic abstraction functions is nontrivial. First, a dynamic
abstraction function should be adaptable at runtime. All
previous approaches use a statically crafted abstraction func-
tion with a fixed abstraction granularity. Hence, adapting the
abstraction needs to change the source code implementing
the static abstraction function. Second, a dynamic abstraction
function should be generalizable. For the examples in Fig. 1,
an abstraction function should apply to not only Ti and Tj
but also any GUI trees after reordering files. We cannot simply
use a hash map between full attribute paths and attribute paths
as the abstraction function, because new GUI trees and new
attribute paths are continuously being discovered when the
testing progresses and they are not in the hash map of such an
abstraction function. Third, a dynamic abstraction should also
be human-interpretable so that users can incorporate critical
rules to further improve the dynamic abstraction.

Different from existing approaches, we represent an abstrac-
tion function as a decision tree that determines a reducer for a
given σ. A decision tree is a rooted tree, where each node is a
reducer R and each edge (branch) is labeled with an attribute
path π. Here, π is called the selector of the branch.
Selector. A branch selects a full attribute path σ if σ can be
reduced to the selector π of the branch. Given a GUI tree T ,
π selects a set of full attribute paths in T that can be reduced
to π, i.e., {σ|σ ∈ T ∧ ∃R :R(σ) = π}.
Decision Procedure. To determine the reducer for the given
σ, we start from the root node of the decision tree and check
whether σ can be selected by any branch of the current node. If
yes, we move to the target node n of the branch and continue

to recursively check the branches of n. Otherwise, the reducer
of n is used as the output to reduce σ. And n is referred as
output node in later discussions. As a function, an important
property of the decision tree is that it should determine one
and only one reducer for σ. To guarantee this property, we
enforce that any σ must be selected by at most one branch.
Reducer. A reducer is the aggregation of a set of primitive
reducers. We first define two types of primitive reducers.

Definition 5 (Local Reducer): Let A denote a set of
attribute keys. Given a full attribute path σ = 〈a1, a2, . . . , an〉,
a local reducer RA removes a1, a2, . . . , an−1 and retains
attributes in A for an.

RA(σ) = 〈{(k, v)|(k, v) ∈ an ∧ k ∈ A}〉

In this paper, we use four types of local reducers: Rc to select
the type attributes, Rt to select the appearance attributes, Ri
to select the index attribute, and R∅ to select no attribute.

Definition 6 (Parent Reducer): Given a full attribute path
σ = 〈a1, a2, . . . , an〉, a parent reducer Rp reuses the output
of the parent full attribute path 〈a1, a2, . . . , an−1〉 and retains
nothing for an.

Rp(σ) = L(〈a1, a2, . . . , an−1〉)⊕R∅(σ)

where ⊕ is the concatenation of sequences.
Definition 7 (Reducer Aggregation): Given a full attribute

path σ = 〈a1, a2, . . . , an〉 and two reducers R and R′, suppose
that R(σ) = 〈bm, bm+1, . . . , bn〉, R′(σ) = 〈ck, ck+1, . . . , cn〉
and m ≤ k. The aggregation RonR′(σ) is the reverse element-
wise union of R(σ) and R′(σ):

RonR′ = 〈bm, bm+1, . . . , bk ∪ ck, bk+1 ∪ ck+1, . . . , bn ∪ cn〉.

We have defined five primitive reducers in this paper and
obtain 24 reducers in total (denoted by R) since R∅onR = R.
We also define a partial order over all reducers in R. We say
that a reducer R′ is finer than another reducer R (i.e., R′ @ R)
if R′ consists of more primitive reducers than R.
Multiple Action Types. Recall that we have assumed that
a widget supports only one action type in Section II-A. To
support multiple action types, we can represent a GUI action
as 〈σ, τ〉 and a model action as 〈π, τ〉. A selector π selects all
〈σ, τ〉 in which σ can be reduced to π. The decision tree can
still be used to realize L(〈σ, τ〉) = 〈π, τ〉.

RionRp Rp
〈{c=LV},∅〉

Fig. 4: The decision tree of STOAT’s abstraction function (Ls).

Example. The decision tree in Fig. 4 implements STOAT’s
abstraction function (denoted by Ls), which we will use as the
starting abstraction function to illustrate dynamic optimization
of our approach in Section III-C. Take widgets wi0 and wi1 in
Fig. 1c as examples. Ls assigns Ri onRp to wi0 because wi0
is not a child of a ListView and cannot be selected by
〈{c = LV},∅〉. Ls assigns Rp to wi1 because wi1 is a child
of a ListView and can be selected by 〈{c =LV},∅〉. Since
wi0 is the root and has no parent, Rp selects nothing for it.

The attributes path of wi0 is actually created by Ri, which is
〈{i = 0}〉. Since wi1 is a child of wi0, Rp reuses 〈{i = 0}〉 for
wi1. The final attribute path of wi1 is 〈{i = 0},∅〉.

C. Optimizing Abstraction Functions

APE starts with an initial abstraction function and contin-
uously refines and coarsens the abstraction function toward a
proper model precision. Specifically, refinement either replaces
the reducer R of certain leaf output node in the decision tree
with a not coarser reducer R′ (i.e., R′ 6A R) or inserts a new
branch with a finer reducer R′ (i.e., R′ @ R) to certain output
node, while coarsening reverts the current abstraction function
L to the previous one L′ that L is refined from. Hence,
the initial abstraction function represents the lower bound of
abstraction and should be coarse enough.

An extremely coarse abstraction function would map all
GUI actions to the same model action and all GUI trees to
the same state. Such a function builds a very simple model,
and this model does not have non-deterministic transitions,
because every GUI tree is mapped to the same state. To avoid
this trivial case, we first refine the abstraction function until
no model action abstracts more than α GUI actions. Second,
a state transition (S, π, S′) is non-deterministic if there is an-
other transition (S, π, S′′), where S′ 6= S′′. Such a pair of non-
deterministic transitions usually indicates that the abstraction
of the source state S or the model action π is overly coarse and
needs to be refined. Hence, we refine the abstraction function
aiming at eliminating every non-deterministic transition. Third,
the previous refinement monotonically increases the model
size, and may eventually lead to a state explosion. Thereby,
we revert the abstraction function L to the previous one L′ if
L refines a state created by L′ into β new states. Here, α and
β are two configurable threshold values.

RionRp

Ls

Rp

〈{c=LV},∅〉
RionRp

L1

Rp

RionRp

〈{c=LV},∅〉

〈{i=0},∅〉

RionRp

L2

Rp

RionRtonRp

〈{c=LV},∅〉

〈{i=0},∅〉

RionRp

L3

Rp

RtonRp

〈{c=LV},∅〉

〈{i=0},∅〉

1 2

34

Fig. 5: Example of the optimization of abstraction functions.

Example. Fig. 5 depicts the evolution from Stoat’s abstraction
function Ls to the text-only abstraction function (i.e., L3)
discussed in Section II-C. As shown in Table I and Fig. 3a,
suppose that APE visits the model action 〈{i = 0},∅〉 only
twice, on Ti and Tj , and simulates two GUI actions to click
widgets wi2 and wj1, respectively. Since clicking wi2 and wj1
leads to two different target states (i.e., P and W), APE can
detect that 〈{i=0},∅〉 is non-deterministic. Suppose that APE
prefers to use RionRp to refine 〈{i=0},∅〉 and map wi2 and wj1
to 〈{i=0}, {i=1}〉 and 〈{i=0}, {i=0}〉, respectively. Since the
initial decision tree may incorporate user-defined rules, APE
does not modify its nodes (i.e., rectangle nodes) and inserts a
new branch into Ls to create L1. L1 only temporally eliminate
the non-deterministic transitions, because APE cannot detect

that 〈{i = 0}, {i = 1}〉 or 〈{i = 0}, {i = 0}〉 is non-deterministic
when both 〈{i=0}, {i=1}〉 and 〈{i=0}, {i=0}〉 have a single
transition each, i.e., by clicking wi2 and wj1, respectively. APE
will detect the non-determinism (see Fig. 3b) when there are
more transitions. Suppose that APE further refines L1 to L2

with a finer reducer Ri on Rt on Rp. Similar to AMOLA C-
Lv5, L2 cannot tolerate file reordering and leads to the state
explosion. Then, APE reverts L2 to L1 and blacklists L2. A
later refinement will refine L1 to L3, the text-only abstraction
discussed in section II-C.

Algorithm 2: Update and optimize the model.
1 Function UptAndOptModel(M = (S,A, T ,L), S, π, T ′)

Input: The new GUI tree T ′, the model M = (S,A, T ,L), the
previous state S, and the previous action π.

Output: The new model.
2 S′ ← LL(T ′)
3 M ← (S ∪ {S′},A ∪ S′, T ∪ {(S, π, S′)},L)
4 repeat M ← ActionRefinement(M,T ′) until M is not updated
5 M ← StateCoarsening(M,T ′)
6 return StateRefinement(M, (S, π, S′))

7 Function ActionRefinement(M = (S,A, T ,L), T ′)
8 foreach π′ ∈ LL(T ′) do
9 if |L(π′) ∩ T ′| > α then

10 R← GetReducer(π′)
11 foreach R′ ∈ {R′|R′ ∈ R ∧ R 6@ R′} do
12 L′ ← L∪ {R→ R′} | L ∪ {(R, π′, R′)}
13 Π← {L′(σ)|σ ∈ L(π′) ∩ T ′}
14 if |Π| > 1 then
15 return RebuildModel(M, {LL(T ′)},L′)

16 return M

17 Function StateCoarsening(M = (S,A, T ,L), T ′)
18 L′ ← GetPrev(L)
19 S← {LL(T)|T ∈ LL′ (LL′ (T ′))}
20 if |S| > β then return RebuildModel(M, S,L′) else return M

21 Function StateRefinement(M = (S,A, T ,L), (S, π, S′))
22 foreach (S, π, S′′) ∈ {(S, π, S′′)|(S, π, S′′) ∈ T ∧ S′′ 6= S′} do
23 foreach π′ ∈ S do
24 R← GetReducer(π′)
25 foreach R′ ∈ {R′|R′ ∈ R ∧ R 6@ R′} do
26 L′ ← L∪ {R→ R′} | L ∪ {(R, π′, R′)}
27 S1 ← {LL′ (T)|(T, σ, T ′) ∈ LL′ ((S, π, S′))}
28 S2 ← {LL′ (T)|(T, σ, T ′′) ∈ LL′ ((S, π, S′′))}
29 if S1 ∩ S2 = ∅ then
30 return RebuildModel(M, S,L′)

31 return M

We use three requirements with threshold α and β to
measure the balance between model precision and model size.

1) No model action abstracts more than α GUI actions in
a GUI tree, meaning that we should refine each model
action until it abstracts fewer than α GUI actions.

2) Non-deterministic transitions should be as few as possi-
ble, meaning that we should keep optimizing the abstrac-
tion function until no non-deterministic transition can be
eliminated.

3) No model state created by a previous L is refined into β
new states by the refined version of L.

Algorithm 2 aims at balancing the model precision and size.
We first introduce inverse mappings to facilitate explaining it.
• L(π) is the set of GUI actions that are abstracted to π.

• LL(S) is the set of GUI trees that are abstracted to S.
• LL((S, π, S

′)) is the set of GUI transitions that are
abstracted to (S, π, S′).

Function UptAndOptModel first adds the new state S′

and transition (S, π, S′) into the model. Then, it checks
whether S′ and (S, π, S′) violates any requirements and if
yes further attempts to optimize S′ and (S, π, S′) to incremen-
tally optimize the model via function ActionRefinement,
StateRefinement and StateCoarsening. APE keeps
using the model if it fails to optimize S′ or (S, π, S′).
Action Refinement. Function ActionRefinement refines
each model action that abstracts more than α GUI actions in
the GUI tree T ′ (i.e., |L(π′) ∩ T ′| > α). For such a π′, the
function tries to find a new abstraction function that refines π′

into multiple model actions. Function GetReducer returns
the reducer R that creates π′. Since any reducer R′ that is not
coarser than R (i.e., R′ 6A R) may refine π′, a new abstraction
function is created by either replacing R with a not coarser R′

(denoted by L∪{R→ R′}) or appending a new branch with a
finer R′ to the output node of R (denoted by L∪{(R, π′, R′)}).
If L′ refines π′ into multiple model actions, we replace L
by L′ and rebuild the model accordingly. Since we only do
replace on leaf nodes and append at most one branch a time,
no node can be selected by multiple branches. The refined
decision tree still guarantees to be a valid function. Function
RebuildModel takes the current model, the set of affected
states and the new abstraction function as input, removes all
affected model actions, states and transitions, and applies the
new abstraction function to re-add states and transitions for
all affected GUI trees and GUI transitions. Since the model
may be rebuilt, S′ at line 8 may be stale. Hence, function
ActionRefinement repeats until M is not updated, i.e.,
no model action needs refinement.
State Coarsening. Function StateCoarsening (1) ap-
plies a previous LL′ to T ′ to obtain the old state LL′(T ′), (2)
retrieves all GUI trees that can be abstracted to the old state,
i.e., LL′(LL′(T ′)), (3) obtains the current states S of these
GUI trees, and (4) reverts L to L′ if |S| > β, which means L
is much finer than L′.
State Refinement. To eliminate non-deterministic transitions
(S, π, S′) and (S, π, S′′), function StateRefinement tries
to refine each model action of S following the same steps
as ActionRefinement, except that L′ must refine S to
different states or refine π to different model actions. We have
implemented the latter case but omit its details in Algorithm 2
since it is just a variant of ActionRefinement.
Parameter Selection. A model action will be refined if it
leads to non-deterministic transitions no matter what α is. The
threshold α is set to 3, which is good in practice. If α is
too large, the exploration strategy should sample each model
action more times. If α is too small, the testing tool cannot
tolerate minor differences. The threshold β is calculated based
on the number of primitive reducers of the finest reducer in
the decision tree. The largest value of β is 8 by default.
Algorithm Decisions. When two refinements can both elimi-
nate the non-deterministic transitions, we prefer the refinement

that creates fewer states and then fewer model actions in
the new model at first, e.g., prefer L1 to L2 in Fig. 5.
Since refinement may conflict with coarsening, the strictly
balanced model under α and β may not even exist. When
the conflict arises, we prefer coarsening to suppress the state
explosion because the corresponding GUIs have been explored
sufficiently when the explosion is detected.

D. Exploration Strategy
We propose to combine random and greedy into the depth

first search. First, we found that some non-determinism can
be tolerated by keeping the locality of the exploration. For
example, APE can tolerate non-determinism caused by access
time via keeping clicking the same file in Fig. 1. Hence,
we discover connected sub-graphs and try to explore all
model actions in a connected sub-graph before jumping to
other states. Next, we only greedily visit every newly added
unvisited model action, where model actions are matched by
their attribute paths. Third, we randomly visit other model
actions, and give a higher priority to model actions that are not
visited or abstract more GUI actions. When failing to replay a
transition, APE detaches the target states to avoid unnecessary
replaying attempts. When reaching the state again by random
actions, APE attaches the state to the model again. Hence, APE
evolves not only state abstraction but also state connectivity.

E. Implementation
APE is built on top of Monkey and runs on both emulators

and real devices. It is designed to be a drop-in replacement of
Monkey and requires no customization of both the app under
test and Android devices. We have tested APE’s compatibility
on Android 6 and 7 devices because they dominate the market
share when we started to develop APE [19]. GUI trees are
dumped with the accessibility API [20], the same one used
in [18]. The initial decision tree uses Rc for every widget.
Initially, there is only one decision tree for all states. If a state
needs refinement, we build a new decision tree for it in a copy-
on-write manner. Hence, we can apply different abstractions
to widgets with the same full attribute paths when necessary.

IV. EVALUATION

We evaluate APE on 15 widely-used apps from the Google
Play Store and compare it with three state-of-art testing tools,
i.e., Monkey, SAPIENZ [3] and STOAT [4]. On average, APE
achieved higher code coverage and detected more crashes than
all the others. Specifically, APE consistently resulted in 26–
78%, 17–22% and 14–26% relative improvements over the
other three tools in terms of average activity coverage, method
coverage, and instruction coverage, respectively. Moreover,
APE detected 61 crashes, while Monkey detected 44, SAPIENZ
40, and STOAT 31.

To further demonstrate APE’s usability and effectiveness,
we applied APE to test 1,316 apps in the Google Play Store
for 30 minutes each. APE detected 537 unique crashes in 42
error types from 281 of 1,316 apps. We reported 38 crashes to
developers with steps to reproduce the crashes, where 13 have
been already fixed, and 5 have been accepted (fixes pending).

A. Experimental Setup

Setup. All tools can test apps directly without any modifica-
tion to the apps and Android. However, the publicly available
version of SAPIENZ only supports Android 4.4 emulators, and
therefore we ran all comparative experiments on emulators.
We ran SAPIENZ and STOAT on the same version of Android
(i.e., Android 4.4) as described in [3], [4], respectively, and
ran APE and Monkey on Android 6. All emulators were run
on a MacBook Pro 2016 (Intel Core i7 3.3 GHz, 16GB, Mac
OS 10.13). We ran all tools with their default configurations.
For Monkey and SAPIENZ, we additionally followed previous
work [11], [21] to set a 200 milliseconds delay. We reused
artifacts released by STOAT and pushed them to emulators
before testing each app. We followed previous work [3], [11],
[12] to give all testing tools except STOAT an hour to test
each app. We gave STOAT an hour for model construction
and two additional hours for model-based fuzzing to assess
its full capability. Each experiment was repeated five times.
We report the average coverage and total crashes in five runs.
The method and instruction coverages were collected every
minute using our VM-based tracing tool.
Benchmark Collection. We selected 15 widely-used apps
that are compatible with x86 emulators, as shown in Table II.
Specifically, we first randomly selected 11 apps from the edi-
tor’s choice collection of the Google Play Store,2 where four
apps were also used by [21]. Second, we randomly selected
another four well-maintained (i.e., updated since 2017) open-
source benchmark apps used by SAPIENZ and STOAT.

TABLE II: Statistics of benchmark apps.

Application Activity (#) Method (#) Instruction (#) Install (#)
1 Citymapper 55 70,182 1,126,836 5,000,000
2 Duolingo 57 63,303 1,150,165 100,000,000
3 Flowx 16 22,081 449,899 100,000
4 Google Drive 87 55,130 1,233,004 1,000,000,000
5 Google Translate 35 36,126 787,527 500,000,000
6 Nuzzel 42 32,587 533,618 100,000
7 30 Day Fitness 34 48,292 668,396 10,000,000
8 Zillow 85 109,338 1,554,545 10,000,000
9 Flipboard 69 49,535 985,299 500,000,000
10 VLC 22 28,264 372,488 100,000,000
11 Tunein Radio 52 90,865 1,480,064 100,000,000
12 Amaze 6 41,475 752,809 500,000
13 Book Catalogue 39 6,683 127,685 100,000
14 Any Memo 30 56,474 669,027 100,000
15 My Expenses 32 58,389 1,091,503 500,000

661 768,724 12,982,865

B. Coverage of Benchmark Apps

As shown in Table III, APE is clearly the most effective
tool among the four in terms of coverage. Specifically, APE
achieved the best per-app coverage on almost all apps and
consistently resulted in 26–78%, 17–22% and 14–26% relative
improvements over the other three tools in terms of average
activity coverage, method coverage, and instruction coverage
respectively. Moreover, the coverage of APE also grows much
faster than the other three tools, as shown in Fig. 6. For STOAT,
we reported data in both model construction and the entire

2https://play.google.com/store/apps/topic?id=editors choice

TABLE III: Results on benchmark apps.

Activity (%) Method (%) Instruction (%) Crashes (#)

Ape Mo Sa St1 Ape Mo Sa St1 St3 Ape Mo Sa St1 St3 Ape Mo Sa St1 St3

1 41 35 31 26 45 43 38 41 42 37 35 30 33 34 0 7 1 0 0
2 24 17 22 19 29 26 26 25 26 23 20 20 19 20 3 0 2 0 4
3 63 53 60 28 44 40 39 32 34 38 34 32 25 26 1 1 1 0 4
4 30 27 26 12 41 39 37 37 38 33 31 29 29 30 0 2 0 0 0
5 50 44 46 37 34 33 30 30 30 25 24 23 22 22 1 0 1 2 2
6 27 15 26 15 24 17 22 20 20 21 14 19 17 17 5 3 3 0 0
7 50 28 40 30 22 15 19 19 20 20 13 17 17 17 0 0 1 0 0
8 30 26 19 – 21 19 15 – – 19 17 13 – – 5 7 2 – 0
9 33 18 18 – 35 26 21 – – 28 20 15 – – 4 0 2 – 0
10 47 35 37 26 34 29 28 26 30 36 31 30 27 31 3 3 2 1 2
11 27 20 21 – 25 21 20 – – 24 20 16 – – 2 1 3 – 0
12 67 63 60 50 15 14 12 12 13 12 11 9 9 10 20 16 16 2 5
13 63 43 56 17 28 23 20 10 12 25 22 18 9 11 0 0 0 0 0
14 76 47 71 27 15 11 13 10 12 16 11 14 10 12 15 1 3 3 13
15 45 39 36 30 18 18 14 14 15 13 14 10 10 11 3 3 3 1 1

39 29 31 22 28 24 23 24 25 24 21 19 20 21 62 44 40 9 31
* Mo, Sa, and St are abbreviations for Monkey, SAPIENZ, and STOAT, respectively. St1

and St3 represent data in the model construction and the entire testing, respectively.

testing. STOAT did not report covered activities during model-
based fuzzing because STOAT has an internal null intent fuzzer
which directly starts activities with empty intents. In practice,
STOAT can achieve 100% activity coverage on emulators. Due
to the intrusive null intent fuzzing, STOAT always resulted
in not responding on three apps (#8, #9 and #11). Hence,
the average coverage of STOAT counted 12 apps. All tools
obtained relatively low coverage on some apps, e.g., app #6–8
and #11–15. The reason is that a proper environment is needed
to further improve the coverage. For example, #app 15 requires
premium user accounts to unlock certain functionalities.

10 20 30 40 50 60

20%

25%

10 20 30 40 50 60

10%

15%

10 20 30 40 50 60

15%

20%

25%

Editor’s Choices (1–11) Open Source (12-15) All

APE Monkey SAPIENZ STOAT

Fig. 6: Progressive instruction coverage. X axis is time in
minutes and Y axis is instruction coverage.

C. Detected Crashes of Benchmark Apps

We counted only fatal errors [22] that crashed app processes
during GUI exploration. This is different from the evaluation
method of STOAT. First, STOAT counted as crashes many
exceptions that do not terminate app processes, e.g., window
leaked exceptions [4], [23]. Second, STOAT also targeted to
detect crashes that were triggered by null intent fuzzing [24]
in addition to GUI testing. We believe that the class of
crashes found by GUI testing is more important than that
found by null intent fuzzing, because the former class can
usually be triggered with legitimate user interactions whereas
the latter class has been largely prohibited by certain security
mechanisms on real devices [25] and is mostly reproducible on
emulators only. Moreover, the results of our evaluation method
are also consistent with their latest study [26].

https://play.google.com/store/apps/topic?id=editors_choice

TABLE IV: Crashes detected by GUI testing.

Tool Java Exceptions (#) Native Crashes (#) All (#)
BR UC BA BR UC BA BR UC BA

APE 161 51 9 67 11 5 228 62 11
Monkey 90 34 8 43 10 6 133 44 10
SAPIENZ 101 33 10 102 7 7 203 40 13
STOAT1 47 9 5 0 0 0 47 9 5
STOAT3 315 31 7 0 0 0 315 31 7

* BR, UC, and BA are abbreviations for bug reports, unique crashes and buggy
apps, respectively.

We show statistics of crashes detected by GUI testing in
Table IV. APE detected the most unique crashes by GUI test-
ing. To identify unique crashes, we followed STOAT to use the
full normalized stack traces [4], i.e., stack traces [22] without
irrelevant information such as messages of exceptions or pid
of processes [27]. Since benchmark apps were developed in
Java, native crashes [27] were mostly triggered by defects of
the framework rather then the apps. For example, almost a half
of native crashes detected by APE, Monkey and SAPIENZ were
caused by some defect of the WebView [28].

APE Monkey
953 35

(a) Android 6.0

SAPIENZ STOAT

436 27

(b) Android 4.4

Fig. 7: Pairwise comparison of unique crashes (stack traces).

NullPointerException
Native

IndexOutOfBoundsException

Ille
galStateException

NumberFormatException

Ille
galArgumentException

SQLiteException

NotSerializableException
0

10

20

30
33

11
5 5 3 2 2 1C

ra
sh

es

NullPointerException
Native

ClassCastException

OutOfMemoryError

IndexOutOfBoundsException

ConcurrentModificationException

Runtim
eException

NumberFormatException

Ille
galArgumentException

SQLiteException
0

5

10

13
10

8
6

2 1 1 1 1 1

NullPointerException
Native

ClassCastException

XmlPullParserException

ConcurrentModificationException

ArrayIndexOutOfBoundsException

Security
Exception

NoClassDefFoundError

IndexOutOfBoundsException

Ille
galStateException

0

5

10

15
17

7 6
2 2 2 1 1 1 1C

ra
sh

es

NullPointerException

Ille
galArgumentException

NumberFormatException
rx.b.j

Security
Exception

Ille
galStateException

NotSerializableException
0
5

10
15
20

22

3 2 1 1 1 1

APE Monkey SAPIENZ STOAT

Fig. 8: Distribution of crashes types by GUI testing.

Fig. 7 depicts the pairwise comparison of unique normalized
stack traces for tools on the same version of Android. We do
not compare crashes detected by tools on different versions of
Android via normalized stack traces because different versions
of Android have different Android framework code. Particu-
larly, Android 4.4 employs the dalvik VM while Android 6.0
employs the ART runtime [29]. The two runtime environments
have different thread entry methods. Based on data in Figs. 7
and 8, each of the compared tools complements the others in
crash detection and has its own advantages.
APE. APE can exhaustively exercise parts of the app locally
and also discover more activities than the other tools with a

dynamic GUI model. For app #14, APE detected more crashes
than others because to trigger these crashes it needs to navigate
in the file system thoroughly to search for some particular files
and then make some complicated interactions on the files. This
requires that the model should be fine enough otherwise the
searching of the file may terminate prematurely. For app #10,
APE detected a crash on an activity that was not discovered
by all other tools in five runs.
STOAT. STOAT supports the most types of events and can find
deep crashes via model-based fuzzing [4]. We plan to incorpo-
rate the powerful fuzzing strategy of STOAT into APE in future
work. Due to the limitation of its implementation, STOAT did
not detect crashes triggered via out-of-order events [4] as the
other three tools.
Monkey. Monkey spent almost all testing budgets to generate
events, e.g., no restart and no model construction. Hence,
Monkey detected some crashes that can only be triggered
under certain stress. As shown in Fig. 8, only Monkey has
detected six OutOfMemoryError.
SAPIENZ. SAPIENZ inherits from Monkey the same ability to
trigger some particular types of crashes (Fig. 8). For example,
Monkey and SAPIENZ found many ClassCastException
and ConcurrentModificationException, where all
of them were triggered via trackball and directional pad events.
However, these crashes are not important because trackballs
and directional pads are generally not available on modern An-
droid phones. Moreover, SAPIENZ aims at minimizing event
sequences at the testing time and thereby missed deep crashes
that can only be detected via long meaningful interactions [4].
Actually, we can reduce sequences of interest afterwards [14]
without sacrificing the ability to detect deep crashes.

D. Comparative Analysis of Results on Benchmark Apps

1) Model-based vs. Model-free: A model enables APE to
effectively generate events (e.g., avoid clicking non-interactive
widgets) in terms of higher activity coverage with fewer events
in comparison with other tools. On average, APE, SAPIENZ
and Monkey generated 21,819, 33,376 and 71,125 events in
an hour, respectively. STOAT is built on top of a high-level
testing framework and thus did not report such events.

A model enables APE to tolerate non-determinism related
to coordinate changes, while model-free tools such as Mon-
key and SAPIENZ rarely can. To reduce non-determinism,
SAPIENZ additionally cleared the local app data before re-
playing every test script. However, non-determinism caused
by data in file systems or from server is still a potential threat
to replaying. Besides, SAPIENZ can be easily misguided due
to the lack of connectivity information between GUIs. For
example, app #8 has a welcome activity that requires users
to customize the app. Since local app data were cleared, this
activity always appeared during replaying every test script.
Events that skip or finish all customizations should always be
included in every test script, which is difficult to guarantee
without connectivity information. In contrast, APE can easily
overcome this limitation by traversing the model.

TABLE V: Statistics of models built by APE and STOAT.

APE STOAT

min median max min median max
State (#) 131 347 725 12 87 517

Action (#) 1,277 6,531 16,141 21 820 1,307
Transition (#) 836 2,282 3,240 21 834 1,340

2) Dynamic Model vs. Static Model: APE can first try
fine states and actions to explore the apps thoroughly and
coarsen states to avoid unnecessarily repeated exploration of
the same GUI, and produced finer models than STOAT, as
shown in Table V. Note that APE can detach model states to
mitigate state explosions caused by certain non-determinism
during systematic exploration (see Section III-D). Our results
are consistent with previous work [12]. That is, fine models
are generally better than coarse models (see Table III).

E. Large-Scale Evaluation on Apps from Google Play Store

We additionally ran APE on real Nexus 5 phones to test
1,316 apps from the Google Play Store for 30 minutes each.
The results are quite encouraging. APE detected 537 unique
crashes in 42 error types from 281 of 1,316 apps. We reported
38 crashes to developers with steps to reproduce the crashes,
where 13 have already been fixed, and 5 have been accepted
(fixes pending). The results show that APE is an industry-
strength practical tool in testing real-world apps.

TABLE VI: Distribution of major crash types.

Error Type #

NullPointerException 226
IllegalStateException 58

IllegalArgumentException 47
NumberFormatException 45

Native Crash 33
RuntimeException 27

ArrayIndexOutOfBoundsException 13
IndexOutOfBoundsException 12

Table VI presents the major crash types, i.e., those with
more than 10 crashes each. Since we conducted the evaluation
on real Nexus phones, the results excluded trivial or spurious
crashes that can only be detected on emulators or by null intent
fuzzing, and also excluded crashes that can only be detected
on third-party Android builds (e.g., on Samsung phones [30]),
due to defects in third-party framework or library code.

V. RELATED WORK

We survey representative related work in this section. Ensur-
ing the quality of mobile apps is challenging and involves man-
ual work in practice [1]. Many pieces of existing work address
specific problems of Android apps, such as context [31], [32],
concurrent and asynchronous features [33], [34], fragmenta-
tion [30], [35], adverse conditions [36]–[38], and energy [39]–
[41]. Android apps generally comprise of various foreground
and background components, which require different testing
techniques. Hence, some testing tools focus on background
services [42], where the majority aims at testing the GUI [4],

[7], [10], [12], [15], [17], [43]–[45] and many of them also
have limited support for both [4], [43].

Many tools attempt to improve back-box tools by ripping the
GUI [7], [43], [46]. Moreover, traditional model-based [12],
[17], [44], symbolic execution based [10], [47], [48], and
search based approaches [9] are more guided but face scal-
ability issues on large apps [11]. Recently, SAPIENZ, a novel
search-based approach, has significantly advanced the-state-of-
the-art-and-practice [3], [21], [49]. The success of SAPIENZ
makes us plan to leverage search-based techniques to improve
APE’s exploration strategy.

Many efforts have been devoted to mitigating the scal-
ability issues, e.g., hacking the app or framework to opti-
mize performance [13], [36], [50]. For model-based testing,
we can also apply a coarse-grained model [13], [15] or a
probabilistic model [4] but a finer model is generally more
effective [12]. APE applies a novel technique to adaptively
refine and coarsen the model, which is inspired by counter-
example guided abstraction refinement [51]. Currently, APE
uses basic properties (i.e., the number of model actions and
states) to check counterexamples. We plan to incorporate GUI
model checking [52], [53] in future work, e.g., checking coun-
terexamples with temporal logic. With fine models, APE may
identify overly many actions. This problem can be mitigated
by some action summary techniques [21], [54].

VI. CONCLUSION

This paper presents APE, a practical, fully automated model-
based tool for effective testing of Android apps. APE has
a general, decision tree-based representation of abstraction
functions, in order to build a good testing model. It also
has a novel evolution mechanism to dynamically, continuously
update the model toward a good balance between the model
size and model precision.

Compared to the-state-of-the-art techniques that are either
modelless or based on static testing models, APE consistently
outperforms them on 15 widely-used benchmark apps in terms
of code coverage (14–78% relative improvements) and the
number of detected bugs (61 unique crashes v.s. 31–44 ones).
We have also applied APE to test 1,316 apps from the Google
Play Store, resulting in 537 crashes. 38 crashes were reported
to developers with steps for reproducing them — 13 have been
fixed and 5 have been confirmed.

All our evaluations demonstrate that APE is effective, prac-
tical and promising. Currently, APE has been adopted by our
industry partner, and integrated into their testing process.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work was supported by the National Key R&D
Program of China (Grant No. 2018YFB1004805) and the
National Natural Science Foundation of China (Grant No.
61690204). Tianxiao Gu, Qirun Zhang, and Zhendong Su were
supported in part by United States NSF Grants 1528133 and
1618158, and Google and Mozilla Faculty Research Awards.

REFERENCES

[1] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real Challenges in
Mobile App Development,” in Proceedings of 2013 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM 2013), 2013, pp. 15–24.

[2] Android, “Android Testing Support Library,” https://developer.android.
com/topic/libraries/testing-support-library/index.html, accessed: 2018-
04-01, 2018.

[3] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective Automated
Testing for Android Applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2016), 2016,
pp. 94–105.

[4] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, Stochastic Model-Based GUI Testing of Android
Apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017), 2017, pp. 245–256.

[5] Android, “UI/Application Exerciser Monkey,” https://developer.android.
com/studio/test/monkey.html, accessed: 2018-04-01, 2018.

[6] “UI Events,” https://developer.android.com/guide/topics/ui/ui-events, ac-
cessed: 2018-04-01.

[7] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie,
“Automated Test Input Generation for Android: Are We Really There Yet
in an Industrial Case?” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE
2016), 2016, pp. 987–992.

[8] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI Event
Traces,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016), 2016,
pp. 422–434.

[9] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented Evo-
lutionary Testing of Android Apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2014), 2014, pp. 599–609.

[10] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic
Testing of Smartphone Apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE 2012), 2012, pp. 59:1–59:11.

[11] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?(e),” in Proceedings of
the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2015), 2015, pp. 429–440.

[12] Y.-M. Baek and D.-H. Bae, “Automated Model-based Android GUI
Testing Using Multi-level GUI Comparison Criteria,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016), 2016, pp. 238–249.

[13] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü, “AimDroid:
Activity-Insulated Multi-level Automated Testing for Android Applica-
tions,” in Proceedings of the 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME 2017), 2017, pp. 103–
114.

[14] W. Choi, K. Sen, G. Necula, and W. Wang, “DetReduce: Minimizing
Android GUI Test Suites for Regression Testing,” in Proceedings of the
40th International Conference on Software Engineering (ICSE 2018),
2018, pp. 445–455.

[15] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” in Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA 2013),
2013, pp. 623–640.

[16] Android, “Activity,” https://developer.android.com/reference/android/
app/Activity.html, accessed: 2018-04-01, 2018.

[17] W. Yang, M. R. Prasad, and T. Xie, “A Grey-box Approach for Auto-
mated GUI-model Generation of Mobile Applications,” in International
Conference on Fundamental Approaches to Software Engineering (FASE
2013). Springer, 2013, pp. 250–265.

[18] “UI Automator Viewer,” https://developer.android.com/topic/libraries/
testing-support-library/index.html#uia-viewer, accessed: 2018-04-01.

[19] Android, “Android Dashboard,” https://developer.android.com/about/
dashboards/index.html, accessed: 2018-04-01, 2018.

[20] “Accessibility,” https://developer.android.com/guide/topics/ui/
accessibility/, accessed: 2018-04-01.

[21] K. Mao, M. Harman, and Y. Jia, “Crowd Intelligence Enhances Auto-
mated Mobile Testing,” in Proceedings of the 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2017), 2017, pp. 16–26.

[22] “Android Crashes,” https://developer.android.com/topic/performance/
vitals/crash, accessed: 2018-04-01.

[23] “Window Leak,” https://stackoverflow.com/questions/2850573/
activity-has-leaked-window-that-was-originally-added, accessed:
2018-04-01.

[24] R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting Intents of Death,”
in Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, De-
bugging, and Analytics (PERTEA), 2014, pp. 1–5.

[25] “Export Activity,” https://developer.android.com/guide/topics/manifest/
activity-element#exported, accessed: 2018-04-01.

[26] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale Analysis of Framework-specific Exceptions in Android
Apps,” in Proceedings of the 40th International Conference on Software
Engineering (ICSE 2018), 2018, pp. 408–419.

[27] “Android Native Crashes,” https://source.android.com/devices/tech/
debug/native-crash, accessed: 2018-04-01.

[28] “Android WebView,” https://developer.android.com/guide/webapps/
webview, accessed: 2018-04-01.

[29] “ART and Dalvik,” https://source.android.com/devices/tech/dalvik/, ac-
cessed: 2018-04-01.

[30] L. Wei, Y. Liu, and S. Cheung, “Taming Android Fragmentation:
Characterizing and Detecting Compatibility Issues for Android Apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2016), 2016, pp. 226–237.

[31] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa: Au-
tomated Large-scale Mobile App Testing Through Contextual Fuzzing,”
in Proceedings of the 20th Annual International Conference on Mobile
Computing and Networking (MobiCom 2014), 2014, pp. 519–530.

[32] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “CrashScope: A Practical Tool for Automated Testing
of Android Applications,” in Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C 2017), 2017,
pp. 15–18.

[33] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
Manifesting Asynchronous Programming Errors in Android Apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE 2018), 2018, pp. 486–497.

[34] J. Wang, Y. Jiang, C. Xu, Q. Li, T. Gu, J. Ma, X. Ma, and J. Lu,
“AATT+: Effectively Manifesting Concurrency Bugs in Android Apps,”
Science of Computer Programming, vol. 163, pp. 1 – 18, 2018.

[35] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the
Devices to Test Your App on: A Case Study of Android Game Apps,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014), 2014, pp. 610–620.

[36] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, Effectively Detecting
Mobile App Bugs with AppDoctor,” in Proceedings of the Ninth
European Conference on Computer Systems (EuroSys 2014), 2014, pp.
18:1–18:15.

[37] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic Execution
of Android Test Suites in Adverse Conditions,” in Proceedings of the
2015 International Symposium on Software Testing and Analysis (ISSTA
2015), 2015, pp. 83–93.

[38] Z. Shan, T. Azim, and I. Neamtiu, “Finding Resume and Restart Errors
in Android Applications,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2016), 2016, pp. 864–880.

[39] Y. Liu, C. Xu, S. Cheung, and J. Lu, “GreenDroid: Automated Diagnosis
of Energy Inefficiency for Smartphone Applications,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 911–940, Sept 2014.

[40] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated Energy Op-
timization of HTTP Requests for Mobile Applications,” in Proceedings
of the 38th International Conference on Software Engineering (ICSE
2016), 2016, pp. 249–260.

[41] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing Energy Consumption of
GUIs in Android Apps: A Multi-objective Approach,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015), 2015, pp. 143–154.

https://developer.android.com/topic/libraries/testing-support-library/index.html
https://developer.android.com/topic/libraries/testing-support-library/index.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/topic/libraries/testing-support-library/index.html#uia-viewer
https://developer.android.com/topic/libraries/testing-support-library/index.html#uia-viewer
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/ui/accessibility/
https://developer.android.com/guide/topics/ui/accessibility/
https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/topic/performance/vitals/crash
https://stackoverflow.com/questions/2850573/activity-has-leaked-window-that-was-originally-added
https://stackoverflow.com/questions/2850573/activity-has-leaked-window-that-was-originally-added
https://developer.android.com/guide/topics/manifest/activity-element#exported
https://developer.android.com/guide/topics/manifest/activity-element#exported
https://source.android.com/devices/tech/debug/native-crash
https://source.android.com/devices/tech/debug/native-crash
https://developer.android.com/guide/webapps/webview
https://developer.android.com/guide/webapps/webview
https://source.android.com/devices/tech/dalvik/

[42] L. L. Zhang, C.-J. M. Liang, Y. Liu, and E. Chen, “Systematically
Testing Background Services of Mobile Apps,” in Proceedings of the
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017), 2017, pp. 4–15.

[43] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013), 2013, pp.
224–234.

[44] T. Azim and I. Neamtiu, “Targeted and Depth-First Exploration for
Systematic Testing of Android Apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA 2013), 2013, pp. 641–
660.

[45] A. Sadeghi, R. Jabbarvand, and S. Malek, “PATDroid: Permission-aware
GUI Testing of Android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017), 2017, pp.
220–232.

[46] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI Ripping for Automated Testing of Android
Applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012), 2012, pp.
258–261.

[47] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated Testing with
Targeted Event Sequence Generation,” in Proceedings of the 2013 In-
ternational Symposium on Software Testing and Analysis (ISSTA 2013),
2013, pp. 67–77.

[48] H. van der Merwe, B. van der Merwe, and W. Visser, “Execution and

Property Specifications for JPF-android,” SIGSOFT Software Engineer-
ing Notes, vol. 39, no. 1, pp. 1–5, Feb. 2014.

[49] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying Search Based Software Engineering with Sapienz
at Facebook,” in International Symposium on Search Based Software
Engineering (SSBSE 2018), 2018, pp. 3–45.

[50] W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI Testing for
Android Applications,” in Proceedings of the 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2017), 2017, pp. 27–37.

[51] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement,” in Proceedings of the 12th Interna-
tional Conference Computer Aided Verification (CAV 2000), 2000, pp.
154–169.

[52] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using Formal
Verification to Evaluate Human-Automation Interaction: A Review,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43,
no. 3, pp. 488–503, May 2013.

[53] M. B. Dwyer, V. Carr, and L. Hines, “Model Checking Graphical User
Interfaces Using Abstractions,” in Proceedings of the 6th European
Software Engineering Conference Held Jointly with the 5th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE 1997), 1997, pp. 244–261.

[54] M. Ermuth and M. Pradel, “Monkey See, Monkey Do: Effective Gener-
ation of GUI Tests with Inferred Macro Events,” in Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA
2016), 2016, pp. 82–93.

	Introduction
	Background
	GUI of Android Apps
	Attribute Path
	Model-Based Android GUI Testing

	Approach
	Model
	Dynamic Abstraction Functions
	Optimizing Abstraction Functions
	Exploration Strategy
	Implementation

	Evaluation
	Experimental Setup
	Coverage of Benchmark Apps
	Detected Crashes of Benchmark Apps
	Comparative Analysis of Results on Benchmark Apps
	Model-based vs. Model-free
	Dynamic Model vs. Static Model

	Large-Scale Evaluation on Apps from Google Play Store

	Related Work
	Conclusion
	References

