
SnR: Constraint-Based Type Inference for Incomplete Java Code
Snippets

Yiwen Dong

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

y225dong@uwaterloo.ca

Tianxiao Gu

Alibaba Group

China

tianxiao.gu@gmail.com

Yongqiang Tian

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

yongqiang.tian@uwaterloo.ca

Chengnian Sun

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

cnsun@uwaterloo.ca

ABSTRACT
Code snippets are prevalent on websites such as Stack Overflow

and are effective in demonstrating API usages concisely. However

they are usually difficult to be used directly because most code snip-

pets not only are syntactically incomplete but also lack dependency

information, and thus do not compile. For example, Java snippets

usually do not have import statements or required library names;

only 6.88% of Java snippets on Stack Overflow include import state-

ments necessary for compilation.

This paper proposes SnR, a precise, efficient, constraint-based

technique to automatically infer the exact types used in code snip-

pets and the libraries containing the inferred types, to compile and

therefore reuse the code snippets. Initially, SnR builds a knowledge

base of APIs, i.e., various facts about the available APIs, from a

corpus of Java libraries. Given a code snippet with missing import

statements, SnR automatically extracts typing constraints from the

snippet, solves the constraints against the knowledge base, and

returns a set of APIs that satisfies the constraints to be imported

into the snippet.

We have evaluated SnR on a benchmark of 267 code snippets

from Stack Overflow. SnR significantly outperforms the state-of-the-

art tool Coster. SnR correctly infers 91.0% of the import statements,

which makes 73.8% of the snippets compile, compared to 36.0% of

the import statements and 9.0% of the snippets by Coster.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software notations and tools; • Theory of computation →
Type structures.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00

https://doi.org/10.1145/3510003.3510061

KEYWORDS
type inference, constraint satisfaction, automated repair, datalog

ACM Reference Format:
Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun. 2022. SnR:
Constraint-Based Type Inference for Incomplete Java Code Snippets. In

44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510061

1 INTRODUCTION
A code snippet is a small region of source code, which is usually

incomplete and thus not compilable, e.g., a list of statements alone

in Java without being put in a method or class. Code snippets are

useful, and commonly found from well used Q&A websites like

Stack Overflow (SO) where small code snippets are often used to

ask questions or illustrate answers concisely.

However, when developers find a code snippet on SO to be useful

and would like to use it in their projects, it is not easy to directly use

the code snippet. In Figure 1, a Java compiler such as javac cannot

resolve the types used in the snippet (e.g., Date, Days, DateFormat)
to their definitions which can be from third-party libraries. It takes

developers both time and efforts to manually repair code snippets

to be compilable, a challenging task which requires the developers

to figure out the exact types used in the code snippet (e.g., what
exact types do Date and DateTime refer to) and the exact libraries

that provide the definitions of the used types.

A technique to automatically repair code snippets by recovering

the missing types and dependent libraries for compilation will

greatly save developers time; compilable code snippets carry more

semantic information than uncompilable ones and therefore such

a technique can potentially enable researchers to extend existing

research on SO [1, 14, 17, 21, 26–28, 41–44].

Technical Challenges. Generally, there are three technical chal-

lenges of automatically repairing and compiling code snippets.

Challenge 1: Lack of Import Statements. In Java, a class type has

a simple name (e.g., Date) and a package name (e.g., java.util); its
fully qualified name (FQN) is the combination of its package name

and simple name (e.g., java.util.Date), which uniquely identifies

the class type. To make Java code concise, the simple name of a

https://doi.org/10.1145/3510003.3510061
https://doi.org/10.1145/3510003.3510061
https://doi.org/10.1145/3510003.3510061

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

1 DateFormat formatter = new SimpleDateFormat("mm/dd/yyyy");

2 Date someDate = new Date();

3 Date today = Calendar.getInstance ().getTime ();

4 try {

5 someDate = formatter.parse("06/22/2010");

6 } catch(ParseException pe) {

7 System.out.println("Parser Exception");

8 }

9 int days = Days.daysBetween(new DateTime(someDate), new

DateTime(today)).getDays ();

10 System.out.println(" Days Between " + someDate + " : " +

today + " - " + days);

Figure 1: Formatted code snippet in SO post #3329469.

class type can be used in Java code directly, and the class type’s

FQN is declared by an import statement. With the help of import

statements a Java compiler can identify the exact class type from a

simple name during compilation. Previous work [36] showed that

only 6.88% of Java code snippets on SO included import statements

that specified the FQNs of the types used in the code snippets.

One example is Figure 1; the Java compiler is not able to infer the

FQNs from the simple names such as Date, Days and DateFormat,
because the code snippet does not have any import statements.

Challenge 2: Lack of Library Dependencies. A code snippet usu-

ally does not carry information about the libraries. These libraries

are needed for the Java compiler to compile the code snippet as

they contain the type definitions used in the snippet. The example

in Figure 1 required the Joda-Time library. Note that even correct

FQNs do not guarantee that we can find the correct library to

depend on, because different libraries of different purposes may

contain types with the same FQN. For example, the Android run-

time library and the Java runtime library both define a class for

java.text.DateFormat.

Challenge 3: Combinatory Candidates. To compile a code snip-

pet, we need to have the correct FQN for each simple name, and the

correct library for each FQN. However, A simple name may corre-

spond to multiple different FQN, and each FQN may correspond to

multiple different libraries. The search space is all the combinations

of candidates for each simple name, which defines a computation-

ally expensive problem. For example, in Figure 1, the simple name

Date has five matching classes in the Java Development Kit (JDK)

alone; in total, the search space for this code snippet is 384 different

combinations of classes from the JDK and five other popular Java

libraries used in our benchmarks.

Prior work. Existing techniques attempted to address type infer-

ence for code snippets in different manners: CSNIPPEX is based on a

set of heuristics [36]; Baker extracts constraints from code snippets

and uses a naive constraint solving algorithm to infer FQNs [35];

both StatType [25] and Coster [32] build statistical models from

existing compilable source code to predict FQN for code snippets.

However, these techniques do not address all three challenges and

suffer from inherent imprecision of the used heuristics [36], pro-

posed constraint solving algorithm [35], or the trained statistical

models [25, 32]; especially neither of them tackles Challenge 2 when
multiple libraries contain different types with the same simple names.
Our approach. We propose SnR, a novel, constraint-based ap-

proach to automatically, precisely infer FQNs and required libraries

to compile and reuse code snippets. SnR builds a knowledge base

from available libraries by extracting facts of the types defined in

these libraries, e.g., fields, methods, signatures, inheritance rela-

tions. Given an incomplete code snippet, SnR extracts constraints

from the code snippet that capture the relation between types used

in the snippet; then SnR resolves these constraints by querying the

knowledge base, and outputs a ranked list of solutions where each
solution is a set of types that satisfy the constraints and likely make

the code snippet compile.

Compared to the prior work based on either heuristics or sta-

tistics, SnR leverages the type system built into programming

languages and models the problem of inferring types for incom-

plete code snippets as a constraint satisfaction problem (CSP).

Without being affected by the randomness, approximation and

un-interpretability from which prior work suffer, SnR can deter-

ministically, precisely infer types with explicit explanation how

and why the types are inferred.

We thoroughly evaluated SnR against the state-of-the-art tool,

Coster [32]. We used an established benchmark called StatType-
SO consisting of 267 code snippets manually collected from Stack

Overflow posts [25]. SnR significantly outperformed Coster in terms

of accuracy of type inference and library recommendation: 1○ In the

task of inferring types for API elements (including simple names,

field accesses and method calls as defined in [32]), SnR achieves

high precision of 98.20% and recall of 79.66% compared to precision

of 66.35% and recall of 66.35% by Coster. 2○ In the task of inferring

the import statements required for compiling code snippets, SnR
is able to correctly infer 91.0% of the import statements compared

to 36.0% by Coster. 3○ SnR can accurately recommend libraries for

snippets with 𝐹1 score of 0.82 compared to 0.53 by Coster. Notably,

SnR recommended the exact libraries for 183 of the 267 snippets,

compared Coster with 34. 4○ As a result of the high accuracy in

type inference and library recommendation, SnR can make 73.8% of

the code snippets compilable in total compared to 9.0% by Coster.

Contribution. This paper makes the following contributions:

• NoveltyWe proposed SnR, a novel constraint-based approach

to automatically, precisely infer FQNs, recommend libraries, and

create import statements for code snippets.

• Soundness and Significance We conducted extensive evalua-

tions on real-world code snippets in StatType-SO and the results

demonstrate that SnR significantly outperforms the state of the

art in various type inference tasks.

• VerifiabilityWe made a replication package available at

https://doi.org/10.5281/zenodo.5843327

2 BACKGROUND
2.1 Motivating Example
We use the code snippet in Figure 1 as a motivating example to

illustrate main shortcomings of existing techniques, particularly in

addressing Challenges 2 and 3.

Eclipse, a prevalent integrated development environment, has a

powerful utility Quick Fix to fix common syntactical errors, repair

partial statements and insert missing import statements. However,

Quick Fix is inadequate for inferring the types in Figure 1:

1○ It is imprecise due to its heuristic-based nature. For example,

both java.sql.Date and java.util.Date are recommended

https://doi.org/10.5281/zenodo.5843327

SnR: Constraint-Based Type Inference for Incomplete Java Code Snippets ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: The top-3 candidates output by SnR for Figure 1. The
first row is the correct solution. The FQNs in italics are im-
plemented in multiple libraries.

Name Library Fully Qualified Name

DateFormat jdk java.text.DateFormat
SimpleDateFormat jdk java.text.SimpleDateFormat
Date jdk java.util.Date
ParseException jdk java.text.ParseException

DateTime joda org.joda.time.DateTime

1

Days joda org.joda.time.Days

2

DateFormat android java.text.DateFormat
SimpleDateFormat android java.text.SimpleDateFormat
Date android java.util.Date
ParseException android android.net.ParseException

DateTime joda org.joda.time.DateTime

Days joda org.joda.time.Days

3

DateFormat jdk java.text.DateFormat
SimpleDateFormat jdk java.text.SimpleDateFormat
Date jdk java.util.Date
ParseException gwt org.w3c.flute.parser.ParseException

DateTime joda org.joda.time.DateTime

Days joda org.joda.time.Days

byQuick Fix even though Calender.getInstance().getTime()
only returns the latter.

2○ It only works with libraries and types on the class path, and

cannot fix errors related to unknown types. For example, if the

Joda-Time library is not on the class path, then Quick Fix cannot

create import statements for DateTime which is a type defined

in Joda-Time.

3○ It cannot recommend new libraries to be added to the class path.

Therefore, Quick Fix cannot recommend the Joda-Time library

to developers.

Recent research attempted to address 1○ and 2○ using simple

constraints [35] or more recently, statistics [25, 32]. We aimed to im-

prove upon previous techniques and tackle 3○. Previous solutions

did not consider the same FQN being implemented by multiple

libraries and did not recommend libraries as part of their inference.

In the StatType-SO benchmark of six libraries alone, both the JDK

and android libraries provide implementation for many standard

APIs. In the real world, we may want to include different versions

of the same library e.g. for supporting both Java 8 and 12 APIs.

In Table 1, we show a sample solution by SnR for the motivating

problem Figure 1. The large number of FQNs with multiple im-

plementation (shown in italics) demonstrates the need for a new

technique that can recommend correct libraries. Including multiple

libraries can lead to dependency conflicts and create serious run-

time bugs [39]. To address the shortcomings of prior solutions, we

strive to devise a technique to infer the correct FQNs from code

snippets while minimizing the conflict of recommended libraries.

This is in contrast to Coster which recommends all libraries containing
the inferred FQNs.

Expr F Name | Literal | this | Expr Op Expr

| (Type) Expr | Expr [Expr]

| Expr . SimpleName

| Expr instanceof ReferenceType

| Expr . SimpleName ({𝐸𝑥𝑝𝑟 })
| newClassType ({𝐸𝑥𝑝𝑟 })
| new Type [Expr]

Name F FQN | SimpleName

FQN F Name . SimpleName

Literal F null | NumberLiteral | StringLiteral

Op F + | - | * | / | % | > | == | >= | !=

Type F PrimitiveType | ReferenceType

ReferenceType F ClassType | ArrayType

| ParameterizedType

PrimitiveType F int | float | boolean

ClassType F Name

ArrayType F Type []

ParameterizedType F ClassType <{ClassType}>

Figure 2: Part of a simplified grammar of the expressions in
Java. {*} denotes that the enclosed term occurs zero or more
times.

2.2 Java Program
This paper specifically works for Java, but the proposed method-

ology is generalizable to other statically-typed programming lan-

guages. This section lists minimal Java concepts which are neces-

sary to illustrate our approach. A Java program consists of a set of

compilation units each of which is a Java source file and defines

one class along with any number of inner classes.

Generally, a Java class has the following components which are

used by SnR for type inference.

Name Each type (e.g., class, interface, annotations) has a fully
qualified name, which is the combination of its package name (may

be empty) and simple name. Syntactically, an FQN is a sequence of

simple names joined by dots.

Super Class Each class has a single super class except the class
java.lang.Object (Object for short). The default super class of
a class is Object if the extends declaration is absent.

Interfaces Each class can have a set of interfaces as supertypes.
Annotations Each class can have a set of annotations.
Fields Each class can have a set of fields. Each field has a type and

a name, and can be optionally initialized with an expression.

Methods Each class has a set ofmethods. Each method has a name,
an optional sequence of parameters and a return type. Methods

contain statements and expressions in them.

Figure 2 shows a simplified version of the grammar of expressions

in Java. We will use this grammar and the language constructs listed

above to illustrate how SnR infers required types and libraries for

incomplete Java code snippets.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

Program F Fact Program | Rule Program | 𝜀

Fact F relation ({constant }).
Rule F Atom :- NAtom {NAtom} .

NAtom F Atom | ! Atom

Atom F relation ({Term})
Term F constant | variable

(a) Simplified Datalog grammar. The terms relation and variable
are names for defining relationships declaring and referencing vari-
ables. constant is either a numerical or string literal. {*} denotes that
the enclosed term occurs zero or many times.

a b c

(b) Dependency graph

1 reachable(s,t) :- node(s) node(t)

2 edge(s, t).

3 reachable(s,t) :- node(s) node(m) node(t)

4 edge(s, m)

5 reachable(m,t).

(c) Datalog program

1 node("a").

2 node("b").

3 node("c").

4 edge("a","b").

5 edge("b","c").

(d) Datalog program input
representing the dependency
graph

1 reachable("a","b").

2 reachable("a","c").

3 reachable("b","c").

(e) Successful query for the
reachable rule given the input
in Figure 3d

Figure 3: Datalog grammar and a Datalog example program.

2.3 Datalog
Our technique leverages Datalog, a declarative logic programming

language which emerged from database systems in 1980s [34]. In

recent years, Datalog has found use in a whole range of applica-

tions [9, 12] in particular program analysis [3, 5, 8, 20].

A simplified version of the Datalog grammar is shown in Fig-

ure 3a. A Datalog program consists of a list of facts and rules,

representing sets of relations. Facts are known relations given to

a Datalog program and rules are used to derive relations using

facts and other rules as specified by the program. Relations can be

queried to return all satisfying constants.

Figures 3b–3e use a dependency graph as an example to illustrate

the various facets of a Datalog program. The dependency graph in

Figure 3b has three nodes a, b, and c where a depends on b and b
depends on c. The information of this dependency graph can be

represented as the Datalog facts shown in Figure 3d. To recursively

query the reachable node pairs in this dependency graph, we write

a demonstration Datalog program consisting of two rules as shown

in Figure 3c. When we query for the reachable relation, all the

reachable node pairs are returned by a Datalog solver as seen in

Figure 3e, i.e., (a,b), (a,c), and (b,c).

3 METHODOLOGY

Template-Based

Repair

Type

Inference

Import

Repair

Snippet AST AST+Types

Compilation

Unit+Libraries

Figure 4: The overall workflow of SnR to repair a code snip-
pet to a compilable compilation unit.

Figure 4 shows the overview of SnR. Given an incomplete code

snippet as input, SnR aims to output a compilable compilation unit
which is the input to a Java compiler (i.e., a Java source file) and
contains 1○ the code snippet, 2○ the necessary skeleton code (e.g., a
class definition and a method definition to enclose the code snippet)

to make the compilation unit syntactically valid, and 3○ inferred

required import statements together with the libraries defining the

imported types. To achieve this objective, the workflow of SnR has

the following three major procedures.

Template-Based Repair. Given a code snippet 𝑐 consisting of

a list of statements, SnR first attempts to create a minimal code

skeleton based on pre-defined templates to enclose 𝑐 , so that the

skeleton and 𝑐 together forms a syntactically valid compilation unit.

Our approach is similar to that outlined by Terragni et al. [36]. After

the repair, the Abstract Syntax Tree (AST) of the unit is generated

for the following procedures.

Type Inference. Given the AST, SnR leverages the type inference

engine to analyze and extract the constraints. These constraints

encode the typing relations among types used in the AST. Then

SnR refines the knowledge base, pre-built from a set of libraries,

with concrete types to replace the generic types previously stored.

Lastly, the refined knowledge base and constraints are given to

Datalog to solve, giving us a list of solutions for the next step.

Import Repair. In the third step, SnR interprets the list of constraint-

satisfying solutions, creates import statements and inserts them

into the code skeleton. To validate the results SnR leverages the

Java compiler to compiles the resulting compilation unit. If the com-

pilation succeeds, the compilation unit together with the import

statements and the required libraries are output as the final result.

Type inference is the most critical step in SnR. Figure 5 describes
the internal components in the type inference engine. In the re-

mainder of this section, we describe these components in detail.

3.1 Knowledge Base
Given a set of libraries, we build the knowledge base which can be

queried to resolve ambiguities (§3.3) when gathering constraints

and solving constraints (§3.4).

3.1.1 Content. A simplified schema for our knowledge base is

described in Figure 6. For each type, the knowledge base stores the

FQN, supertype, super-interfaces, fields and methods. Generic types

are stored as is in the knowledge base. For example, List.get()
in the knowledge base has the type T which will be refined before

being given to Datalog when solving constraints, discussed in §3.4.

Note that the schema in Figure 6 is simplified to ease presentation

with the assumption that there are nomultiple classes with the same

SnR: Constraint-Based Type Inference for Incomplete Java Code Snippets ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Gather

Constraints

Solve

Constraints

Knowledge Base

AST AST+Types

Figure 5: Type Inference Process in SnR.

class

FQN

supertype

generics

field

(FQN)

name

type

super-interface

(FQN)

interface name

method

(FQN)

name

return type

argument types

number of arguments

Figure 6: Simplified version of the knowledge base schema
assuming there are no classes with the same FQN. Each box
represents a table with a table name (in blue) and a number
of column names. The underline denotes the primary key
or keys that uniquely identify a row of data. The column
names in parenthesis are foreign keys which are linked to
primary keys in another table. An edge represents a one-
to-many relationship between the two connected tables.

FQN. Moreover, library information (e.g., which library defines a

type) is also omitted in Figure 6. The real knowledge base in SnR
handles both with additional database table columns.

3.1.2 Query Functions. We define the following query functions

to retrieve information from the knowledge base. Each function

represents a retrieval criterion and the parameters parameterize the

criterion. Each function returns a set of types (i.e., classes, interfaces
and annotations) that satisfy the specified retrieval criterion. Table 2

lists the query functions used in this paper.

Table 2: Query functions to retrieve types from knowledge
base.

Query Function Description

Ωsimplename(name) Returns the types with the given simple name

Ωfqn(name) Returns the types with the given fully qualified name

Ωfield(name) Returns the types that have a field called the given name

Ωmethod(name, num_args) Returns the types defining a method with the given name
which takes num_args number of parameters

Besides querying normal types, Ωsimplename has specialized sup-

port for querying inner types (e.g., inner classes, inner interfaces).

Note that an inner type can have multiple simple names. Consider

an inner class Builder with an outer class java.util.Calendar.
It is possible to reference this type with either of the two simple

names Calendar.Builder or Builder using import statements

java.util.Calendar or java.util.Calendar.Builder respec-

tively.

Ωsimplename supports querieswith different forms of simple names.

In the example above, this query function can be called with either

Ωsimplename ("Calendar.Builder") or Ωsimplename ("Builder").

3.2 Type Inference: Extracting Constraints
Given an AST, SnR traverses it and extracts the constraints captur-

ing the relations among the types used in the AST. Specifically, SnR
concentrates on type elements defines as below,

Definition 3.1 (Type Elements). Type elements in an AST refer
to the nodes that define new types or use types, i.e., type declarations
(e.g., class, interface and annotation declarations), explicitly used
types, statements and expressions.

Note that prior work [25, 32] uses a different term API elements,
which is a subset of type elements and focuses on only explicitly

used types i.e. simple names, field accesses, method calls. For high-

precision type inference, SnR infers not only explicitly used types

but also implicitly used types in expressions, e.g. variables, method

arguments, method returns. All the AST nodes used by SnR for

type inference constitute type elements in this paper.

3.2.1 Creating Type Variables. For each type element, SnR first

creates one or more type variables to represent the types defined or

used in the type element or in the components of the type element

For simplicity, we use 𝜏 to denote a type variable. Given the type

element (a statement) below,

Date today = Calendar.getInstance().getTime();

SnR creates four type variables

Type Variable Description

𝜏1 the type of Date

𝜏2 the type of Calendar

𝜏3 the return type of Calendar.getInstance()

𝜏4 the return type of Calendar.getInstance.getTime()

3.2.2 Extracting Constraints. Based on the type variables created

from a type element, SnR further extracts constraints from the type

element to capture the relations among the type variables. Table 3

lists all the types of constraints used in SnR, and Table 4 lists the

concrete rules to create type variables and constraints for type

elements.

Take the class declaration for an example. The rule with the

name ‘Declaration’ in Table 4 specifies that for a class declaration

𝑐 , SnR generates at least two type variables (𝜏 for 𝑐 and 𝜏1 for the

super class of 𝑐), and a list of type variables ®𝜏2 (®𝜏2 can be empty)

for the interfaces ®𝑡2 of 𝑐 with each type variable 𝜏𝑖 in ®𝜏2 repre-

senting the type of one interface. Then SnR creates one constraint

extend(𝜏, 𝜏1) to capture the typing relation between 𝑐 and 𝑡1, and

one interface(𝜏, 𝜏𝑖) for each implemented interface.

SnR makes extensive uses of the subtype constraint in order to

model implicit type conversions of both primitive and reference

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

Table 3: Constraints used in this paper. Each constraint spec-
ifies some property that a type variable 𝜏 should have, or
some relation among multiple type variables.

Constraint Description

simplename(𝜏, name) 𝜏 has the given simple name

fqn(𝜏, name) 𝜏 has the given FQN name

field(𝜏, name, 𝜏field) 𝜏 has a field with given name of the type 𝜏field
method(𝜏, name, ®𝜏arg, 𝜏ret) 𝜏 has a method with given name, argument types

®𝜏arg and return type 𝜏ret

paramtype(𝜏, ®𝜏arg, 𝜏param) 𝜏 with parameter ®𝜏arg builds the parameterized

type 𝜏param

arraytype(𝜏, 𝜏arr) An array of 𝜏 is type 𝜏𝑎𝑟𝑟

subtype(𝜏parent, 𝜏child) 𝜏child can be implicitly converted to 𝜏parent

extend(𝜏, 𝜏super) 𝜏 extends 𝜏super

interface(𝜏, 𝜏interface) 𝜏 implements the interface of 𝜏interface

annotation(𝜏) 𝜏 is an annotation type

innerclass(𝜏, 𝜏inner) 𝜏 is has an inner class type of 𝜏inner

types allowed in Java (e.g. in assignments or when passing method

arguments) and to constrain certain known types in the AST (e.g.
the conditional in an if statement is a boolean).

An Example. Following the rules outlined in Table 4, SnR creates

the following constraints over the type variables 𝜏1, 𝜏2, 𝜏3 and 𝜏4 of

the example statement in §3.2.1.

Constraints Description

simplename(𝜏1,"Date") 𝜏1 has the simple name Date

simplename(𝜏2,"Calendar") 𝜏2 has the simple name Calendar

method(𝜏2 ,"getInstance",[],𝜏3) 𝜏2 has amethod named getInstance that takes
no arguments with the return type of 𝜏3

method(𝜏3 ,"getTime",[],𝜏4) 𝜏3 has a method named getTime that takes no

arguments with the return type of 𝜏4

subtype(𝜏1,𝜏4) 𝜏1 has a subtype 𝜏4 because of the assignment

3.3 Type Inference: Resolving Ambiguities
From the constraint generation rules laid out in Table 4, inner

classes, qualified names and field expressions can bring ambiguities

into the process of extracting constraints. For example,

java.util.Collections.EMPTY_LIST

for the first identifier java in this expression, there are four broad

categories of possible interpretations,

1○ java is a variable defined locally in the current code snippet,

e.g., a local variable, a method parameter, a class field.

2○ java is a class defined locally in the current code snippet, e.g.,
an inner class.

3○ java is the name of a type (e.g., a class or an interface) which

is defined externally but not in the current code snippet.

4○ java is a part of a package name, and the package name is used

to form a FQN.

The remaining identifiers are then potentially a mix of packages,

classes, inner classes and field references. It is impossible at the

parsing time to determine which of these cases the current code

snippet refers to without import statements.

SnR verifies these interpretations in the order they are listed. 1○
and 2○ can be verified through examining the code snippet for lo-

cally defined variables and types. On the other hand, without import

statements, 3○ and 4○ cannot be verified. SnR overcomes this chal-

lenge by leveraging the knowledge base. For the example above, by

performing a knowledge base look up Ωsimplename("java"), 3○ can

be ruled out. Similarly by performing multiple Ωfqn queries to find

the longestmatching FQN,we find that 4○ java.util.Collections
is the best possible interpretation to resolve the ambiguity.

InnerClass and FieldConstraints. The subsequent unmatched

parts could be inner classes or fields. Inner classes can be found by

performing additional look ups to the knowledge base (Ωsimplename).

The rest of the identifiers are considered to be fields.

In the event that the knowledge base is not complete, i.e., the
knowledge base does not have information about the symbol, then

SnRmay generate incorrect constraints. However, this can be easily

addressed by incorporating more libraries into the knowledge base.

3.4 Type Inference: Solving Constraints
Given a code snippet 𝑠 , the set 𝐶 of the constraints extracted from

𝑠 by the rules in Table 4 can be directly solved by a Datalog solver

against the knowledge base, if 𝑠 does not define or use any generic

methods or types.

However, if 𝑠 uses generics inside, due to the complexities of Java

generics and the limited expressiveness of Datalog, we propose a

two-step process to solve 𝐶 . Generally speaking, for 𝑠 and 𝐶 , SnR
first generates a new, possibly smaller knowledge base from the

original knowledge base Ω by replacing generic types in Ω with

concrete types, and then uses the small knowledge base as Datalog

facts to solve 𝐶 .

The small knowledge base can be viewed as a refinement of Ω
with more concrete type information, and thus is referred to as

a refined knowledge base. The main reason of introducing this

refinement step is that Ω only has signatures of generic types and

methods and it is not easy to encode the typing rules of Java generics

completely in Datalog.

3.4.1 Example. We use the following code snippet as an example

to demonstrate how refined knowledge bases are generated.

1 List <Date > lod = new ArrayList <>();

2 lod.get(0);

The following table shows the constraints extracted from the code

snippet above. There are five type variables in total. The pur-

poses of 𝜏1, 𝜏2 and 𝜏3 are for List, Date and ArrayList respec-

tively; 𝜏4 represents the type of List<Date> via the constraint

paramtype(𝜏1, 𝜏2, 𝜏4), while 𝜏5 is the return type of lod.get(0).

Constraint Constraint

simplename(𝜏1, "List") paramtype(𝜏1, 𝜏2, 𝜏4)
simplename(𝜏2, "Date") subtype(𝜏4, 𝜏3)
simplename(𝜏3, "ArrayList") method(𝜏4, "get", ["int"], 𝜏5)

Querying Type Candidates. To instantiate the generic types in

the original knowledge base Ω, we need to retrieve all the types

from Ω that are relevant to the constraints. Therefore for each

type variable 𝜏 and each simplename, fqn, field and method con-

straints on 𝜏 , we use the corresponding query functions defined in

Table 2 to retrieve all possible candidate types for 𝜏 . For example, for

the simplename constraints of 𝜏1, 𝜏2 and 𝜏3 we can use Ωsimplename

SnR: Constraint-Based Type Inference for Incomplete Java Code Snippets ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: A subset of rules to extract constraints from type elements. Γ denotes an environment that maps an expression, 𝑒, to
a type variable, 𝜏 ; ®𝑥 denotes a vector of 𝑥 where 𝑥 can be an expression 𝑒, a type variable 𝜏 , or type 𝑡 ; 𝑎 ∈ ®𝑥 denotes the check
whether 𝑎 is an element in the vector ®𝑥 . Γ(®𝑒) denotes a look up of every element in ®𝑒 on the environment Γ, and returns a vector
of type variables with each variable corresponding to an expression in ®𝑒.1

Category Name Code Type Variables Constraint

Class Declaration 𝑐𝑙𝑠 𝑐 𝑒𝑥𝑡 𝑡1 𝑖𝑚𝑝𝑙 ®𝑡2 𝑐 : 𝜏, 𝑡1 : 𝜏1, ®𝑡2 : ®𝜏2 extend(𝜏, 𝜏1)
∀𝜏𝑖 ∈ ®𝜏2, interface(𝜏, 𝜏𝑖)

Type Type 𝑡 𝑡 : 𝜏 simplename(𝜏, 𝑡)
Array Type 𝑡 [] 𝑡 : 𝜏1, Γ(𝑡 []) = 𝜏2 arraytype(𝜏1, 𝜏2)
Paramed Type 𝑡1⟨ ®𝑡2⟩ 𝑡1 : 𝜏1, ®𝑡2 : ®𝜏2, Γ(𝑡1⟨ ®𝑡2⟩) = 𝜏3 paramtype(𝜏1, ®𝜏2, 𝜏3)

Statement If if (𝑒) {®𝑠} Γ(𝑒) : 𝜏 subtype(𝜏, "boolean")
While while (𝑒) {®𝑠} Γ(𝑒) : 𝜏 subtype(𝜏, "boolean")

Expression Assignment 𝑒1 = 𝑒2 Γ(𝑒1) = 𝜏1, Γ(𝑒2) = 𝜏2 subtype(𝜏1, 𝜏2)
Annotation @ 𝑡 𝑡 : 𝜏 annotation(𝜏)
Inner Class 𝑡 . 𝑐𝑡 𝑡 : 𝜏1, Γ(𝑡 .𝑐𝑡) = 𝑐𝑡 : 𝜏2 simplename(𝜏2, 𝑐𝑡)

innerclass(𝜏1, 𝜏2)
Qualified Name 𝑛 . 𝑠𝑛 𝑠𝑛 : 𝜏 fqn(𝜏, 𝑛.𝑠𝑛)
Field 𝑒 . 𝑓 Γ(𝑒) = 𝜏1, Γ(𝑒.𝑓) = Γ(𝑓) = 𝜏2 field(𝜏1, 𝑓 , 𝜏2)
Method 𝑒1 . 𝑚 (®𝑒2) Γ(𝑒1) = 𝜏1, Γ(®𝑒2) = ®𝜏2, Γ(𝑒1 .𝑚(®𝑒2)) = 𝜏3 method(𝜏1,𝑚, ®𝜏4, 𝜏3)

®𝜏4 = [create 𝜏𝑝 for 𝜏𝑠 in ®𝜏2] ∀⟨𝜏𝑠 , 𝜏𝑝 ⟩ ∈ ⟨ ®𝜏2, ®𝜏4⟩, subtype(𝜏𝑝 , 𝜏𝑠)
New Instance new 𝑡 (®𝑒) 𝑡 : 𝜏1, Γ(®𝑒) = ®𝜏2, Γ(new 𝑡 (®𝑒)) = 𝜏3 method(𝜏1, "<init>", ®𝜏4, 𝜏3)

®𝜏4 = [create 𝜏𝑝 for 𝜏𝑠 in ®𝜏2] ∀⟨𝜏𝑠 , 𝜏𝑝 ⟩ ∈ ⟨ ®𝜏2, ®𝜏4⟩, subtype(𝜏𝑝 , 𝜏𝑠)
Instance Of 𝑒 instanceof 𝑡 𝑡 = 𝜏1, Γ(𝑒 instanceof 𝑡) = 𝜏2 subtype(𝜏2, "boolean")
Array Access 𝑒1 [𝑒2] Γ(𝑒1) = 𝜏1, Γ(𝑒2) = 𝜏2 subtype(𝜏2, "int")

to retrieve the following type candidates for each type variable

(Note that the candidates are pruned for illustration purpose.).

Constraint Query Candidates

simplename(𝜏1, "List") Ωsimplename ("List") java.util.List

java.awt.List

simplename(𝜏2, "Date") Ωsimplename ("Date") java.util.Date

java.sql.Date

simplename(𝜏3, "ArrayList") Ωsimplename ("ArrayList") java.util.ArrayList

Building Refined Knowledge Bases. Based on the informa-

tion of the type candidates, we next build the refined knowledge

base. We first look into 𝐶 to find paramtype constraints which

represent instantiations of generic types in code snippets. It is

paramtype(𝜏1, 𝜏2, 𝜏4) in this example. From this constraint, we

know that 𝜏1 should be a generic type, and therefore we remove

java.awt.List from the candidate set of 𝜏1 as this class is not

generic;𝜏2 can be either java.util.Date or java.sql.Date; there-
fore, 𝜏4 can be either of the following two concrete types

• java.util.List<java.util.Date>
• java.util.List<java.sql.Date>

From the constraint subtype(𝜏4, 𝜏3), we need to further instantiate
two concrete classes of java.util.ArrayList as follows,

• java.util.ArrayList<java.util.Date>
• java.util.ArrayList<java.sql.Date>

Next, we create a refined knowledge base Ω′
by combining these

four concrete classes andΩ. Themethod T java.util.List.get(int)
in Ω becomes the following two methods in Ω′

,

• java.util.Date java.util.List<java.util.Date>.get(int)
• java.sql.Date java.util.List<java.sql.Date>.get(int)

Constraint Solving. In the end, we use a Datalog solver to solve

𝐶 by using Ω′
as the Datalog facts. The benefit of using Ω′

is

obvious: when the Datalog solver sets 𝜏2 to either concrete Date
type, 𝜏5—the return type of the method call get(0)—will have the
same type as 𝜏2, thanks to the specialized get(int) methods in

Ω′
. In contrast, if we use Ω as the Datalog facts, the Datalog solver

cannot infer that 𝜏5 should always be the same as 𝜏2.

3.5 Type Inference: Candidate Prioritization
Given a code snippet 𝑠 and the set of type variables 𝑇 extracted

from 𝑠 , the type inference engine in §3.4 outputs a set of FQNs for

each 𝜏 ∈ 𝑇 as well as sets of libraries defining each FQN.

Solution Candidates. Then SnR processes the type inference

result of 𝑐 and outputs a list of solution candidates. Each candidate

1
Vector ®𝜏4 is created for method and new instance expression where new type variables

𝜏𝑝 is created for each type variable in ®𝜏2 ; for each pair of original and newly created

type variable ⟨𝜏𝑠 , 𝜏𝑝 ⟩ from the two vectors ⟨ ®𝜏2, ®𝜏4 ⟩, generate a subtype constraint.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

Table 5: Statistics of the StatType-SO benchmark.

(a) The number of public or pro-
tected, classes, fields, and methods
for each library in StatType-SO.

Library Classes Fields Methods

Android 2,357 8,943 22,933

JDK 11,881 28,443 105,807

JodaTime 143 166 3,053

GWT 1,518 542 9,288

Hibernate 2,356 1,681 18,749

XStream 628 146 3,855

Total 18,883 39,921 163,685

(b) Top 5 simple class
names in the StatType-
SO dataset with their re-
spective number of occur-
rences.

Class Name Occurrences

Builder 71

EntrySet 40

Type 38

Entry 30

PropertyKeys 29

is a set of triples in the form

{ ⟨𝜏, fqn, lib⟩ |𝜏 ∈ 𝑇, fqn is a FQN for 𝜏, lib is a library defining fqn}
Prioritization Heuristic. To make SnR useful and accurate at

repairing code snippets, we design a simple yet effective prior-

itization heuristic to rank these solution candidates so that the

candidates at the top of the ranking list are more likely to be correct

than those at the bottom. The general principle of this heuristic is

to minimize the number of unique libraries in a candidate. Take

Table 1 for an example. The third candidate is ranked after the

first two because the third one has one more library, i.e., gwt. The
intuition behind our heuristic is similar to the clustering hypothesis

proposed in [36].

4 EVALUATIONS
Wehave conducted extensive evaluations of SnR in different aspects

to answer the following research questions.

RQ1: How does SnR perform at type inference?

RQ2: How does SnR perform at resolving import statements

RQ3: Does SnR recommend the correct libraries?

RQ4: How does SnR perform at making code snippets compilable?

RQ1 to RQ4 evaluate the performance of SnR compared to the

state-of-the-art type inference tools. Since Coster has been shown

to match or outperform prior techniques [32]; thus in this paper we

only compare SnR with Coster. The source code of Coster, along

with their model, was obtained from its github repository [29].

We use precision, recall, and 𝐹1 score tomeasure the performance

of SnR considering only the top candidate, as used by Coster.

Precision =
recommendations made ∩ relevant

recommendations made

Recall =
recommendations made ∩ relevant

recommendations requested

F1 =
2 × Precision × Recall
Precison + Recall

Dataset. We use an existing dataset referred to as StatType-SO,

which was used in [25, 32]. The dataset consists of 267 snippets

from six popular libraries. Table 5 lists various statistics of StatType-

SO. All the public classes, fields, and methods are counted not

including inherited fields and methods. This dataset represents how

developers use a wide variety of real Java libraries in practice, and

evaluations using this dataset demonstrate that our technique is

sound for libraries ranging from small to large. This benchmark

which consists of the code snippets and the libraries was obtained

from the original benchmark authors Phan et al. [25].

Implementation. SnR is a single-threaded Java application and

uses MariaDB to serve as the knowledge base. The constraints

are solved using Soufflé [13] Datalog solver. We use Eclipse Java

Compiler to create and traverse ASTs. A replication package is

available at https://doi.org/10.5281/zenodo.5843327.

Hardware Configuration. All experiments were conducted on

an eight-year-old laptop with Intel Core i5-4300m CPU 2.60 GHz

and 16GB RAM. The operating system is Linux.

4.1 RQ1: How does SnR perform at type
inference?

We measured SnR’s and Coster’s performance in recommending

FQNs for API elements (i.e., simple names, field accesses andmethod

calls as defined in [32]) in StatType-SO. The results are summarized

in Table 6. SnR significantly outperforms Coster in precision (98.20%

vs 66.35%) and recall (79.66% vs 66.35%). Coster often incorrectly

recommend the more popular Apache commons logging library as

opposed to android.util.Log, despite the fact they have different
logging methods. SnR on the other hand is able to achieve 100%

precision for three out of the six libraries in the dataset.

Table 6: Performance of type inference for API elements.

Coster SnR

Precision Recall Precision Recall

Android 43.28% 43.28% 100.00% 93.64%

JDK 56.24% 56.24% 97.37% 71.12%

JodaTime 57.14% 57.14% 100.00% 89.47%

GWT 90.75% 90.75% 96.68% 75.84%

Hibernate 90.38% 90.38% 99.32% 94.81%

XStream 88.41% 88.41% 100.00% 100.00%

Total 66.35% 66.35% 98.20% 79.66%

Table 7: Performance of type inference for type elements.

Total Analyzed Correct Precision Recall

Android 1,690 1,452 1,308 90.08% 77.40%

JDK 12,450 10,245 9,166 89.47% 73.62%

JodaTime 1,283 1,051 1,013 96.38% 78.96%

GWT 2,273 1,951 1,679 86.06% 73.87%

Hibernate 1,583 1,496 1,407 94.05% 88.88%

XStream 864 864 804 93.06% 93.06%

Total 20,143 17,059 15,377 90.14% 76.34%

https://doi.org/10.5281/zenodo.5843327

SnR: Constraint-Based Type Inference for Incomplete Java Code Snippets ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

To further understand the performance of SnR, we applied SnR
to infer FQNs for all type elements (defined in Definition 3.1) in

StatType-SO, which is a much more difficult task than inferring

FQNs for API elements because type elements are a large super set

of API elements. Note that Coster is not capable of doing this task.

To compute the ground truth, for each code snippet we provided

the proper libraries to Eclipse and used Eclipse to find and compute

types for the type elements in the dataset. In the end, Eclipse found

20,143 type elements along with their types in total.

Table 7 shows the performance of SnR on this task. Among those

type elements, SnR analyzed 17,059 ones and 15,377 were correctly

inferred, achieving precision of 90.14% and recall of 76.34%. This

high precision and recall for all type elements further demonstrates

the advantages of SnR over the state of the art, which also enables

SnR to accurately, reliably repair incomplete code snippets.

4.2 RQ2: How does SnR perform at resolving
import statements?

We use SnR and Coster to resolve import statements for all code

snippets. Because Coster was not explicitly designed to support

catch and annotation expressions, we automatically completed 56

of those import statements for Coster.

Table 8 summarizes the results. Overall, SnR correctly resolved

91.0% of the import statements, whereas Coster could only resolve

36% though 56 import statements were resolved by us.

Table 8: Performance of inferring import statements.

Total Imports SnR Completed Coster Completed

Android 220 205 (93.2%) 18 (8.2%)

JDK 332 294 (88.6%) 174 (52.4%)

JodaTime 134 118 (88.1%) 35 (26.1%)

GWT 301 265 (88.0%) 90 (29.9%)

Hibernate 159 149 (93.7%) 101 (63.5%)

XStream 152 150 (98.7%) 49 (32.2%)

Total 1,298 1,181 (91.0%) 467 (36.0%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

20

40

60

80

100

120

140

160

180

#
o
f
s
n
i
p
p
e
t
s

Coster SnR

Figure 7: The distribution of code snippets w.r.t. number
of missing import statements after repair using SnR and
Coster. Points with 𝑦 = 0 are not plotted.

Different from Table 8 which shows the information on com-

pleted import statements, Figure 7 shows the information on miss-

ing import statements. The x-axis is the number of missing import

statements ranging from 0, and the y-axis is the number of code

snippets with the x number of missing imports after being repaired

by either SnR or Coster. SnR can completely repair 198 code snip-

pets without missing import statements, compared to only 35 by

Coster; for SnR, most of the rest code snippets have one or two

missing imports, while for Coster, most of the rest have one to

seven missing imports. This figure demonstrates that SnR is able to

resolve more import statements accurately than Coster, and thus

can potentially save more developers’ time.

Real world example. Recently, Coster has been released as an

Eclipse plugin [31] for finding FQNs in code snippets. The author

produced a demonstration video [30] illustrating the new inte-

gration with Eclipse to fix import statements. In the video, the

authors attempted to repair the code snippet from Stack Overflow

post [6] for which Coster failed to create import statements for

DateTimeZone and DateTimeFormat. We applied SnR on the same

code snippet, and SnR precisely resolved all import statements.

4.3 RQ3: Does SnR recommend the correct
libraries?

We evaluated the accuracy of SnR’s library recommendation. We

manually examined each code snippet in the dataset to find all the

dependent libraries, not just the six used in the previous evaluations.

There were 33 unique libraries in total.

We compared SnR against a naive (SnRNaive) approach where

libraries are sorted alphabetically and taken greedy until all the

missing libraries are satisfied, to validate whether our candidate

prioritization heuristic detailed in §3.5 is effective. We also com-

pared against Coster which recommends all libraries containing the

inferred FQNs. For each code snippet, the recommendation result

is classified into one of the following categories.

Same if the tool recommends the exact expected libraries.

Different if the tool recommends one or more alternatives for

some expected libraries.

Extra if the tool recommends a superset of the expected libraries.

Missing if the tool recommends a subset of the expected libraries.

None if the tool incorrectly recommends no libraries.

Table 9: SnR library recommendation compared to a naive
candidate prioritization SnRNaive, and Coster.

Same Different Extra Missing None Precision Recall 𝐹1

SnR 183 62 11 4 7 0.82 0.83 0.82

SnRNaive 118 75 64 3 7 0.68 0.81 0.72

Coster 34 36 129 8 60 0.47 0.68 0.53

Table 9 lists the classification result. SnR correctly recommended

the exact libraries for 183 code snippets, compared to 118 for SnRNaive
and 34 for Coster. SnR also achieved the highest precision and re-

call, and thus we concluded that SnR performed the best among

the three tools, which further demonstrates that our candidate pri-

oritization strategy in §3.5 is effective in improving the accuracy of

type inference.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

4.4 RQ4: How does SnR perform at making
code snippets compilable?

4.4.1 Efficacy. To evaluate the efficacy of SnR at automatically

making code snippets compilable, we compiled the repaired code

snippets and recorded the remaining errors. SnR achieved an aver-

age of 73.8% where 197 out of 267 snippets were compilable after

the repair. Coster on the other hand could make only 9.0% (24 out of

267) of snippets compilable. Our high-precision type inference tech-

nique allows for higher-quality repair and results in a larger number

of compilable code snippets thus allows for more information to be

recovered from each code snippet.

4.4.2 Efficiency. SnR is efficient enough to be used in practice.

Averaged over five runs, SnR’s repair process finished in an average

of 11.7 seconds for each snippet and half the snippets finished

within 8.4 seconds. As seen in Figure 8, the time SnR takes to repair

a snippet increases as the number of imports in a snippet increases.

But even for a very complex code snippet, the slowest one finished

in 82.2 seconds on an eight-year-old laptop.

0 5 10 15 20

0

20

40

60

80

Number of Imports

T
i
m
e
(
s
)

Figure 8: The time it takes to repair a snippet withX number
of imports. Each × represents a snippet.

Coster can finish repairing a code snippet very fast in seconds, de-

spite its low efficacy in repairing code snippets for compilation. On

the other hand, Coster is based on machine learning, and requires

training a model, which can take days to finish.

5 DISCUSSION
In this section, wewill discuss potential applications of ourwork (§5.1),

along with the limitations of our technique (§5.2) and potential

threats to validity (§5.3).

5.1 Application
SnR has immediate applications for software engineering.

IDE Improvement. The constraint-based technique used in SnR
can be readily used by existing IDEs to provide accurate code com-

pletion suggestions. For example, given the code snippet shown

in Figure 1, currently Eclipse does not properly leverage the rela-

tion between Date and the other APIs, and thus may incorrectly

rank java.sql.Date before java.util.Date. With the help of

SnR, Eclipse can precisely recommend importing java.util.Date.
Another salient application of SnR is to automatically import de-

pendencies for pasted code snippets. Coster has provided an Eclipse

plugin of a similar purpose [31]. As demonstrated in §4, SnR out-

performs Coster and can effectively improve the performance of

such an IDE feature. As code snippets are generally small and devel-

opers infrequently copy large chunks of code from SO, thus SnR’s
inference time is sufficient for real world use.

Dependency Repair. Dependency-related issues account for a

large number of build failures at Google [19]. The state-of-the-art

tool for fixing dependency issues is DeepDelta, which leverages

a deep learning model to learn how developers fix such issues in

the past, and apply the model for new build failures. SnR can com-

plement DeepDelta, as SnR makes full use of type systems built

in programming languages, overlooked by DeepDelta. With SnR,
failed compilation due to missing libraries can be automatically re-

paired by running the inference and adding the suggested libraries.

Stack Overflow Study. SnR can increase the precision and scope

of analysis on online code snippets [4, 21, 27, 41, 44]. It can be used

to fix the incomplete code snippets, and the followed analyses

can take advantage of the compilable snippets which can offer

more semantic information about the snippets; to provide better

metric on what makes a good code snippet [21]; to aid training of

algorithms that use SO snippets [41]; to better existing IDE SO code

recommendation tools [27].

5.2 Limitation
Certain code snippets reference classes not in the knowledge base

and thus cannot be inferred e.g. from a class written in a tutorial.

This limitation impacts the efficacy of both SnR and previous solu-

tions alike. We address this limitation by providing partial solutions

by ignoring the type variables without candidates which may intro-

duce inaccuracies. However, as can be seen from RQ1-4, SnR still

outperforms the state-of-the-art tool.

5.3 Threats to Validity
Internal. We did our best to minimize potential internal validity

issues. Our SnR implementation may contain bugs leading to in-

correct repair. We mitigated this by reviewing the instances where

SnR is unable to perform repair steps. To ensure the integrity of our

evaluations, we externalized the evaluation scripts to ensure both

SnR and Coster are evaluated in the same manner. For Coster, we

pulled the code and model from their public Github repository and

followed their instruction to set up their tool. These mitigations

ensure we’re presenting a fair comparison for SnR.
External. In terms of external validity, there is a risk our work

may not generalize to other programming languages. The con-

straints are fairly universal and can apply to other object oriented

languages. Most languages have fields and methods. Generics are

common in other typed languages, e.g. C#, Rust, Swift, TypeScript.
The constraint solving stage is language agnostic. Thus our tech-

nique does not rely on Java specific constructs and can be adapted

for other programming languages.

6 RELATEDWORK
Type Inference. The area of type inference have a rich history in

programming languages specially object-oriented languages [10, 22,

23, 33, 38]. Constraints have also been used for type analysis [2, 38].

Our work departs from existing works in this area by working with

incomplete code and leveraging a knowledge base.

SnR: Constraint-Based Type Inference for Incomplete Java Code Snippets ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Type inference on incomplete code has seen some recent inter-

ests [25, 32, 35]. Our work is similar to some of the earlier works

from Subramanian et al. [35] in the use of constraints but differ in

some keyways such as, (1) generic type handling, (2) method of solv-

ing, and (3) selection of multiple compatible candidates. Their tool

Baker relied on simple constraints and does not provide library rec-

ommendations. More recent works surpassed Baker’s performance

using statistical models to improve inference accuracy [25, 32].

These models are trained using a large set of existing [18] or col-

lected popular Github projects and are evaluated using hand col-

lected SO posts including StatType-SO. Saifullah et al. [32] improved

upon the model by Phan et al. [25] by leveraging local and global

context. Our work improves upon the state of the art and compli-

ment the existing techniques. Future techniques can incorporate

the accuracy of constraint based techniques with the performance

of statistics based ones.

Deep learning models [11, 16] has been used to conduct type

inference on dynamically typed languages. Unlike SnR, these tech-
niques often use additional sources of information such as com-

ments, method and variable naming to conduct their inference.

Partial Program Analysis. RecoDoc [7] is a tool for analyzing

partial programswhich are subsets of the program source files. Code

snippets on the other hand can be considered to be subsets of partial

programs. Thus, the techniques for analyzing partial programs are

insufficient for analyzing code snippets.

Stack Overflow Snippet. Past research have leveraged SO snip-

pets to build better development tools [27, 41], to study usages in

open source projects [4, 17, 43, 44], and more [25, 32, 36, 40]. Re-

cent work have used heuristics based approaches to automatically

synthesis compilable code snippets [36, 37]. Our work focuses on

type inference and greatly improves upon precision compared to

the existing state of the art solution.

Automated Repair. In the area of automated repair, prior re-

search has attempted to address compiler errors using neural net-

works [19], semantic errors leveraging test cases [15], or specifi-

cations (pre- and postconditions) [24]. Our work focuses on code

snippets which are incomplete code, without tests or specifications

in most cases. Our technique need to be more flexible and cannot

rely on having test code or specifications.

7 CONCLUSION
This paper proposes SnR, a novel, effective, constraint-based tech-

nique to automatically infer missing import statements and depen-

dent libraries for Java code snippets. Given an incomplete snippet,

SnR first automatically gathers constraints from the snippet, then

solves these constraints by querying a knowledge base built from

a large collection of Java libraries, and finally transforms the so-

lutions to the constraints to import statements and dependency

libraries. Our comprehensive evaluation of SnR on the StatType-SO

benchmark consisting of 267 snippets demonstrates that SnR sig-

nificantly outperforms the state of the art: SnR completed 91.0% of

the import statements, and compiled 73.8% of the snippets. Even for

the fail-to-repair snippets, our best-effort repair left most of them

with only one missing import statement. The high inference pre-

cision of SnR opens up new opportunities of boosting developers’

productivity with code snippets.

ACKNOWLEDGMENTS
We would like to thank all the anonymous reviewers for their in-

sightful comments. We would like to thank the authors of StatType

for providing their benchmark and authors of COSTER for helping

us run their tool. This work was funded by the Natural Sciences

and Engineering Research Council of Canada (NSERC) through the

Discovery Grant.

REFERENCES
[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On code reuse from

StackOverflow: An exploratory study on Android apps. Information and Software
Technology 88 (2017), 148–158. https://doi.org/10.1016/j.infsof.2017.04.005

[2] Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints

and Type Inference. In Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture (Copenhagen, Denmark) (FPCA ’93).
Association for Computing Machinery, New York, NY, USA, 31–41. https:

//doi.org/10.1145/165180.165188

[3] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. 2015. Combining

Type-Analysis with Points-to Analysis for Analyzing Java Library Source-Code.

In Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the Art
in Program Analysis (Portland, OR, USA) (SOAP 2015). Association for Computing

Machinery, New York, NY, USA, 13–18. https://doi.org/10.1145/2771284.2771287

[4] Sebastian Baltes and Stephan Diehl. 2019. Usage and attribution of Stack Overflow

code snippets in GitHub projects. Empirical Software Engineering 24, 3 (2019),

1259–1295.

[5] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery,

New York, NY, USA, 243–262. https://doi.org/10.1145/1640089.1640108

[6] cianBuckley. 2013. java - Joda Time converting time zoned date time

to milliseconds - Stack Overflow. Retrieved December 22, 2020

from https://web.archive.org/web/20170227042935/http://stackoverflow.com/

questions/18274902/jodatime-converting-time-zoned-date-time-to-millis

[7] Barthélémy Dagenais and Martin P. Robillard. 2012. Recovering Traceability

Links between an API and Its Learning Resources. In Proceedings of the 34th
International Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12).
IEEE Press, 47–57.

[8] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. 1996. Practical

Program Analysis Using General Purpose Logic Programming Systems—a Case

Study. In Proceedings of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation (Philadelphia, Pennsylvania, USA) (PLDI
’96). Association for Computing Machinery, New York, NY, USA, 117–126. https:

//doi.org/10.1145/231379.231399

[9] Oege De Moor, Georg Gottlob, Tim Furche, and Andrew Sellers. 2012. Datalog
Reloaded: First International Workshop, Datalog 2010, Oxford, UK, March 16-19,
2010. Revised Selected Papers. Vol. 6702. Springer.

[10] David Greenfieldboyce and Jeffrey S. Foster. 2007. Type Qualifier Inference for

Java. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (Montreal, Quebec,

Canada) (OOPSLA ’07). Association for Computing Machinery, New York, NY,

USA, 321–336. https://doi.org/10.1145/1297027.1297051

[11] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.

2018. Deep Learning Type Inference. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 152–162.

https://doi.org/10.1145/3236024.3236051

[12] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and

Emerging Applications: An Interactive Tutorial. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data (Athens, Greece) (SIG-
MOD ’11). Association for Computing Machinery, New York, NY, USA, 1213–1216.

https://doi.org/10.1145/1989323.1989456

[13] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis

of Program Analyzers. In Computer Aided Verification, Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer International Publishing, Cham, 422–430.

[14] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code

Examples. In Proceedings of the 36th International Conference on Software Engi-
neering (Hyderabad, India) (ICSE 2014). Association for Computing Machinery,

New York, NY, USA, 664–675. https://doi.org/10.1145/2568225.2568292

[15] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic

Method for Automatic Software Repair. IEEE Transactions on Software Engineering
38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

https://doi.org/10.1016/j.infsof.2017.04.005
https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/2771284.2771287
https://doi.org/10.1145/1640089.1640108
https://web.archive.org/web/20170227042935/http://stackoverflow.com/questions/18274902/jodatime-converting-time-zoned-date-time-to-millis
https://web.archive.org/web/20170227042935/http://stackoverflow.com/questions/18274902/jodatime-converting-time-zoned-date-time-to-millis
https://doi.org/10.1145/231379.231399
https://doi.org/10.1145/231379.231399
https://doi.org/10.1145/1297027.1297051
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1109/TSE.2011.104

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun

[16] R. S. Malik, J. Patra, and M. Pradel. 2019. NL2Type: Inferring JavaScript Function

Types from Natural Language Information. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 304–315.

[17] S. S. Manes and O. Baysal. 2019. How Often and What StackOverflow Posts

Do Developers Reference in Their GitHub Projects?. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). 235–239. https:

//doi.org/10.1109/MSR.2019.00047

[18] Pedro Martins, Rohan Achar, and Cristina V. Lopes. 2018. 50K-C: A Dataset of

Compilable, and Compiled, Java Projects. In Proceedings of the 15th International
Conference on Mining Software Repositories (Gothenburg, Sweden) (MSR ’18).
Association for Computing Machinery, New York, NY, USA, 1–5. https://doi.

org/10.1145/3196398.3196450

[19] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Eddie Aftandilian.

2019. DeepDelta: Learning to Repair Compilation Errors.

[20] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race De-

tection for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Ottawa, Ontario, Canada)

(PLDI ’06). Association for Computing Machinery, New York, NY, USA, 308–319.

https://doi.org/10.1145/1133981.1134018

[21] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. 2012. What makes a good

code example?: A study of programming Q A in StackOverflow. In 2012 28th
IEEE International Conference on Software Maintenance (ICSM). 25–34. https:

//doi.org/10.1109/ICSM.2012.6405249

[22] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. 1992. Making

type inference practical. In ECOOP ’92 European Conference on Object-Oriented
Programming, Ole Lehrmann Madsen (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 329–349.

[23] Jens Palsberg and Michael I. Schwartzbach. 1991. Object-Oriented Type Inference.

In Conference Proceedings on Object-Oriented Programming Systems, Languages,
and Applications (Phoenix, Arizona, USA) (OOPSLA ’91). Association for Com-

puting Machinery, New York, NY, USA, 146–161. https://doi.org/10.1145/117954.

117965

[24] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller. 2014. Automated

Fixing of Programs with Contracts. IEEE Transactions on Software Engineering
40, 5 (2014), 427–449. https://doi.org/10.1109/TSE.2014.2312918

[25] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and T. N. Nguyen.

2018. Statistical Learning of API Fully Qualified Names in Code Snippets of

Online Forums. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). 632–642.

[26] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack

overflow in the ide. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 1295–1298.

[27] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and

Michele Lanza. 2014. Mining stackoverflow to turn the ide into a self-confident

programming prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 102–111.

[28] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto. 2019. Toxic

Code Snippets on Stack Overflow. IEEE Transactions on Software Engineering
(2019), 1–1. https://doi.org/10.1109/TSE.2019.2900307

[29] C. M. K. Saifullah. 2020. COSTER. Retrieved May 18, 2020 from https://github.

com/khaledkucse/COSTER

[30] C. M. K. Saifullah. 2020. COSTER: A Tool for Finding Fully Qualified Names

of API Elements in Online Code Snippets. Retrieved December 22, 2020 from

https://youtu.be/oDZtw9MzUWM?t=208

[31] C M Khaled Saifullah, Muhammad Asaduzzaman, and Chanchal Roy. 2021.

COSTER: A Tool for Finding Fully Qualified Names of API Elements in Online

Code Snippets (ICSE ’21 DEMO).
[32] C. M. K. Saifullah, M. Asaduzzaman, and C. K. Roy. 2019. Learning from Examples

to Find Fully Qualified Names of API Elements in Code Snippets. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
243–254.

[33] Daniel Smith and Robert Cartwright. 2008. Java Type Inference is Broken: Can

We Fix It?. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming Systems Languages and Applications (Nashville, TN, USA) (OOPSLA
’08). Association for Computing Machinery, New York, NY, USA, 505–524. https:

//doi.org/10.1145/1449764.1449804

[34] Michael Stonebraker. 1988. Readings in database systems. Morgan Kaufmann

Publishers Inc.

[35] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API

Documentation. In Proceedings of the 36th International Conference on Software En-
gineering (Hyderabad, India) (ICSE 2014). Association for Computing Machinery,

New York, NY, USA, 643–652. https://doi.org/10.1145/2568225.2568313

[36] Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. 2016. CSNIPPEX: Auto-

mated Synthesis of Compilable Code Snippets from Q&A Sites. In Proceedings of
the 25th International Symposium on Software Testing and Analysis (Saarbrücken,
Germany) (ISSTA 2016). Association for Computing Machinery, New York, NY,

USA, 118–129. https://doi.org/10.1145/2931037.2931058

[37] Valerio Terragni and Pasquale Salza. 2021. APIzation: Generating Reusable

APIs from StackOverflow Code Snippets. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 542–554. https://doi.org/

10.1109/ASE51524.2021.9678576

[38] Tiejun Wang and Scott F. Smith. 2001. Precise Constraint-Based Type Infer-

ence for Java. In ECOOP 2001 — Object-Oriented Programming, Jørgen Lindskov

Knudsen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 99–117.

[39] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai

Yu, Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the Dependency Conflicts

in My Project Matter?. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 319–330. https://doi.org/10.

1145/3236024.3236056

[40] A. W. Wong, A. Salimi, S. Chowdhury, and A. Hindle. 2019. Syntax and Stack

Overflow: A Methodology for Extracting a Corpus of Syntax Errors and Fixes.

In 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 318–322.

[41] E. Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining question

and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 562–567. https:
//doi.org/10.1109/ASE.2013.6693113

[42] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From Query to Usable

Code: An Analysis of Stack Overflow Code Snippets. In Proceedings of the 13th
International Conference on Mining Software Repositories (Austin, Texas) (MSR
’16). Association for Computing Machinery, New York, NY, USA, 391–402. https:

//doi.org/10.1145/2901739.2901767

[43] D. Yang, P. Martins, V. Saini, and C. Lopes. 2017. Stack Overflow in Github:

Any Snippets There?. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 280–290. https://doi.org/10.1109/MSR.2017.13

[44] T. Zhang, D. Yang, C. Lopes, and M. Kim. 2019. Analyzing and Supporting Adap-

tation of Online Code Examples. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). 316–327. https://doi.org/10.1109/ICSE.2019.00046

https://doi.org/10.1109/MSR.2019.00047
https://doi.org/10.1109/MSR.2019.00047
https://doi.org/10.1145/3196398.3196450
https://doi.org/10.1145/3196398.3196450
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1145/117954.117965
https://doi.org/10.1145/117954.117965
https://doi.org/10.1109/TSE.2014.2312918
https://doi.org/10.1109/TSE.2019.2900307
https://github.com/khaledkucse/COSTER
https://github.com/khaledkucse/COSTER
https://youtu.be/oDZtw9MzUWM?t=208
https://doi.org/10.1145/1449764.1449804
https://doi.org/10.1145/1449764.1449804
https://doi.org/10.1145/2568225.2568313
https://doi.org/10.1145/2931037.2931058
https://doi.org/10.1109/ASE51524.2021.9678576
https://doi.org/10.1109/ASE51524.2021.9678576
https://doi.org/10.1145/3236024.3236056
https://doi.org/10.1145/3236024.3236056
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1109/MSR.2017.13
https://doi.org/10.1109/ICSE.2019.00046

	Abstract
	1 Introduction
	2 Background
	2.1 Motivating Example
	2.2 Java Program
	2.3 Datalog

	3 Methodology
	3.1 Knowledge Base
	3.2 Type Inference: Extracting Constraints
	3.3 Type Inference: Resolving Ambiguities
	3.4 Type Inference: Solving Constraints
	3.5 Type Inference: Candidate Prioritization

	4 Evaluations
	4.1 RQ1: How does SnR perform at type inference?
	4.2 RQ2: How does SnR perform at resolving import statements?
	4.3 RQ3: Does SnR recommend the correct libraries?
	4.4 RQ4: How does SnR perform at making code snippets compilable?

	5 Discussion
	5.1 Application
	5.2 Limitation
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

