
Toward a Better Understanding of Probabilistic
Delta Debugging

Mengxiao Zhang∗, Zhenyang Xu∗, Yongqiang Tian†, Xinru Cheng∗, and Chengnian Sun∗
∗School of Computer Science, University of Waterloo, Waterloo, Canada

Emails: m492zhan@uwaterloo.ca, zhenyang.xu@uwaterloo.ca, x59cheng@uwaterloo.ca, cnsun@uwaterloo.ca
†Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology, Hong Kong, China
Email: yqtian@ust.hk

Abstract—Given a list L of elements and a property ψ that
L exhibits, ddmin is a classic test input minimization algorithm
that aims to automatically remove ψ-irrelevant elements from L.
This algorithm has been widely adopted in domains such as test
input minimization and software debloating. Recently, ProbDD,
a variant of ddmin, has been proposed and achieved state-
of-the-art performance. By employing Bayesian optimization,
ProbDD estimates the probability of each element in L being
relevant to ψ, and statistically decides which and how many
elements should be deleted together each time. However, the
theoretical probabilistic model of ProbDD is rather intricate, and
the underlying details for the superior performance of ProbDD
have not been adequately explored.

In this paper, we conduct the first in-depth theoretical analysis
of ProbDD, clarifying the trends in probability and subset size
changes and simplifying the probability model. We complement
this analysis with empirical experiments, including success rate
analysis, ablation studies, and examinations of trade-offs and
limitations, to further comprehend and demystify this state-
of-the-art algorithm. Our success rate analysis reveals how
ProbDD effectively addresses bottlenecks that slow down ddmin
by skipping inefficient queries that attempt to delete complements
of subsets and previously tried subsets. The ablation study
illustrates that randomness in ProbDD has no significant impact
on efficiency. These findings provide valuable insights for future
research and applications of test input minimization algorithms.

Based on the findings above, we propose CDD, a simplified
version of ProbDD, reducing the complexity in both theory and
implementation. CDD assists in 1 validating the correctness of
our key findings, e.g., that probabilities in ProbDD essentially
serve as monotonically increasing counters for each element, and
2 identifying the main factors that truly contribute to ProbDD’s

superior performance. Our comprehensive evaluations across 76
benchmarks in test input minimization and software debloating
demonstrate that CDD can achieve the same performance as
ProbDD, despite being much simplified.

Index Terms—Program Reduction, Delta Debugging, Software
Debloating, Test Input Minimization

I. INTRODUCTION

Delta Debugging [1] is a seminal family of algorithms
designed for software debugging, among which ddmin stands
out as a classic test input minimization (a.k.a., test input
reduction) algorithm. Given a list L of elements (modeling
the test input) and a property ψ that L exhibits, ddmin
aims to remove elements in L that are irrelevant to ψ, such
that the resulting list is smaller than L yet still satisfies
ψ. The ddmin algorithm plays a crucial role in software

testing, debugging and maintenance [2]–[6], since compact and
informative bug-triggering inputs are easier for developers to
effectively identify root causes than large bug-triggering inputs
with bug-irrelevant information [7]–[10].

To minimize a test input I that satisfies ψ, ddmin has been
used in two primary manners. In the first manner, I is initially
segmented into a list, denoted as L, which could be segmented
based on characters, tokens, lines, etc. Subsequently, ddmin is
directly applied to L [1], [11]. Alternatively, ddmin serves as a
pivotal component within advanced, structure-aware test input
minimization algorithms, including Perses [12], HDD [13], C-
Reduce [14], and Chisel [15]. These algorithms leverage the
inherent structures of I to expedite the minimization process
or further reduce its size. Generally, these algorithms initiate
by parsing I into a tree structure, such as a parse tree. They
then iteratively extract a list L of tree nodes from the tree
using heuristics and apply ddmin to L to gradually condense
the tree. Both manners underscore the fundamental role of
ddmin as the cornerstone of test input minimization.

In the past years, different variants of ddmin have been
proposed to improve its performance [15]–[19], among which
Probabilistic Delta Debugging (ProbDD) [16] is the state of
the art, with notable superiority to other algorithms [1], [15].
When reducing L, ProbDD utilizes a theoretical probabilistic
model based on Bayesian optimization to predict how likely
every element in L is essential to preserve the property ψ, by
assigning a probability to each element. ProbDD prioritizes
deleting elements with lower probabilities, as such elements
generally have a lower possibility of being ψ-relevant. Before
each deletion attempt, an optimal subset of elements is deter-
mined by maximizing the Expected Reduction Gain.1 If the
deletion of this subset fails to preserve ψ, the probabilistic
model increases the probability assigned to each element in
the subset. As reported [20], aided by such a probabilistic
model, ProbDD significantly outperforms ddmin by reducing
the execution time and the query number.2

However, this probabilistic model in ProbDD is rather
intricate, and the underlying mechanisms for its superior per-

1In each attempt, the Expected Reduction Gain is defined as the expected
number of elements removed. Higher Expected Reduction Gain is preferred,
as it indicates an expectation to delete more elements through this attempt.

2A query is a run of the property test ψ.



formance have not been adequately studied. The original paper
of ProbDD merely showed its performance numbers without
deep ablation analysis on such achievements. Specifically, the
following questions are important to the research field of test
input minimization, but have not been answered yet.
1) What role do probabilities play in ProbDD, and can they

be simplified without impacting performance?
2) What specific bottlenecks does ProbDD overcome to

achieve improvement compared to ddmin?
3) How does randomness in ProbDD contribute to the perfor-

mance improvement?
4) What are the potential limitations of ProbDD?
Gaining a deeper understanding of the state of the art, i.e.,
ProbDD, is highly valuable for test input minimization tasks.
By clarifying the intrinsic reasons behind its superiority, we
can facilitate researchers to understand the essence of the prob-
abilistic model, as well as its strengths and limitations. Such
demystification, in our view, paves the way for enlightening
future research and guides users to more effectively apply
ddmin and its variants for test input minimization.

To this end, we conduct the first in-depth analysis of
ProbDD, starting by theoretically simplifying its probabilistic
model. In the original ProbDD, probabilities are used to
calculate the Expected Reduction Gain, which is subsequently
used to determine the next subset size. However, this process
necessitates iterative calculations, impeding the simplification
and comprehension of ProbDD. In our study, we initially
establish the analytical correlation between the probability
and subset size, allowing for probabilities and subset sizes
to be explicitly calculated through formulas, thus eliminating
the need for iterative updates. Further, through mathematical
derivation, we discover that the probability and subset size
can be considered nearly independent, each varying at an
approximate ratio on their own. By theoretical prediction, the
probability increases approximately by a factor of 1

1−e−1 (≈
1.582), and the subset size can be deduced by this probability,
thus providing the potential for simplifying ProbDD.

Building upon our theoretical analysis, we conducted ex-
tensive evaluations of ddmin, ProbDD, and CDD across 76
diverse benchmarks. The experimental results confirm the
correctness of our theoretical analysis, demonstrating how
ProbDD addresses bottlenecks in ddmin by skipping ineffi-
cient queries, reveals the impact of randomness on results, and
highlights the limitations of ProbDD. These findings provide
valuable guidance for future research and the development of
test input minimization algorithms.

Based on the aforementioned analysis, we propose Counter-
Based Delta Debugging (CDD), a simplified version of
ProbDD, to explain ProbDD’s high performance. By replacing
probabilities with counters, CDD eliminates the probability
computations required by ProbDD, thus reducing theoretical
and implementation complexity. Our experiments demonstrate
that CDD aligns with ProbDD in both effectiveness and
efficiency, which validates our previous analysis and findings.
Key Findings. Through both theoretical analysis and em-
pirical experiments, our key findings are:

1) Through theoretical derivation, the probabilities in ProbDD
essentially serve as monotonically increasing counters,
and can be simplified. This suggests that the probability
mechanism itself may not be a critical factor in ProbDD’s
superior performance.

2) The performance bottlenecks addressed by ProbDD are
inefficient deletion attempts on complements of subsets
and previously tried subsets, which should be considered
to enhance efficiency.

3) Randomness in ProbDD has no significant impact on the
performance. Test input minimization is an NP-complete
problem, and randomness in ProbDD does not produce
smaller results.

4) ProbDD is faster than ddmin, but at the cost of not guaran-
teeing 1-minimality.3 The trade-off between effectiveness
and efficiency is inevitable, and should be leveraged ac-
cordingly in different scenarios.

Contributions. We make the following major contributions.
• We perform the first in-depth theoretical analysis for

ProbDD, the state-of-the-art algorithm in test input mini-
mization tasks, and identify the latent correlation between
the subset size and the probability of elements.

• We propose CDD, a much simplified version of ProbDD.
• We evaluate ddmin, ProbDD and CDD on 76 benchmarks,

validating the correctness of our theoretical analysis. Addi-
tional experiments and statistical analysis on ProbDD further
explain its superior performance, reveal the effectiveness of
randomness, and demonstrate the limitations of ProbDD.

• To enable future research on test input minimization, we re-
lease the artifact publicly for replication [21]. Additionally,
we have integrated CDD into the Perses project, available
at https://github.com/uw-pluverse/perses.

Paper Organization. The remainder of the paper is struc-
tured as follows: § II introduces the symbols used in this
study and detailed workflow of ddmin and ProbDD. § III
presents our in-depth analysis on ProbDD, simplifying the
model of probability and subset size. § IV describes empirical
experiments and results, from which additional findings are de-
rived. § V introduces CDD, which simplifies ProbDD based on
our earlier findings while maintaining equivalent performance.
§ VII illustrates related work and § VIII concludes this study.

II. PRELIMINARIES

To facilitate comprehension, Table I lists all the important
symbols used in this paper. Next, this section introduces ddmin
and ProbDD, with the running example shown in Fig. 1.

A. The ddmin Algorithm

The ddmin algorithm [1] is the first algorithm to systemati-
cally minimize a bug-triggering input to its essence, which has
been widely adopted in program reduction [12]–[14], software
debloating [15], [22] and test suites reduction [23], [24]. It
takes the following two inputs:

3A list is considered to have 1-minimality if removing any single element
from it results in the loss of its property.

https://github.com/uw-pluverse/perses


TABLE I: The symbols used in this paper.

Symbol Description Symbol Description

L the list to minimize s the size of S
ψ the property to preserve E(s) Expected Reduction Gain

with the first s elements
li the i-th element of L e Euler’s number
li.p the probability of li r the round number
vi a variant of L sr the subset size in round r
S a subset of L pr the probability of each

element in round r

l1:import math, sys
l2:input = sys.argv[1]
l3:a = int(input)
l4:b = math.e
l5:c = 3
l6:d = pow(b, a)
l7:c = math.log(d, b)
l8:crash(c)

(a) Original.

l1:import math, sys
l2:input = sys.argv[1]
l3:a = int(input)
l4:b = math.e
l5:c = 3
l6:d = pow(b, a)
l7:c = math.log(d, b)
l8:crash(c)

(b) By ddmin.

l1:import math, sys
l2:input = sys.argv[1]
l3:a = int(input)
l4:b = math.e
l5:c = 3
l6:d = pow(b, a)
l7:c = math.log(d, b)
l8:crash(c)

(c) By ProbDD.

Fig. 1: A running example in Python. Fig. 1(a) shows the
original program, represented as a list of 8 elements (l1,
l2, · · · , l8), in which l8 (i.e., crash(c)) triggers the crash.
Fig. 1(b) and Fig. 1(c) show the minimized results by ddmin
and ProbDD, with removed elements masked in gray. Both
minimized programs still trigger the crash. Note that ProbDD
cannot consistently guarantee the result in Fig. 1(c) and might
produce larger results, due to its inherent randomness.

• L: a list of elements representing a bug-triggering input. For
example, L can be a list of bytes, characters, lines, tokens,
or parse tree nodes extracted from the bug-triggering input.

• ψ: a property that L has. Formally, ψ can be defined as a
predicate that returns T if a list of elements preserves the
property, F otherwise.

and returns a minimal subset of L that still preserves ψ, from
which excluding any single element will make the minimal
subset lose ψ. This algorithm has been widely used in practice
to facilitate developers in debugging [11], [12], [14], [25]. It
generally consists of the following three steps.
Initialize. Start by setting the initial subset size s to half of
the input list L, i.e., s=|L|/2.
Step 1: Minimize to Subset. Partition L into subsets of size
s. For each subset S, check whether S alone satisfies ψ. If
yes, keep only S and restart from Step 1 with L = S and the
subset size as half of the new L; otherwise, go to Step 2.
Step 2: Minimize to Complement. Partition L into subsets
of size s. For each subset S, check whether the complement
of S (i.e., L/S = {e|e ∈ L∧ e ̸∈ S}) satisfies ψ. If yes, keep
the complement of S and restart from Step 2 with L = L/S;
otherwise, go to Step 3.
Step 3: Subdivide. If any of the remaining subsets has at
least two elements and thus can be further divided, halve
the subset size, i.e., s = s/2 and go back to Step 1. If no
subset can be further divided (i.e., the subset size is 1), ddmin
terminates and returns the remaining elements as the result.
Round Number r. Note that we introduce a round number r
at the second column of Table II. Within each round, the list L

is divided into subsets of a fixed size, on which Step 1 and Step
2 are applied. A new round begins when no further progress
can be made with the current subset size. This round number
is not explicitly present in the original ddmin algorithm but
exists implicitly. In subsequent sections, we will also use this
concept to introduce and simplify the ProbDD algorithm.

Table II illustrates the step-by-step minimization process of
ddmin with the running example in Fig. 1. Initially, the input
L is [l1, l2, · · · , l8]. The ddmin algorithm iteratively generates
variants by gradually decreasing the subset size from 4 to 1.

1) Round 1 (s=4). At the beginning, ddmin splits L into two
subsets and generates two variants v1 and v2. However,
neither of them preserves ψ.

2) Round 2 (s=2). Next, ddmin continues to subdivide these
two subsets into smaller ones, and generates eight variants
(i.e., v3, v4, · · · , v10) by using these subsets and their
complements. Specifically, the first four variants (v3, v4,
v5, v6) are the subsets, and the next four variants (v7, v8,
v9, v10) are the complements of these subsets. Again, none
of these eight variants preserves ψ.

3) Round 3 (s=1). Finally, ddmin decreases subset size s from
2 to 1, and generates more variants. This time, v23, which
is the complement of the subset {l5}, preserves ψ. Hence,
the subset {l5} is permanently removed from L. Then for
each of the remaining subsets {l1}, {l2}, · · · , {l8}, ddmin
restarts testing the complement of each subset, i.e., from
v24 to v30. However, none of these variants preserves ψ,
and no subset can be further divided, so ddmin terminates
with the variant v23 as the final result.

B. Probabilistic Delta Debugging (ProbDD)

Wang et al. [16] proposed the state-of-the-art algorithm
ProbDD, significantly surpassing ddmin in minimizing bug-
triggering programs on C compilers and benchmarks in soft-
ware debloating. ProbDD employs Bayesian optimization [26]
to model the minimization problem. ProbDD assigns a proba-
bility to each element in L, representing its likelihood of being
essential for preserving the property ψ. At each step during
the minimization process, ProbDD selects a subset of elements
expected to yield the highest Expected Reduction Gain, and
targets these elements in the subset for deletion. In this section,
we outline ProbDD’s workflow in Algorithm 1, paving the way
for a deeper understanding and analysis of ProbDD.
Initialize (line 1). In L, ProbDD assigns each element an
initial probability p0 on line 1, representing the prior likelihood
that each element cannot be removed.
Step 1: Select elements (line 4, line 14–24). First, ProbDD
sorts the elements in L by probability in ascending order on
line 14, and the order of elements with the same probability is
determined randomly. Then, on line 19, it calculates the subset
to be removed in the next attempt via the proposed Expected
Reduction Gain E(s), as shown in Equation (1), with E(s)
denoting the expected gain obtained via removing the first



TABLE II: Step-by-step outcomes from ddmin on the running example. In each column, a variant is generated and tested
against the property ψ. These variants are sequentially generated from left to right. The first row displays the variant identifier,
and the second row displays round number r and subset size s. In the following rows, the symbol “✓” denotes an element is
included by a certain variant, while gray cells signify that the element have been removed. For the last row, T indicates that
the variant still preserves the property ψ, whereas F indicates not.

Initial Variants v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30

Element Round r = 1 (s=4) r = 2 (s=2) r = 3 (s=1)

l1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
l8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ψ F F F F F F F F F F F F F F F F F F F F F F T F F F F F F F

s elements in L selected for deletion, and li.p denoting the
current probability of the i-th element in L.

E(s) = s ×
s∏

i=1

(1− li.p) (1)

Note that ProbDD has an invariant that the subset S chosen
for deletion attempt is always the first s elements in L. Every
time, the first s∗ elements are selected as the optimal subset
S, where s∗ maximizes the Expected Reduction Gain E(s),
elaborated as Equation (2).

s∗ = argmax
s

E(s) (2)

Step 2: Delete the Subset (line 5-9). If ψ is still preserved
after the removal of S, ProbDD removes subset S on line 6,
i.e., keeps only the complement of S, and proceeds to Step 1.
If ψ cannot be preserved after the removal, on lines 8 and 9,
ProbDD updates the probability of each element in the subset
S via Equation (3), and resumes at Step 1. It is important to
note that if an element li has been individually deleted but
failed, its probability li.p will be set to 1, indicating that this
element cannot be removed and will no longer be considered
for deletion.

li.p ←
li.p

1−
∏

l∈S (1− l.p)
(3)

Step 3: Check Termination (line 3). If every element either
has been deleted, or possesses a probability of 1, ProbDD
terminates. If not, it returns to Step 1.
Round Number r. Similar to the concept of rounds in
ddmin (see Table II), ProbDD also has an implicit round
number r, as introduced on line 2 in Algorithm 1 and the
second row of Table III. During a round, the subset size is the
same and every subset in L is attempted for deletion. Once
the probabilities of all elements have been updated, the next
round begins (i.e., r ← r + 1 on line 11).

Table III illustrates the step-by-step results of ProbDD.
Following the study of ProbDD [16], the initial probability
p0 is set to 0.25, resulting in subsets with a size of 4 as per
Equation (2).
1) Round 1 (s=4). Similar to the example in the original paper

of ProbDD [16], we assume ProbDD selects (l1, l4, l5,
l8) to delete due to the randomness, thus resulting in the
variant v1. However, v1 fails to exhibit ψ, leading to the
probability of these selected elements being updated from
0.25 to 0.25

1−(1−0.25)4 ≈ 0.37, based on Equation (3). Next,
the remaining elements with lower probability, i.e., (l2, l3,
l6, l7), are prioritized and selected for deletion, resulting in
v2. This time, the property test passes and these elements
are removed.

2) Round 2 (s=2). Given that all probabilities of remaining
elements become 0.37, the next subset size becomes 2. Sub-
sequently, subset (l1, l5) are attempted to remove in v3 and
later subset (l4, l8) are attempted to remove in v4, though
no subset can be successfully removed. After these two
attempts, all probabilities update to 0.37

1−(1−0.37)2 ≈ 0.61.
3) Round 3 (s=1). Finally, the subset size becomes 1, so

each individual element is selected to remove alone. The
elements l4 and l1 are finally removed from the final result
in v5 and v7, respectively, while l5 and l8 are verified as
non-removable, thus being returned as the final result.

III. DELVING DEEPER INTO PROBABILITY AND SIZE

Beginning with this section, we will systematically present
our findings. Each finding will be introduced by first stating
the result, followed by the explanation. In this section, we
theoretically analyze the trend of probability changes across
rounds, and the approach to derive the optimal subset size.

A. On the Probability in ProbDD

Finding 1: The probability assigned to each element
increases monotonically with the round number r, by a
factor of approximately 1.582. Essentially, the probability
for each element can be expressed as a function of r and
p0, i.e.,

pr ≈ 1.582r × p0

An Illustrative Example. The running example illustrated
in Table III leads to this finding. Observation reveals that
after each element has been attempted for deletion once,
i.e., completing one round, the probabilities of all remaining
elements are updated. The initial probability is 0.25; after v2, it



Algorithm 1: ProbDD(L,ψ)
Input: L: a list to be minimized.
Input: ψ : L→ B: the property to be preserved by L.
Input: p0: the initial probability given by the user.
Output: the minimized list that still exhibits the property ψ.
// Initialize the probability of each element with p0

1 foreach l ∈ L do l.p← p0
/* The round number r, initially 0. r is not explicitly used

in the original ProbDD algorithm. It is displayed for

demonstrating ProbDD’s implicit principles. */

2 r ← 0
3 while ∃l ∈ L : l.p < 1 do

// Select elements from L for deletion attempt.

4 S ← SelectSubset(L)
// Check if removing the subset preserves the property

5 temp← L \ S
6 if ψ(temp) = T then L← temp
7 else

// Calculate the factor to update probabilities

8 factor← 1
1−

∏
l∈S(1−l.p)

// Update the probabilities of elements in the subset

9 foreach l ∈ S do l.p← factor× l.p
10 if All elements’ probability have been updated then

// Move to the next round.

11 r = r + 1

12 return L
13 Function SelectSubset(L):

Input: L: a list of elements to be reduced.
Output: The subset of elements that maximizes the Expected

Reduction Gain.
/* Sort L by ascending probability, with elements having

the same probability in random order. */

14 sortedL← RandomizeThenSort(L)
15 S ← ∅
16 currentMaxGain← 0
17 foreach l ∈ sortedL do
18 tempSubset← S ∪ {l}
19 gain← |tempSubset| ×

∏
l∈tempSubset(1− l.p)

20 if gain > currentMaxGain then
21 currentMaxGain← gain
22 S ← tempSubset

23 else break
24 return S

TABLE III: Step-by-step outcomes from ProbDD on the
running example. Similar to Table II, round number, subset
size and the details of each variants are presented. For each
variant, the probability of each element is noted alongside.

Initial Variants v1 v2 v3 v4 v5 v6 v7 v8

Element Prob Round r = 1 (s=4) r = 2 (s=2) r = 3 (s=1)

l1 0.25 0.37 ✓ 0.37 0.61 ✓ 0.61 ✓ 0.61 ✓ 0.61
l2 0.25 ✓ 0.25
l3 0.25 ✓ 0.25
l4 0.25 0.37 ✓ 0.37 ✓ 0.37 0.61
l5 0.25 0.37 ✓ 0.37 0.61 ✓ 0.61 ✓ 0.61 1 ✓ 1 ✓ 1
l6 0.25 ✓ 0.25
l7 0.25 ✓ 0.25
l8 0.25 0.37 ✓ 0.37 ✓ 0.37 0.61 ✓ 0.61 ✓ 0.61 ✓ 0.61 1

ψ F T F F T F T F

changes to 0.37; following v4, it increases to 0.61; and by the
end of v8, it reaches 1. Consequently, we hypothesize that with
each deletion attempt, the probability approximately increases
in a predictable manner. Through appropriate simplification,
we can theoretically model this trend, and thereby model the
entire progression of probability changes.

1) Assumption for Theoretical Analysis: Besides the above
observation from a concrete example, theoretical analysis is
necessary. To refine the mathematical model of ProbDD for
easier representation, analysis and derivation, we assume that
the number of elements in L is always divisible by the subset
size. With this assumption, the probability of each element
will be updated in the same manner; as a result, before and
after each round, the probabilities of all elements are always
the same, as shown in Lemma III.1. This assumption is often
applicable in practice. For instance, in the running example in
Table III, before each round, the probabilities associated with
each remaining element are identical, ensuring that all subsets
are of identical size. Furthermore, the probabilities of elements
are updated to the same next value after the round.

Lemma III.1. If the number of elements in L is always divis-
ible by the subset size, then after each round, the probabilities
of all elements will always remain the same.

Proof. We use mathematical induction to prove this lemma.
Base Case. Initially, all probabilities are set to the same
value. Hence, before the first round, the probabilities of all
elements are identical.
Inductive Step. Assume that before a given round, the
probabilities of all elements are identical (induction hypoth-
esis). After failing to delete a subset S, ProbDD updates the
probability of each element of S according to Equation (3).
This formula depends solely on two factors: the current
probability of each element of S, i.e., li.p, and the size of the
subset |S|. For li.p, by the induction hypothesis, all elements
have the same probability at the beginning of the round; for
|S|, if the total number of elements in L is divisible by
the subset size, then every subset in the round will have
the same size |S|. Therefore, both factors li.p and |S| are
identical for all elements in a subset, and the probabilities
of these elements are updated to the same new value using
Equation (3). Furthermore, as all subsets undergo the same
update process, the probabilities of all elements in the list
will remain identical at the end of the round.
Conclusion. The probabilities of all elements remain iden-
tical at the end of this round.

Consequently, as long as the total number of elements is
always divisible by the subset size, the probabilities of all
elements will remain identical throughout the process. Take
the running example in Table III as a demonstration. During
the reduction, the number of elements is always divisible by
the subset size in each round, i.e., s=4, s=2, s=1. Therefore,
starting with an initial probability of 0.25, the probability of
each elements remain identical after each round, being 0.37,
0.61 and 1, respectively.

While it is not always possible for the number of elements
to be divisible by the subset size, the elements will still be
partitioned as evenly as possible. However, such indivisibil-
ities make the theoretical simplification of ProbDD nearly
impossible. Based on our observation when running ProbDD,
being slightly uneven during partitioning does not significantly



affect probability updates. Moreover, we will demonstrate that
the simplified algorithm derived from this assumption has
no significant difference from ProbDD in § V, via thorough
experimental evaluation.

2) Probability vs. Subset Size Correlation: In the second
step, we derive the correlation between probability and subset
size. Based on the assumption in the previous step, the
probability of each element is identical and represented as
pr in round r, thus the formula of Expected Reduction Gain
from Equation (1) can be simplified to

E(s) = s × (1− pr)s (4)

Given the probability of elements pr in the round r, sr can be
derived through gradient-based optimization, i.e., E′(sr) = 0.
Therefore, the optimal size sr to maximize E(s) is − 1

ln(1−pr)
.

Subsequently, we can also deduce the next probability to be
pr+1 =

pr

1−(1−pr)
sr

. In summary, the correlation between
probability and subset size can be simplified as Equation (5)
and Equation (6), in which subset size sr is determined by
probability pr, and probability pr+1 in the next round is
determined by both pr and sr.

sr = − 1

ln(1− pr)
pr+1 =

pr
1− (1− pr)sr

(5)

(6)

3) Trend of Probability Changes: Through Equation (6),
pr+1 > pr always holds, indicating a monotonic increase of
the probability of elements. However, there is still room for
simplification, as sr can be represented by pr, implying that
pr+1 can be represented solely by pr.

Lemma III.2. p is increased by a factor 1
1−e−1 , i.e.,

pr =
pr−1

1− e−1
=

p0
(1− e−1)r

(7)

Proof. Given sr = − 1
ln(1−pr)

, we can deduce that 1 − pr =

e
− 1

sr .
Subsequently, we substitute 1 − pr into Equation (6), ob-

taining

pr+1 =
pr

1− (1− pr)sr
=

pr

1− (e
− 1

sr )sr

=
pr

1− e−1
≈ 1.582× pr

Equivalently, the approximate probability after round r can
be derived given only p0, i.e.,

pr =
p0

(1− e−1)r
≈ 1.582r × p0

Therefore, through empirical observations on the running
example, coupled with theoretical derivation and simplifica-
tion, we have identified the pattern of probability changes w.r.t.
the round number r, i.e., pr =

p0

(1−e−1)r ≈ 1.582r × p0.

B. On the Size of Subsets in ProbDD

Finding 2: The size of subsets in r-th round can be
analytically pre-determined given only the probability of this
round, i.e., sr = argmaxs∈N+ s×(1−pr)s , which is either
⌊− 1

ln(1−pr)
⌋ or ⌈− 1

ln(1−pr)
⌉.

Based on the Finding 1, the probability pr can be approxi-
mately estimated by the current round number r via a factor.
Consequently, we can further derive the subset size sr by
maximizing the Expected Reduction Gain in ProbDD.

Lemma III.3. The optimal subset size sr in round r is either
⌊− 1

ln(1−pr)
⌋ or ⌈− 1

ln(1−pr)
⌉.

Proof. The Expected Reduction Gain is determined by the
formula E(sr) = sr × (1 − pr)

sr , which increases initially
with sr and then decreases as sr grows further, enabling the
optimal solution to be identified through derivative analysis.
Therefore, we can deduce the optimal sr by solving E′(sr) =
0. Therefore, the optimal size of subsets sr in r-th round is
− 1

ln(1−pr)
, which will be rounded to either ⌊− 1

ln(1−pr)
⌋ or

⌈− 1
ln(1−pr)

⌉. The final subset size should be chosen based on
which integer results in a larger Expected Reduction Gain.

Lemma III.3 allows the subset size to be analytically pre-
determined, thus providing the potential for simplification of
ProbDD and leading to the proposal of CDD (detailed in § V).

IV. EMPIRICAL EXPERIMENTS

In addition to the theoretical derivation above, we conduct
an extensive experimental evaluation on ddmin and ProbDD to
gain deeper insights and achieve further discoveries. Specifi-
cally, we reproduce the experiments on ddmin and ProbDD
by Wang et al. [16], and then delve deeper into ProbDD,
analyzing its randomness, the bottlenecks it overcomes, and
its 1-minimality. Furthermore, we evaluate our proposed CDD
(which will be presented in § V), validating our previous
theoretical analysis. Due to limited space, we present the
results of both ProbDD and CDD together within this section,
but this section primarily focuses on discussing ProbDD, while
the next section will focus on CDD.

A. Benchmarks

To extensively evaluate ddmin, ProbDD and CDD, we use
the following three benchmark suites (76 benchmarks in total),
covering various use scenarios of minimization algorithms.
• BMC: 20 large bug-triggering programs in C language, each

of which triggers a real-world compiler bug in either LLVM
or GCC. The original size of benchmarks ranges from 4,397
tokens to 212,259 tokens. This benchmark suite has been
used to evaluate test input minimization work [12], [16],
[27], [28].

• BMDBT: source programs of 10 command-line utilities. The
original size of benchmarks ranges from 34,801 tokens to
163,296 tokens. This benchmark suite was collected by
Heo et al. [15] and used to evaluate software debloating
techniques [15], [29], [30].



• BMXML: 46 XML inputs triggering 8 unique bugs in Basex,
a widely-used XML processing tool. The original size of
benchmarks ranges from 19,290 tokens to 20,750 tokens.
This benchmark suite is generated via Xpress [31] and
collected by the authors of this study, as the original XML
dataset used in ProbDD paper is not publicly available.

B. Evaluation Metrics

We measure the following aspects as metrics.
Final Size. This metric assesses the effectiveness of reduc-
tion. When reducing a list L with a certain property ψ, a
smaller final list is preferred, indicating that more irrelevant
elements have been successfully eliminated. In all benchmark
suites, the metric is measured by the number of tokens.
Execution Time. The execution time of a minimization
algorithm reflects its efficiency. A minimization algorithm
taking less time is more desirable, and execution time is
measured in seconds.
Query Number. This metric further evaluates the algo-
rithm’s efficiency. During the reduction process, each time a
variant is produced, the algorithm verifies whether this variant
still preserves the property ψ, referred to as a query. Since
queries consume time, a lower query number is favorable.
P-value. We calculate the p-value via Wilcoxon signed-rank
test [32] between every two algorithms, to investigate whether
the performance differences are significant. A p-value below
0.05 indicates that we can reject the null hypothesis (which
assumes no difference in performance) at the 0.05 significance
level. Otherwise, we fail to reject the null hypothesis, sug-
gesting that the observed difference may not be statistically
significant.

C. The Wrapping Frameworks

The ddmin algorithm and its variants usually serve as the
fundamental algorithm. To apply them to a concrete scenario,
an outer wrapping framework is generally needed to handle
the structure of the input. In our evaluation, we choose the
same wrapping frameworks as those used by ProbDD paper.
For those tree-structured bug-triggering inputs, i.e., BMC and
BMXML, we use Picireny 21.8 [33], an implementation of
HDD [13]. Picireny parses such inputs into trees, and then
invokes Picire 21.8 [25], an open-sourced Delta Debugging
library with ddmin, ProbDD and CDD implemented, to reduce
each level of the trees. For software debloating on BMDBT,
Chisel [15] is employed, in which ddmin, ProbDD and CDD
are integrated.

All experiments are conducted on a server running Ubuntu
22.04.3 LTS, with 4 TB RAM and two Intel Xeon Gold 6348
CPUs @ 2.60GHz. To ensure the reproducibility, we employ
docker images to release the source code and the configuration.
Each benchmark is reduced using a single thread. Following
the ProbDD paper, we run each algorithm on each benchmark
5 times and calculate the geometric average results.

D. Reproduction Study of ProbDD

To comprehensively reproduce the results of ProbDD [16],
we evaluate ddmin and ProbDD using three benchmark suites,

containing a total of 76 benchmarks. Following the settings of
ProbDD [16], we set the empirically estimated remaining rate
as the initialization probability p0, specifically, 0.1 for BMC
and BMDBT, and 2.5e-3 for BMXML. The detailed results are
shown in Table IV and Table V.
Efficiency and Effectiveness. Through our reproduction
study, we find that the performance of ProbDD aligns with the
results reported in the original paper, showing that ProbDD is
significantly more efficient than ddmin. Across three bench-
mark suites, ProbDD requires 27.01% less time and 52.44%
fewer queries, with p-value being 3e-09 and 9e-14, respec-
tively. Moreover, we assess the effectiveness by measuring
the sizes of the final minimized results. The effectiveness of
ddmin and ProbDD varies across benchmarks. However, the
Wilcoxon signed-rank test yields a p-value of 0.32, which is
substantially higher than the 0.05 significance level. Therefore,
we fail to reject the null hypothesis, suggesting no statistically
significant difference in overall performance between the two
algorithms.

E. Impact of Randomness in ProbDD

Finding 3: Randomness has no significant impact on the
performance of ProbDD.

In ProbDD, elements with different probabilities are sorted
accordingly, while elements with the same probability are
randomly shuffled. However, randomness alone intuitively
does not ensure a higher probability of escaping local optima
and the effect of this randomness on performance has not been
thoroughly investigated.

To this end, we conduct an ablation study by removing such
randomness, creating a variant called ProbDD-no-random.
We evaluate this variant across all benchmarks. The results
indicate that the randomness does not significantly impact
performance. Specifically, in terms of final size, execution
time, and query number, ProbDD-no-random achieves 236,
2,069, and 1,238 compared to 235, 2,189, and 1,309 of
ProbDD, respectively. The p-values of 0.87, 0.15, and 0.10 all
exceed 0.05, so we fail to reject the null hypothesis, indicating
no statistically significant differences.

F. Bottleneck Overcome by ProbDD

Finding 4: On tree-structured inputs, inefficient deletion
attempts on complements and repeated attempts account for
the bottlenecks of ddmin, which are overcome by ProbDD.

In the study of ProbDD, the authors demonstrate that
ProbDD is more efficient than the baseline approach (ddmin)
in tree-based reduction scenarios, where the inputs are parsed
into tree representations before reduction. Therefore, to un-
cover the root cause of this superiority, we follow the same
application scenario and analyze the behavior of ProbDD in
reducing the tree-structured inputs.

To further understand why ProbDD is more efficient than
ddmin, we conduct in-depth statistical analysis on the query
number (number of deletion attempts). Intuitively, perfor-
mance bottlenecks lie in those queries with low success rates,



TABLE IV: The final size, execution time and query number of ddmin, ProbDD and CDD on BMC and BMDBT. To address
significant variations across benchmarks, the geometric mean rather than the arithmetic mean is employed, providing a smoother
measure of the average.

Final size (#) Execution time (s) Query number
Benchmark Original size (#) ddmin ProbDD CDD ddmin ProbDD CDD ddmin ProbDD CDD

LLVM-22382 9,987 350 353 350 1,917 1,163 1,005 11,388 5,973 5,262
LLVM-22704 184,444 786 764 745 27,924 12,418 11,371 52,412 15,425 14,025
LLVM-23309 33,310 1,316 1,338 1,265 17,619 9,991 10,828 55,968 19,195 17,953
LLVM-23353 30,196 321 336 324 3,117 1,874 1,400 11,719 5,757 4,492
LLVM-25900 78,960 941 932 937 7,258 3,683 3,104 35,740 12,553 12,817
LLVM-26760 209,577 520 503 498 13,123 5,876 5,210 30,063 9,261 9,792
LLVM-27137 174,538 972 1,040 966 63,971 22,208 23,154 122,516 22,292 20,460
LLVM-27747 173,840 431 463 510 6,545 4,238 2,932 20,000 8,193 5,992
LLVM-31259 48,799 1,033 965 1,035 13,815 7,497 8,205 35,135 10,776 13,445
GCC-59903 57,581 1,185 845 743 9,067 4,879 3,587 47,698 15,725 13,844
GCC-60116 75,224 1,615 1,628 1,617 44,287 27,202 27,195 80,059 27,268 23,204
GCC-61383 32,449 959 966 974 12,579 6,514 6,566 43,716 13,593 14,149
GCC-61917 85,359 882 908 884 6,740 3,591 2,953 31,414 12,908 14,194
GCC-64990 148,931 744 876 681 21,633 11,890 11,119 44,521 16,074 12,112
GCC-65383 43,942 706 701 709 5,132 3,543 3,358 25,051 8,591 9,686
GCC-66186 47,481 1,012 981 1,001 14,280 7,236 12,478 47,253 12,741 19,094
GCC-66375 65,488 1,128 1,141 1,204 23,576 14,182 23,229 47,339 15,690 16,469
GCC-70127 154,816 934 973 930 36,390 23,925 24,143 54,925 15,388 15,219
GCC-70586 212,259 1,583 1,561 1,572 28,859 13,519 15,818 102,603 24,716 30,715
GCC-71626 4,397 184 184 184 119 114 99 1,608 1,156 1,220

BMC

Mean 64,599 777 775 760 10,486 5,828 5,676 34,013 11,652 11,512

bzip2-1.0.5 70,530 20,710 20,747 20,756 137,463 105,782 92,058 54,034 23,240 19,846
chown-8.2 43,869 9,087 9,303 9,310 38,902 25,616 7,625 50,487 8,278 8,208
date-8.21 53,442 20,604 20,738 21,120 115,292 16,486 15,378 139,934 14,235 13,928
grep-2.19 127,681 28,723 28,627 28,990 97,821 85,694 93,552 277,130 42,246 37,607
gzip-1.2.4 45,929 17,065 17,068 17,077 73,403 55,520 75,913 147,035 27,569 61,032
mkdir-5.2.1 34,801 8,625 8,782 8,418 3,227 2,428 1,877 11,969 2,836 2,099
rm-8.4 44,459 8,507 8,467 8,461 12,087 5,008 5,109 33,171 5,097 5,057
sort-8.16 88,068 14,893 14,843 15,834 60,631 61,739 21,948 119,150 18,711 7,914
tar-1.14 163,296 20,411 20,713 20,592 115,234 95,765 77,910 200,394 14,384 12,095
uniq-8.16 63,861 14,350 14,262 14,354 21,672 23,177 19,124 25,886 4,228 3,669

BMDBT

Mean 65,151 15,080 15,152 15,235 43,827 28,505 21,782 72,140 11,803 10,686
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Fig. 2: Visualization of queries within ddmin, ProbDD and CDD. In ddmin, three types of queries are displayed via stacked
bars, the height of which denotes the query number. Within each bar, the number of successful queries, total queries and the
corresponding success rate are annotated.

impairing ddmin’s efficiency. Existing studies [17], [18] also
demonstrate the presence of queries with low success rates.
Therefore, to qualitatively and quantitatively identify the exact
bottlenecks impairing ddmin, we statistically analyze all the
queries in ddmin and categorize them into three types:
1) Complement: Queries attempting to remove the comple-

ment of a subset. According to ddmin algorithm, given a
subset (smaller than half of the list L), it attempts to remove
either the subset or its complement. However, evidence [18]
shows that keeping a small subset and removing its com-
plement is not likely to succeed, especially on structured

inputs like programs.
2) Revisit: Queries attempting to remove the previously tried

subset. After removing a subset, ddmin restarts the process
from the first subset, leading to repeated deletion attempts
on earlier subsets. Although the removal of one subset
may allow another subset to be removable, such repetitions
rarely succeed and thus offer limited improvement for the
reduction [17].

3) Other: All other queries.
In addition to categorizing queries in ddmin into the above
types, we also calculate the success rate of each type, aiming



TABLE V: The final size, execution time and query number of ddmin, ProbDD and CDD on BMXML. The last row shows the
overall average across all three benchmark suites.

Final size (#) Execution time (s) Query number
Benchmark Original size (#) ddmin ProbDD CDD ddmin ProbDD CDD ddmin ProbDD CDD

xml-071d221-1 20,090 10 15 20 73 114 144 29 50 69
xml-071d221-2 20,387 13 14 20 155 146 243 60 69 117
xml-1e9bc83-1 20,327 38 49 24 491 522 284 235 236 115
xml-1e9bc83-2 20,222 79 78 76 1,391 814 867 725 390 384
xml-1e9bc83-3 20,219 69 70 72 1,313 893 889 619 416 404
xml-1e9bc83-4 19,985 156 139 143 3,911 1,939 2,521 1,943 935 1,173
xml-1e9bc83-5 20,579 81 73 75 1,355 929 882 746 485 428
xml-1e9bc83-6 19,880 127 126 124 3,563 1,852 1,548 1,907 964 749
xml-1e9bc83-7 20,297 111 114 111 3,419 1,684 2,330 1,757 827 931
xml-1e9bc83-8 20,327 100 107 100 2,862 1,636 1,446 1,451 751 592
xml-1e9bc83-9 20,330 128 73 128 2,850 1,230 2,494 1,437 561 832
xml-2d4ec80-1 20,129 76 72 76 570 522 791 384 304 354
xml-327c8af-1 20,207 55 55 55 864 625 958 527 319 392
xml-3398ac2-1 20,414 45 44 48 345 383 605 225 192 268
xml-3398ac2-2 19,290 48 48 48 613 492 578 358 255 238
xml-3398ac2-3 20,222 62 62 62 632 574 764 347 276 306
xml-3398ac2-4 19,913 111 112 111 1,419 1,197 1,722 802 584 680
xml-3398ac2-5 20,477 44 38 44 850 531 633 507 269 261
xml-4c99b96-1 20,513 80 78 80 1,427 1,126 1,385 699 452 438
xml-4c99b96-10 20,522 46 47 46 1,012 760 873 443 299 256
xml-4c99b96-11 19,901 53 54 53 868 661 791 357 252 236
xml-4c99b96-12 19,775 102 104 102 2,429 1,592 2,422 1,077 626 773
xml-4c99b96-13 20,114 60 61 60 1,132 870 989 494 335 309
xml-4c99b96-14 19,970 102 103 102 2,147 1,687 1,534 987 600 504
xml-4c99b96-15 20,138 46 46 46 843 788 729 381 297 244
xml-4c99b96-16 20,126 67 68 70 1,366 1,189 1,125 658 414 409
xml-4c99b96-17 20,210 67 68 70 1,360 1,310 1,120 658 414 409
xml-4c99b96-18 20,390 28 28 25 724 492 410 324 164 137
xml-4c99b96-19 20,192 81 82 81 1,729 1,798 1,895 793 540 710
xml-4c99b96-2 20,750 53 54 53 878 1,017 912 362 281 318
xml-4c99b96-3 20,015 67 68 67 1,102 1,254 900 483 357 337
xml-4c99b96-4 20,201 67 67 67 1,097 1,238 860 482 365 328
xml-4c99b96-5 20,279 63 62 60 1,170 1,155 1,029 515 347 364
xml-4c99b96-6 19,973 81 82 87 1,258 1,338 1,056 511 381 441
xml-4c99b96-7 19,973 115 115 115 3,399 2,560 1,535 1,485 811 676
xml-4c99b96-8 20,579 42 41 42 926 810 687 422 254 323
xml-4c99b96-9 20,075 53 53 53 884 940 650 368 278 265
xml-8ede045-1 20,192 48 61 69 1,152 1,232 1,137 499 389 487
xml-8ede045-2 20,177 17 22 34 316 335 360 132 107 164
xml-8ede045-3 20,393 31 31 31 476 431 313 199 134 134
xml-8ede045-4 20,123 31 25 31 578 472 435 250 151 181
xml-8ede045-5 20,051 17 20 17 185 246 204 61 72 80
xml-8ede045-6 20,636 73 80 76 1,365 1,479 1,545 552 469 700
xml-8ede045-7 20,054 106 106 106 2,851 1,686 1,237 1,447 614 634
xml-8ede045-8 20,177 76 78 76 1,397 1,327 1,060 597 449 475
xml-f053486-1 20,030 10 10 10 101 134 76 31 41 28

BMXML

Mean 20,190 56 56 58 972 819 821 453 314 327

All Mean 31,989 233 235 237 2,999 2,189 2,102 2,752 1,309 1,320

to reveal the bottlenecks of ddmin. Fig. 2 illustrates the
distribution of queries for all types within ddmin, as well as the
query number for ProbDD across all three benchmark suites.

On all benchmark suites, the number of successful queries
in ddmin and ProbDD is remarkably similar, especially when
contrasted with the substantial difference in the total number
of queries. Specifically, on BMC, ddmin achieves 222 + 9 +
11, 927 = 12, 158 successful queries, closely matching the
11,696 successful queries from ProbDD. Similarly, on BMDBT
and BMXML, ddmin performs 1, 048+855+8, 437 = 10, 340
and 2+830+1, 485 = 2, 317 successful queries, respectively,
both closely aligning with the 13,878 and 2,176 successful
queries achieved by ProbDD. Besides, ddmin always performs
significantly more failed queries, resulting in a larger total
query number and thus a longer execution time, as previously
discussed in § IV-D.

On all benchmark suites, a large portion of ddmin’s queries

is categorized as Complement and Revisit; however, they both
have a notably low success rate. For instance, on BMC, out of
a total of 901,128 queries, Complement and Revisit account for
490,896 (54.48%) and 170,884 (18.96%), respectively. Within
such queries in Complement and Revisit, merely 9 (<0.01%)
and 222 (0.13%) queries succeed, i.e., only a tiny portion of
attempts successfully reduce elements. These success rates are
far less than those of queries within Other (4.98%), as well
as those of ProbDD (4.28%). On the other benchmark suites,
a similar phenomenon is observed.

Queries within Complement and Revisit categories consti-
tute a large portion yet prove to be largely inefficient, wasting
a significant amount of time and resources. On the contrary,
those in Other achieve a much higher success rate, on par with
that of ProbDD, and are responsible for most of the successful
deletions. Therefore, we believe that these two categories,
where queries are inefficient, are the main bottlenecks behind



ddmin’s low efficiency. However, these bottlenecks are absent
in ProbDD, as it does not consider complements of subsets
and previously tried subsets for deletion.

G. 1-Minimality of ProbDD?

Finding 5: Improving efficiency by avoiding ineffective
attempts presents a trade-off by not ensuring 1-minimality,
while such limitation can be mitigated by iteratively running
the reduction algorithm until a fixpoint is reached.

Although ProbDD avoids Revisit queries to enhance ef-
ficiency, some reduction potentials may be missed, as the
deletion of a certain subset may enable a previously tried sub-
set to become removable. Therefore, a limitation of ProbDD
lies in that it increases efficiency by sacrificing 1-minimality.
To substantiate this limitation, we examine how frequently
ProbDD generates a list that is not 1-minimal, i.e., can be
further reduced by removing a single element. For instance,
statistical analysis on BMC reveals that among 6,871 invo-
cations of ProbDD, 76 of them fail to generate a 1-minimal
result, accounting for 1.1%. For these failed invocations, an
average of 1.49 elements (tree nodes) can be further removed
via single-element deletion.

However, such limitation is not apparent across all bench-
mark suites, as the results from ProbDD are not consistently
larger than those from ddmin. Our further investigation reveals
that these benchmarks are reduced on wrapper frameworks
Picireny and Chisel. Both frameworks employ iterative loops
to achieve a fixpoint, effectively reducing some elements
missed in the first iteration.

V. IMPLICATIONS: A COUNTER-BASED MODEL

Building on the aforementioned demystification of ProbDD,
we discover that probability can be optimized away, and subset
size can be pre-computed. Hence, we propose Counter-Based
Delta Debugging (CDD), to reduce the complexity of both
the theory and implementation of ProbDD, and validate the
correctness of our prior theoretical proofs.
Subset size pre-calculation. Based on Lemma III.3 in
§ III-B, the size for each round can be pre-calculated. There-
fore, as shown at line 12 – line 15 in Algorithm 2, we utilize
the current round r and the initial probability p0 to determine
the subset size s. The size of the selected subset decreases
as the round counter increases. This is intuitively reasonable
since, after a sufficient number of attempts on a large size have
been made, it becomes more advantageous to gradually reduce
the subset size for future trials. Furthermore, this trend aligns
well with that of ProbDD, in which probabilities of elements
gradually increase, resulting in a smaller subset size.
Main workflow. The simplified ProbDD is illustrated in
Algorithm 2, from line 1 to line 11. Before each round, the
CDD pre-calculates the subset size on line 3 and then partitions
L using this size on line 4. Then, similar to ddmin, it attempts
to remove each subset on line 5 – line 8. The subset size
continuously decreases until it reaches 1, meaning that each
element will be individually removed once.

Algorithm 2: CDD (L,ψ)

Input: L: a list of element to be reduced.
Input: ψ : L→ B: the property to be preserved by L.
Input: p0: the initial probability given by the user.
Output: the minimized list that still exhibits the property ψ .

1 r ← 0 // The round number, initially 0.

2 do
// Compute subset size by round number

3 s ← ComputeSize (r, p0)
/* Partition L into subsets with s elements. If it does

not divide evenly, leave a smaller remainder as the

final subset. */

4 subsets← Partition (L, s)
5 foreach subset ∈ subsets do
6 temp← L \ subset

// Remove subset if it is removable

7 if ψ(temp) is true then
8 L← temp

// Update the r and move to next round.

9 r ← r + 1
10 while s > 1
11 return L
12 Function ComputeSize(r, p0):

Input: r: the current round number.
Input: p0: the initial probability given by the user.
Output: The size of the subset to be used in the current

round.
// Calculate the estimated probability of round r

13 pr ← p0 × 1.582r

// Calculate corresponding subset size of round r

14 sr = argmaxs∈N+ s × (1− pr)s
15 return sr

Revisiting the running example. Returning to Table III,
under the same conditions, CDD achieves the same results
as ProbDD but without the need for probability calculations.
This is because both the probability and subset size s can be
directly determined from the round number r.

Evaluation. As shown in Table IV and Table V, CDD
outperforms ddmin w.r.t. efficiency, with 29.91% less time and
52.04% fewer queries. Meanwhile, CDD performs comparably
to ProbDD w.r.t. final size, execution time and query number,
with a p-value of 0.42, 0.29 and 0.70, respectively, indicating
insignificance between these two algorithms. CDD is expected
to perform on par with ProbDD since it is designed to
provide further insight and simplify the intricate design of
ProbDD, rather than to surpass its capabilities. Furthermore, its
comparable performance to ProbDD further validates the non-
necessity of randomness and our assumption in Lemma III.1.

Bottleneck and 1-minimality. Revisiting the bottlenecks
presented in Fig. 2, CDD possesses a query number and
success rate close to those of ProbDD, indicating that CDD
also overcomes the bottlenecks of ddmin. Additionally, similar
to ProbDD, 1-minimality is absent in CDD, although iterations
help mitigate this issue.



Finding 6: CDD always achieves comparable performance
to ProbDD, which further supports our previous findings,
including the theoretical simplifications regarding size and
probability, analysis of randomness, bottlenecks, and 1-
minimality.

VI. LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the limitations of CDD, and po-
tential factors that may impair the validity of our experimental
results.

A. Limitations

As discussed in § IV-G, compared to ddmin, neither
ProbDD nor CDD guarantees 1-minimality. This limitation
arises because after successfully removing a subset, ddmin
restarts the process from the first subset, whereas ProbDD and
CDD continue from the next subset, skipping all the previously
tried subsets. Therefore, although ProbDD and CDD complete
the reduction process more quickly, they may miss certain
reduction opportunities and produce larger results than ddmin.

However, reduction and debloating tools generally invoke
these reduction algorithms in iterative loops until a fix-point
is reached, gradually refining the results and mitigating limi-
tations, as mentioned in § IV-G. Table IV and Table V further
support this point by showing that with multiple iterations,
ProbDD and CDD achieve significantly higher efficiency
compared to ddmin, while still producing results that are
comparable to ddmin w.r.t. effectiveness.

B. Threats to validity

For internal validity, the main threat comes from the po-
tential impact from the assumption, as discussed in § III-A1.
Specifically, without assuming that the number of elements in
L is always divisible by the current subset size, we could
not further refine the mathematical model of ProbDD to
achieve a simpler representation. However, such assumption
might impact the actual performance, potentially negating
the benefits of our simplification. To this end, we conduct
extensive empirical experiments, demonstrating that CDD, the
simplified algorithm derived from this assumption, exhibits no
significant difference from ProbDD.

For external validity, the threat lies in the generalizability
of our findings across application scenarios. To mitigate this
threat, we perform experiments on 76 benchmarks, including
C programs triggering real-world compiler bugs, XML inputs
crashing XML processing tools, and benchmarks from soft-
ware debloating tasks. These benchmarks have covered various
use scenarios of minimization algorithms.

VII. RELATED WORK

In this section, we discuss related work of test input
minimization around three aspects: effectiveness, efficiency,
and the utilization of domain knowledge.
Effectiveness. Test input minimization is an NP-complete
problem, in which achieving the global minimum is usually

infeasible. Therefore, existing approaches to improving effec-
tiveness mainly aim to escape local minima by performing
more exhaustive searches. Since enumerating all possible sub-
sets is infeasible, Vulcan [34] and C-Reduce [14] enumerate
all combinations of elements within a small sliding window,
and exhaustively attempt to delete each combination, resulting
in smaller final program sizes. In contrast, ProbDD and CDD
do not exhibit clear actions targeted at breaking through local
optima, suggesting they cannot achieve better effectiveness
than ddmin, as aligned with our evaluation in § IV.
Efficiency. If parallelism is not considered, the core of
boosting efficiency is the enhanced capability to avoid rela-
tively inefficient queries. For example, Hodovan and Kiss [18]
proposed disregarding attempts to remove the complement of
subsets, the success rate of which is unacceptably low in some
scenarios. Besides, Gharachorlu and Sumner [17] proposed
One Pass Delta Debugging (OPDD), which continues with the
subset next to the deleted one, rather than starting over from
the first subset. This optimization also avoids some redundant
queries in ddmin, reducing runtime by 65%. As revealed by
our analysis, these two above-mentioned optimizations are
implicitly incorporated within ProbDD and CDD, and thereby
contributing to their higher efficiency than ddmin.
Utilization of domain knowledge. There is an inherent
trade-off between effectiveness and efficiency in test input
minimization. For the same algorithm, achieving a better
result, i.e., a smaller local optimum, requires more queries
to be spent on trial and error. However, employing do-
main knowledge [14], [35]–[37] can still improve the overall
performance. For instance, J-Reduce is both more effective
and efficient than HDD in reducing Java programs, as it
escapes more local optima by program transformations while
simultaneously avoiding more inefficient queries via semantic
constraints, leveraging the semantics of Java. Our analysis on
ProbDD indicates that the probabilities primarily function as
counters and do not utilize or effectively learn the domain
knowledge of an input. Besides, the evaluation on CDD, a sim-
plified algorithm without utilizing probability, demonstrates
that prioritizing elements via such probabilities does not yield
significant benefits, thus validating our analysis.

VIII. CONCLUSION

This paper conducts the first in-depth analysis of ProbDD,
which is the state-of-the-art variant of ddmin, to further
comprehend and demystify its superior performance. With
theoretical analysis of the probabilistic model in ProbDD,
we reveal that probabilities essentially serve as monotonically
increasing counters, and propose CDD for simplification. Eval-
uations on 76 benchmarks from test input minimization and
software debloating confirm that CDD performs on par with
ProbDD, substantiating our theoretical analysis. Furthermore,
our examination on query success rate and randomness uncov-
ers that ProbDD’s superiority stems from skipping inefficient
queries. Finally, we discuss trade-offs in ddmin and ProbDD,
providing insights for future research and applications of test
input minimization algorithms.
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