
Graph-based Detection of Library API Imitations
Chengnian Sun∗, Siau-Cheng Khoo∗, Shao Jie Zhang†
∗School of Computing, National University of Singapore

†NUS Graduate School for Integrative Sciences Engineering , National University of Singapore
{suncn, khoosc}@comp.nus.edu.sg, shaojiezhang@nus.edu.sg

Abstract—It has been a common practice nowadays to employ
third-party libraries in software projects. Software libraries
encapsulate a large number of useful, well-tested and robust func-
tions, so that they can help improve programmers’ productivity
and program quality. To interact with libraries, programmers
only need to invoke Application Programming Interfaces (APIs)
exported from libraries. However, programmers do not always
use libraries as effectively as expected in their application
development. One commonly observed phenomenon is that some
library behaviors are re-implemented by client code. Such re-
implementation, or imitation, is not just a waste of resource and
energy, but its failure to abstract away similar code also tends
to make software error-prone. In this paper, we propose a novel
approach based on trace subsumption relation of data dependency
graphs to detect imitations of library APIs for achieving better
software maintainability. Furthermore, we have implemented a
prototype of this approach and applied it to ten large real-world
open-source projects. The experiments show 313 imitations of
explicitly imported libraries with high precision average of 82%,
and 116 imitations of static libraries with precision average of
75%.

I. INTRODUCTION

A software library is a collection of subroutines or classes
to facilitate software development. A library contains code
and data which provide certain services and can be exported
via Application Programming Interfaces (APIs) to independent
programs. (We refer to the code that relies on libraries as
client). Libraries provide a cost effective way to build software
systems: they improve the productivity of programmers by
providing a variety of desired functionalities; they enhance
software quality as libraries are usually well-tested and thus
fairly robust thanks to their massive and diverse user base.
Nowadays, it has been a common practice to enjoy the benefits
of libraries in software projects large and small.

Unfortunately, libraries are not always effectively used by
programmers in developing their applications. In particular, we
often find client code that imitates library API, i.e., client code
re-implements the behavior of a library API. There are several
reasons for such imitations which are also elaborated in [1],
e.g., programmers might not be familiar with the library, not
aware of all the functionalities, or lost in a huge collection of
APIs. Reinventing the wheel does not only waste unnecessary
resources, time and energy, but its failure to abstract away
similar code also tends to make software error-prone. This
maintenance concern has motivated us to find a tool that can
detect imitations of library APIs in client code both efficiently
and effectively.

Figure 1 is a simple imitation example we found in J-
Boss application serverV5.0.1. Class MethodInfo is a sub-
class of class JoinPointInfo. Each link emitting from client
code represents the client invoking a library method. As
shown in Figure 1(a), the method populateMethods first
tests the expression (method .getInterceptors() == null ||
method .getInterceptors().length < 1); let’s call it e. Then
it tests the negation of e in the second if-condition. Details
of library method getInterceptors are given in Figure 1(c). It
firstly acquires the lock readlock , returns its interceptors to the
client and lastly releases the lock. It is not difficult to find out
that the library method hasAdvices (shown in Figure 1(d))
has the same functionality as testing e. Thus if the method
hasAdvices is known beforehand, programmers may replace
each appearance of e with hasAdvices as Figure 1(b) shows.
As a result, the original code is refactored into a more succinct
and efficient fashion, which alleviates two method calls and
two pairs of locking operations.

Straightforward though this imitation may seem, it is not
easily identifiable by usual text-based similarity detection tech-
niques. The reason is that the lock operations only appear in
the library API hasAdvices and in the method getInterceptors
called in the client code. The imitation becomes clear only
when the implementation of getInterceptors is explicitly
inlined into the client code.

In this work we take a semantic stance to investigate the
problem of detecting such imitation. Here we focus on the
similarity between the data dependency graphs (DDGs) of a
coding pair consisting of a library API and a client method.
Generally speaking, the DDG of a library API (Glib) is said
to be imitated by the DDG of a client method (Gclt) if and
only if all the data flow traces of Glib can be “subsumed” by
those of Gclt. If Gclt imitates Glib, then the client method
potentially imitates the library API.

Central to our approach is a novel algorithm for detecting
graph imitation based on trace subsumption relation. We first
present a list of matching rules to identify trace subsump-
tion relation between the data flow traces of both a client
method and a library API. Then we propose several effective
heuristic techniques to prune method inlinings thus achieving
better scalability. Lastly, we implemented a prototype of our
approach and applied it to ten open-source Java projects
which were also selected by Kawrykow and Robillard [1].
We first experimented on detecting imitation of codes from
the set of library APIs which have been explicitly imported
in client code. Our method reported 313 true imitations, with

Fig. 1. A Library API Imitation Example in JBoss Application Server V5.0.1

precision average of 82%. This is an improvement over the
work by Kawrykow and Robillard [1]. We next experimented
on detecting imitation of utility methods available in static
library APIs. Here, our method reported 116 true imitations
with precision average of 74%.

We summarize our contributions as follows:
1) We employ data dependency graphs – a semantics-based

representation of programs – as the basis for detecting
imitations.

2) We propose a novel graph algorithm based on trace
subsumption relation to detect imitations of library APIs
in client code.

3) We demonstrate the practicality of our method by de-
tecting imitations with high precisions.

4) Our approach is scalable and can complete detection for
large software projects within 130 seconds.

The paper is organized as follows. Section II presents a brief
introduction to data dependency graphs and method inlining.
Section III details our technique including the basic defini-
tions, algorithms and heuristics to detect library imitations.
Section IV describes our case studies on sizable open source
projects and shows the effectiveness of the proposed approach
in terms of performance. Section V discusses some important
considerations about our approach. Section VI reviews related
work, and finally, Section VII concludes and describes some
potential future work.

II. PRELIMINARIES

In this section, we introduce data dependency graphs (D-
DGs), which capture the data dependencies among program
statements. Then we present the concept of method inlining
which helps detecting imitations at DDG level.

A. Data Dependency Graph

A data dependency graph [2] [3] is a graphical represen-
tation of a method which consists of vertices and directed
edges. Each vertex represents a basic statement (usually in

three-address code form) such as a method call, an arithmetic
operation and a field read or write. An edge v → u denotes
that the vertex u is data-dependent on v. Data dependency is
formalized as follows.

Definition 1 (Data Dependency): A vertex u is data de-
pendent on a vertex v if a variable var defined at v is used at
u and there is an execution path P from v to u, along which
the var is not re-defined.

Definition 2 (Data Dependency Graph): The data depen-
dency graph of a method M is a triple G = (V,E, L), where

• V is a set of vertices, each of which represents a basic
statement in M,

• E ⊆ V × V is a set of data dependency edges between
statements,

• L : V → T is a function that assigns vertex types to
vertices.

Table I lists all vertex types considered in our approach.
E.g., each formal parameter of a method is a vertex of type
Formal. If a DDG is extracted from an instance method, there
is a vertex of type This representing the current object instance.
Further, in order to track how an actual parameter value is
used in a method call, we introduce two additional vertices
Actual and Callee. For each call C to a method M, each formal
parameter of M has a vertex of type Actual representing the
corresponding actual parameter preceding the Call vertex of
C. If M is an instance method, there is also a Callee vertex
preceding the Call vertex of C. Likewise, a RtnVal vertex is
added to the end of C representing the return value of M if
the value is not void.

Definition 3 (Value Vertex): A vertex is a value vertex if
and only if its statement defines a value.

Each vertex with an attribute type is a value vertex in
Table I.

Definition 4 (Entry): An entry of a DDG is a vertex with-
out sink edges.

TABLE I
VERTEX TYPES AND THEIR ATTRIBUTES IN DDG

Type Description Attributes
Actual An actual parameter of a method call index: parameter index
ArrIdx A read operation from an element in an array type: type of the element
Binary A binary arithmetic or logic expression type: type of the expression value; op: +/−/×/÷/∧/∨/· · ·
Call A call to a method M cls: declaring class of M ; sig: signature, ie., name + parameter type list
Callee The receiver of an instance method call
Cond The conditional in a branching statement
Const A primitive, string or null constant type: constant type; value: constant value
FGet A read operation from a field type: field type; cls: declaring class ; name: field name
FPut A write operation to a field cls: declaring class ; name: field name
Formal A formal parameter of a method type: parameter type; index: parameter index;
Exit The return statement of a non-void method
NewArr An invocation to create an array type: type of the array
NewObj An invocation to an object construction type: type of the constructed object; params: parameter type list
RtnVal The return value of a method call type: type of the return value
This The reference to the current object type: type of the current object

An entry can be of type NewObj with no parameters, Call
to a static method with no parameters, FGet to a static field,
Const, This, Formal, etc. There may be multiple entries in one
DDG.

Figure 2 shows the DDG of method hasAdvices given
in Figure 1(d). Underlined text denotes vertex types. There
are three entries This , 0 and null . The vertex This is the
reference to the current object, as the method is an instance
method. Succeeding This are four field reads. Preceding the
Exit vertex is the AND logical operation.

Fig. 2. The Data Dependency Graph of JoinPointInfo.hasAdvices()

B. Method Inlining

Method inlining plays a vital role in detecting imitations of
library APIs as imitation instances are not often simple copy-
and-paste clones as shown in the motivating example. Suppose
the DDG of a caller method is Gcaller and the DDG of a callee
method is Gcallee. Vcall is the corresponding Call vertex. We
define the following rules to inline Gcallee into Gcaller:

• Actual Parameters: We add edges from the predecessor
of each i-th actual parameter vertex Vactual to each
successor of the i-th formal parameter vertex Vformal of
Gcallee and remove Vactual, Vformal and their associated
edges.

• Callee: We add edges from the predecessor of the Callee
vertex Vcallee in Gcaller to each successor of the This
vertex Vthis in Gcallee and remove Vcallee, Vthis and their
associated edges.

• RtnVal: We add edges from each predecessor of the Exit
vertex Vexit in Gcallee to each successor of the RtnVal
vertex Vrtn in Gcaller and remove Vrtn, Vexit and their
associated edges.

III. APPROACH

Our approach to detecting client code snippets which imitate
behaviors of library APIs is based on data dependency graphs.
We propose a trace subsumption relation to determine the
similarity between data flows in library and client methods.
Given a library API lib and a client method clt , if all the data
flows in lib can be subsumed by clt , then we assert that clt
is potentially imitating the behavior of lib.

In this section we begin by introduing the relevant notions
and terminologies. Then we present the workflow of our
approach in detail, including pre-processing library APIs, im-
itation checking algorithms and post validation of imitations.

A. Basic Definitions

Definition 5 (Trace): A trace in a data dependency graph
is a sequence of vertices such that from each of its vertices
except the last one there is an edge to the next vertex in the
sequence, and the first vertex in the sequence is an entry of
the graph.

Given a data dependency graph G, let V be its vertex set.
We denote a trace T in G as ⟨v1, v2, ..., vend⟩ where each vi
is a vertex from V and v1 is an entry. We also use the notation
traces(G) to represent all the (possibly infinite) traces of G.

A trace captures the data flow from the beginning of a
method to some statements within the method. Considering
a trace in Figure 2,

⟨This, FGet:interceptorChainLock, Callee, Call:readLock(),
RtnVal:Lock, Callee, Call:unlock()⟩

the current object This is first used to retrieve the content
of the field interceptorChainLock , on which readLock() is
then invoked. Finally unlock() is called on the returned Lock
object. We believe that in most cases where the data flows in a
library API are similar to those in client code, the client code
does imitate library APIs.

Detecting similarity between data flows requires us to
compare vertices from two DDGs. A set of matching rules
is listed in Table II. We define a predicate match(v, u) to test
whether the vertex v in a library DDG matches u in a client
DDG. match(v, u) returns true if we can find a row such
that the first column is the type of v, the second column is
the type of u and the evaluation of the formula in the third
column yields true. Most of the evaluation criteria are based
on the equality of types and attributes of two vertices, except
for Formal, This, Binary, Call, Const and Exit. The rules for
Formal and This naturally follow the type constraint of method
invocations, i.e., a value of type V can be passed to a method
call as a parameter or callee of type F if and only if V is F or
a subtype of F . As developers can write a program in various
ways, We relax the matching criteria for Binary and Const
(cf. the first and third rows in Table II). This relaxation helps
harvesting more imitations such as the motivating example at
the cost of few false positives. In Figure 1(a), although the first
highlighted conditional uses operators different from those in
hasAdvices(), our implementation can still detect it.

TABLE II
MATCHING RULES: match(v, u)

v u Condition
Binary Binary v.type = u.type ∧ v.op ≈ u.op1

Call Call (u.cls ≤: v.cls ∨ v.cls ≤: u.cls)2∧
v.selector = u.selector

Const Const v.type = u.type ∧ v.value ≈ u.value3

Formal Value4 u.type ≤: v.type

Exit * 5 true
This Value4 u.type ≤: v.type

Default u and v are of the same vertex type, and all
attributes are the same

1 v.op ≈ u.op: true if the operators of v and u are in the same operator
category. There are six operator categories {+,−}, {×,÷}, {mod},
{=, ̸=}, {other logic operators} and {others}

2 a ≤: b: a is b or a subtype of b;
3 v.value ≈ u.value: true if (1) both are boolean, (2) or both are

numbers and |v.value− u.value| ≤ 1, (3) or v.vlaue = u.value
4 Value represents a value vertex defined in Definition 3.
5 ∗ denotes any vertex type.

Based on the matching rules, we define a subtrace relation
of two traces as follows.

Definition 6 (Subtrace Relation): A trace t1 = ⟨v1,
v2, ..., vm⟩ is considered a subtrace of another trace t2 =
⟨u1, u2, ..., un⟩ if there exists an integer i, 0 ≤ i ≤ n − m
where match(v1, u1+i), ... and match(vm, um+i). Notation-
wise, we write this relation as t1 ≤ t2.
Intuitively, subtrace is a generalization of substring relation.
Substring is based on the equality of characters in strings,
whereas subtrace is based on the matching rules of vertices.

We use the trace subsumption relation to decide whether the
data flows in a DDG are imitated by those in another DDG.

Definition 7 (Trace Subsumption Relation): Given two
data dependency graphs Glib and Gclt, Gclt trace subsumes
Glib, if and only if for each trace t1 ∈ traces(Glib) there
exists at least one trace t2 ∈ traces(Gclt) such that t1 is
a subtrace of t2. Notation-wise, we denote this relation as

Glib ⊑ Gclt. Alternatively, it can be formally defined as:
Glib ⊑ Gclt ≡

∀t1 ∈ traces(Glib) : ∃t2 ∈ traces(Gclt) ∧ t1 ≤ t2
Similar to [1], as some of the library imitations are not

simple copy-paste code clones, we need to inline some
method(s) into the client or library DDG or both if necessary.
For practicality, we elect to perform inlining only on the
original method code, and not the inlined code. Based on
the definition of trace subsumption relation, the following
definition identifies the principle of our approach.

Definition 8 (Potential Imitation): A client method clt is
said to potentially imitate a library method lib, if after inlining
some method calls in clt and/or lib, the resultant DDG of clt
trace subsumes the resultant DDG of lib.
We use the terms “imitation” and “potential imitation” inter-
changeably for the rest of the paper.

B. Pre-processing Library APIs
For safety reasons, additional code, such as null refer-

ence checks, precondition and state assertions, and exception
handlers, is often instrumented into library APIs. Although
these code snippets have no or little contribution to the core
functionality, they result in more vertices and edges generated
in their DDGs. In practice, we observe that it is not uncommon
to have a client imitating a library API yet missing out such
code snippets. Consequently, the trace subsumption relation
between a library API and a client may not hold although it
is a valid imitation. So we present three heuristics to remove
such safety-checking code from library APIs. Note that all
DDGs of library APIs are constructed after these heuristics
are applied to API implementation.
Null Reference Checks. There are two code patterns we target
at in library APIs as follows.

// Null Pattern 1 // Null Pattern 2
if (a == null) { if (a != null) {

return a constant; ...;
} else { a.X();

...; ...;
a.X(); } else {
....; return a constant;

} }

If an invocation to a method X() on an object a is guarded
with a null reference check on a, and if a is null the API
simply returns a constant, then we remove the guard (a ==
null) or (a != null) in the if-else condition, and the statement
returning a constant.
Assertions. The pattern below captures the situation when a
property (e.g. preconditions or state invariant) is violated, an
exception is thrown.

if (...) {
...;
throw new Exception(...);

} else {
...;

}

In this case, we remove the conditional with the branch which
throws the exception.

Exception Handlers. One observation about exception han-
dlers is that if an exception is caught by libraries in a try-catch
statement, usually either the error is logged or the exception
is re-thrown. Hence we simply discard all catch blocks in
libraries.

try {
...;

} catch(...) {
...; // log or re-throw the exception.

}

C. Trace Subsumption Checking Algorithm

For ease of understanding, we divide our algorithm into two
parts. This section depicts how to check trace subsumption
relation of two DDGs, whereas the other Section III-D shows
how trace subsumption checking is combined with method
inlining to detect library API imitation.

Algorithm 1 checks trace subsumption relation. The proce-
dure Subsume takes as input two graphs Glib and Gclt from
a library and a client methods respectively, and returns true if
Gclt trace subsumes Glib, false otherwise. The stack in line
1 is a stack and each element is a pair (libv,matches), of
which libv is a vertex in Glib and matches is a set of vertices
in Gclt matching libv. The set visited in line 2 stores the
visiting information – a set of visited pairs – to avoid repeated
checking. The algorithm performs a case analysis over the
nature of vertices: entry and non-entry vertices.

1) Checking Entries: In line 3–15, the procedure iterates
over the entries of Glib. For each entry en, it collects all the
matching vertices in Gclt into set matches in line 5–9. If there
is no match, the algorithm returns false, otherwise adds the
pair (en,matches) to stack.

2) Checking Non-Entries: In line 16–28, the procedure
performs step-wise trace subsumption relation check. It repeats
the process until stack is empty or an un-matched library
vertex is found. In line 17, it first pops a pair (libv,matches)
from stack, Then for each successor succ of libv, it calls
the procedure FindMatches to search the matching vertices
in Gclt, of which each is a successor of a vertex of matches.
In line 20, if there is no match in Gclt, the algorithm
returns false, otherwise, the matching pair (succ,matches)
is pushed into stack if it has not been visited. Finally, if stack
becomes empty, the algorithm ends with true at line 28.

D. Overall Algorithm

For illustrative purpose, we present Algorithm 2, which is
a simplified version of API imitation detection algorithm. It
takes as input a library and a client methods lib and clt, and
returns true if clt potentially imitates lib, that is, after some
method calls in lib and clt are inlined, the resultant DDG of
clt trace subsumes that of lib.

This algorithm assumes that each method is initially as-
sociated with a constructed DDG, which is referred to as
original DDG. We manipulate copies of original DDGs, and
all the inlining operations are conducted at DDG level, due
to overhead consideration that constructing DDGs from code

Algorithm 1 Boolean Subsume(DDG Glib, DDG Gclt)
Input:
Glib: a DDG of a library method
Gclt: a DDG of a client method
Output: true if Gclt trace subsumes Glib, false otherwise
Body:

1: Stack stack := []
{each stack element is a pair (lv, cs) where lv is a vertex in
Glib, and cs is a set of vertices in Gclt matching lv}

2: Set visited := ∅
{visited stores all pairs which are ever in stack}
{Locate all the matches in Gclt for each entry of Glib.}

3: for each entry en of Glib do
4: Set matches := ∅

{Search for matching vertices in the whole Gclt for en}
5: for each vertex v of Gclt do
6: if match(en, v) then
7: matches := matches ∪ {v}
8: end if
9: end for

10: if matches = ∅ then
11: return false
12: else
13: stack.push((en,matches))
14: end if
15: end for

{Check trace subsuming relation in DFS style.}
16: while stack ̸= [] do
17: (libv,matches) := stack.pop()
18: for each successor succ of libv in Glib do
19: Set matches′ := FindMatches(Gclt,matches, succ)
20: if matches′ = ∅ then
21: return false
22: else if (succ,matches′) /∈ visited then
23: visited := visited ∪ {(succ,matches′)}
24: stack.push((succ,matches′))
25: end if
26: end for
27: end while
28: return true

Proc: Set FindMatches(DDG Gclt, Set starts, Vertex libv)
Input:
Gclt: a DDG of a client method
starts: a set of vertices in Gclt as the starts of the search
libv: a vertex in a library DDG to match
Output: a set of vertices in Gclt matching libv
Body:

1: Set result := ∅
2: for each vertex start ∈ starts do
3: for each successor succ of start in Gclt do
4: if match(libv, succ) then
5: result := result ∪ {succ}
6: end if
7: end for
8: end for
9: return result

involving data dependency analysis is computationally expen-
sive compared to simply cloning graphs. In line 3, all the Call
vertices in both original client and library DDGs are collected
into set calls. We enumerate all the subsets of calls in line
4, and for each subset the corresponding DDGs are inlined

Algorithm 2 Boolean Detect(Method lib, Method clt)
Input:
lib: a library method
clt: a client method
Output: true if clt potentially imitates lib, false otherwise.
Body:

1: DDG Glib := the DDG of lib
2: DDG Gclt := the DDG of clt
3: Set calls := all Call vertices in both Glib and Gclt

4: for each Call vertex set sub ∈ P(calls) do
5: DDG G′

lib := clone a copy of Glib

6: DDG G′
clt := clone a copy of Gclt

7: for each Call vertex call ∈ sub do
8: DDG Gcall := clone a copy of DDG that call refers to
9: if call is in Glib then

10: inline Gcall into G′
lib

11: else
12: inline Gcall into G′

clt

13: end if
14: end for
15: if Subsume(G ′

lib ,G
′
clt) then

16: return true
17: end if
18: end for
19: return false

into G′
clt or G′

lib at line 8–13; then subsumption relation is
checked for the two graphs at line 15. We repeat this process
until the enumeration is finished or we find a pair of G′

lib and
G′

clt such that G′
lib ⊑ G′

clt.

E. Pruning Method Inlinings

As the runtime overhead of Algorithm 2 is exponential to
the size of calls in line 3, we employ several heuristics to
minimize the size of calls, such as no inlining of recursive
calls and the followings. Our experimental result shows that
the heuristics are effective, making our prototype efficient even
for large Java systems.

1) Only Inlining Single-Target Calls: Polymorphism is a
key feature of object-oriented programming languages. A vir-
tual method call1 can be dynamically dispatched to a different
method body at runtime. Thus a Call vertex may statically
correspond to multiple DDGs. We use class hierarchy analysis
to resolve the possible targets of each virtual method call, and
remove it if it corresponds to multiple or no targets.

2) Feedback-Guided Inlining: Rather than enumerating all
subsets of calls in a deterministic order, we only inline some
subsets of them based on the feedback from invocation of
Subsume. When Subsume is invoked at line 15 in Algorith-
m 2, in our prototype, not only do we get the result true or
false of trace subsumption checking, but also a library vertex
unmatched and a set of method calls callsclient in the client
DDG. The vertex unmatched stores the un-matched library
vertex libv if Subsume returns false and libv is a Call vertex,
otherwise it is null . In callsclient , each call corresponds to a

1Java has four invocation instructions: invokeStatic for static methods;
invokeSpecial for constructors, methods of super classes and private methods;
invokeVirtual and invokeInterface for virtual methods

DDG g and g has at least one vertex matching a library vertex
visited in the checking. Set callsclient will be constructed
in Algorithm 1 when searching for vertices in client DDG
that match the library vertex libv . The construction is based
on the type of libv vertex. We first describe how this set is
constructed, and then explain how unmatched and callsclient
can be used to guide selection of call subsets.
Entry. If libv is an entry but not Formal or This, then
callsclient contains those method calls in the client which
invoke a DDG with an entry matching libv . Nothing is added
to callsclient when libv is either a Formal or a This vertex
Non-Entry. If libv is a non-entry vertex, method calls are
collected in the procedure FindMatches in Algorithm 1. If
the vertex succ at line 3 is a Callee (or i-th Actual) of a
method call c, we include c in callsclient if in the DDG of c
the vertex succeeding This (or i-th Formal) matches libv .

The set callsclient together with unmatched constitutes a
smaller set setsmall of calls which are candidates for inlining.
The procedure Detect in Algorithm 2 enumerates all the
subsets of setsmall . At each enumeration, Detect gets feedback
from Subsume and may add new method calls to setsmall .
Detects terminates when there is no more new subset to
enumerate or when an imitation is found.

F. Post Validation of Imitations

Given a client DDG Gclt and a library DDG Glib, even
when Subsume(Glib, Gclt) returns true, it might still be the
case that the client is not imitating the library API. We find that
false positives are mostly due to the two scenarios described
below, and thus post-validating the claim Glib ⊑ Gclt is need-
ed before Subsume returns true at line 28 of Algorithm 1.
Unmatched Inlined Vertices in Client.

Lib(){ Clt(){ toInline(){ Clt’() {
a(); toInline(); a(); Lib();
b(); b(); x(); }

} } y();z();}

This happens when some vertices in Gclt come from inlined
method calls, and these vertices do not match any vertex
in Glib. Consider the simple example above, we assume all
method calls are data independent of one another. After we
inline method toInline into Clt and construct a DDG, the new
DDG trace subsumes the DDG of Lib with x(), y() and z()
matching no library vertex. However, we cannot replace the
body of Clt with a single invocation to Lib shown as method
Clt ′, as Clt ′ does not provide the behavior of methods x(),
y() and z(). One might suggest to append x(), y() and z()
to Clt ′, but this begs the question of whether Clt is trying
to imitate Lib. To eliminate this case, we require all inlined
vertices in client match at lease one library vertex.
Matching All References to Library Locals.

Lib(){ Clt(){
a = compute(); a = compute();
return a.X(); a.Y();

} return a.X();
}

In the example above, the DDG of client Clt trace subsumes
the DDG of library Lib. In order to refactor Clt with Lib,
we require the local variable a, and its references, in Clt to
become a local in Lib. This is not feasible as the original
reference a.Y () is not available in Lib. To eliminate this case,
we require that every successor of a non-entry Value vertex in
a client DDG matches at least one library vertex.

IV. CASE STUDIES

We have implemented a prototype on top of the program
analysis framework Wala2. Although the prototype currently
handles Java programs, its underlying technique is applicable
to object-oriented programs in general. Indeed, we simply need
to add new front-end to convert programs in other object-
oriented languages to data-dependency graphs.

Our prototype works on compiled bytecode. The motiva-
tions are: (1) source code of libraries is not always available,
and (2) bytecode instructions are primitive – with all advanced
loop structures being translated into if · · · goto structures; this
translation normalizes the code and minimizes the number of
vertex types in DDGs.

The system accepts a set of library class files and a set of
client class files, and returns a list of imitation pairs. Each pair
is composed of a library API and a client method imitating
the API with imitation information. The imitation information
contains the location (i.e., line number and declared method)
of each vertex in the identified DDGs.

We have applied this prototype to ten open-source Java
projects from average sized Checkstyle3 to large JBoss. To
evaluate the detection performance, we employed the notion
of precision defined as follows.

precision =
number of true positives

number of reported imitations
(1)

A. Experimental Setup

We used the compiled code of ten diversified open-source
Java projects as experiment subjects ranging from applica-
tion server, server side infrastructure, object relation mapping
framework to code analysis tool.

The subject information is shown in Table III. The first two
columns show the project names and the version numbers. The
third column shows the total number of methods excluding
abstract, native and interface methods in client code.

In the case studies, for each client method clt of a project,
we tested clt against a set of library APIs libs in that project.
As a heuristic, libs does not include trivial library methods
which only read or write a value (i.e. fields, constants, local
or global variables). Based on the choice of libs, we conducted
the following two experiments to demonstrate our technique
is able to detect imitations with high precision.

The testbed is a PC with Intel Core 2 Quad CPU 3.0GHz
and 8GB memory. To take full advantage of multi cores, we
parallelized the prototype by dispatching detection tasks to six
threads.

2http://wala.sourceforge.net/
3http://checkstyle.sourceforge.net/

TABLE III
EXPERIMENTAL SUBJECT INFORMATION

Project Version Client Methods
JBoss 5.0.1 34744

SpringFramework 2.5.5 20490
Hibernate 3.3.1 16958
ArgoUML 0.20 8384

iReport 3.0.0 11187
JasperReports 3.1.4 10431
JasperServer 3.1.0 8147

FreeMind 0.9.0 5015
Jajuk 1.7.1 2923

CheckStylePlugin 4.4.2 1108

B. Detecting Imitation of Explicitly Imported Libraries

In this experiment, for each client method clt declared in
class C, we constructed the library API set libs by collecting
all the visible library APIs whose classes have been explicitly
imported into C. Table IV lists the detection statistics.

TABLE IV
RESULT OF IMITATION DETECTION FOR EXPLICITLY IMPORTED

LIBRARIES

Project Library Time True All Prec.
Methods (sec.) Posi.

JBoss 683220 101 226 288 78%
SpringFramework 412931 47 1 2 50%

Hibernate 38373 23 0 1 0
ArgoUML 54721 20 43 46 93%

iReport 611224 36 8 8 100%
JasperReports 298571 24 1 1 100%
JasperServer 617429 28 29 31 94%

FreeMind 32492 12 1 1 100%
Jajuk 208048 13 2 2 100%

CheckStylePlugin 40029 10 2 3 67%
Total 2997038 314 313 383 82%

The second column is the number of library APIs in each
project. The third column displays the time spent on each
subject in seconds. Column True Posi. records the number
of true positives, while column All is the number of reported
imitation pairs. The last column is the precision computed
based on columns True Posi. and All. In total, our technique
reported 313 true imitations with high precision average of
82%. Although the code size of the ten projects is large, it only
took 314 seconds for our prototype to finish this experiment,
hence our technique is scalable and efficient.

C. Detecting Imitation of Static Libraries

Most of the static library methods encapsulate common
utilities, which can be widely used. Figure 3 demonstrates
how client code can be improved by a static library.

The static library method writeByteArrayToFile() of class
FileUtils writes a byte array to a file. Internally, it opens a
stream to the file, writes the array and closes the stream. It
guarantees that no matter whether exceptions occur during the
writing, the created stream will be finally closed. Our system
detects that in client class XMLFilePersistenceManager the
method store imitates this library API, and can be refactored
to the code in Figure 3(d), which eliminates two method calls.

Fig. 3. An Imitation Example of Static Library API in JBoss

After investigating into the original client, we find another
benefit from calling writeByteArrayToFile(). The original
client code subjects to resource leak. In Figure 3(c), exceptions
may arise at the lines with highlighted comments. If they
occur, the stream object fos will not be closed until it is
garbage collected. In contrast, the new client has no such
problem.

In this experiment, we selected a set of static library meth-
ods such as those in apache commons.io, commons.collection
and commons.lang, and tested whether any of them could be
applied to client methods.

TABLE V
RESULT OF IMITATION DETECTION FOR STATIC LIBRARIES

Project Library Time True All Prec.
Methods (sec.) Posi.

JBoss 1703 130 40 56 71%
SpringFramework 1518 61 35 49 71%

Hibernate 545 30 16 22 73%
ArgoUML 0 13 0 0 –

iReport 328 38 1 1 100%
JasperReports 118 46 1 1 100%
JasperServer 1523 36 15 17 88%

FreeMind 492 15 0 0 –
Jajuk 465 15 5 5 100%

CheckStylePlugin 1258 11 3 4 75%
Total 7950 396 116 155 75%

Table V lists the detection statistics, following the same
format as Table IV. Our prototype reported 116 true imitations
with precision average of 75%. It took 396 seconds to finish,
more than the experiment on imported library as we need
check each client method against all the static libraries.

D. Analysis

1) False Negatives: In the two experiments, the high pre-
cision is mainly benefited from the employment of the trace
subsumption relation between library and client DDGs, which
capture the semantic ordering of statements. However there is
still 18–25% false positive rate, and we categorize the causes
as follows:

• Approximation: In our matching rules, we allow approx-
imation for Binary, Const, etc.

• Pre-processing: Since we remove all exception handlers
in library APIs, we may over-prune their behaviors. A
few library APIs continue their services even though an
exception arises. For example, an API tries to dynami-
cally load a driver of high performance, but gets a driver
not found exception, then in the catch block, it loads the
default drive instead. We fail to capture the behaviors in
the catch block due to preprocessing.

2) Imitation Size: Our tool is able to detect examples
reported in [1]. The class of imitated client code found are
of sizes from 1 to 8 lines. While the imitation size is small,
the example depicted Figure 1 shows that such imitation can
be tricky to detect.

V. DISCUSSION

This section discusses the rationale behind the choice of
data dependency graphs as the basic data structure, and then
presents major threats to validity.

A. Why Data Dependency Graphs?

Program dependency graph (PDG) [2] is a comprehensive
semantic representation of programs. It has two edge types,
control dependency edge and data dependency edge. A PDG
with data dependency edges pruned is referred to as a Control
Dependency Graph (CDG). Similarly, a PDG with control
dependency edges pruned is referred to as a Data Dependency
Graph. In this paper, we only employ DDGs as we believe
that data flows among program statements provide enough
semantic information for imitation detection. Our experiment
results provide strong support to our hypothesis.

Employing only CDGs in representing programs does not
work well as it carries little semantic information. A control
dependency edge only connects a conditional statement (e.g.
for, while) to a statement whose execution depends on the val-
ue of the conditional. If a method body contains no conditional
statements, then its CDG is actually a set of vertices with no
edges. The study in [1] has shown that the technique based
on individual element matching without considering element
ordering requires additional heuristics to maintain reasonable
precision.

Considering PDGs for program representation on the other
hand can improve the precision, yet we will risk missing valid
imitations, as programmers may write imitated client code with
different control flow structures from that of libraries.. For
instance we will lose the following interesting imitation if we
consider both data and control dependencies.

Library: Tigris GEF
public int FigText.getMinimumHeight() {
l1: if (_fm != null)
l2: return _fm.getHeight();
l3: if (_font != null)
l4: return _font.getSize();
l5: return 0;
}

Client: ArgoUML
Dimension FigSignleLineText.getMinimumSize() {

Dimension d = new Dimension();
int maxH = 0;
Font font = getFont();

c1: if (font == null)
c2: return d; //return empty dimension (0,0)

......
c3: if (getFontMetrics() == null) {
c4: maxH = font.getSize();

} else {
c5: maxH = getFontMatrics().getHeight();
c6: }

......
}

The class FigSignleLineText is a subclass of FigText , the
method getFontMetrics() is a getter method of the field
FigText . fm , and getFont() is a getter method of the field
FigText . font . The client imitates the library behavior and
the code from line c3 to c6 can be replaced by

maxH = this.getMinimumHeight();

The PDGs of the two methods have different control depen-
dency edges. The library PDG has control dependency edges
l1 → l2 and l3 → l4, whereas the client PDG has c1 → c2,
c3 → c4 and c3 → c5. These control dependency edges will
hinder the detection of this imitation pair, as for the trace
l3 → l4 in library PDG, there is no trace in client PDG that
subsumes it.

B. Threats to Validity

Similar to other empirical studies, there is a threat to validity
in interpreting the results. Specifically, the classification of the
validity of imitated reports has so far remained manual. To
help ensure the quality of the imitation classification process,
each reported imitation was independently classified by two
evaluators besides the programmer. Consequently, although
our evaluation criterion is that the reported library should make
client code shorter and cleaner, they are still subject to many
ways of interpretation.

VI. RELATED WORK

One pioneer study on detecting imitations of library APIs
is that of Kawrykow and Robillard [1], which is also closest
to our work. They propose a static analysis based approach to
detecting the item-set similarity between clients and libraries.

It first abstracts a set of program elements (including fully-
qualified field or method signatures and referenced types) from
each method body, and then tests whether each element in the
library element set can be matched against any one in the
client set. A library element can match a client element in a
direct, indirect or nested fashion. The indirect and nested styles
are designed to handle complex imitations like the motivating
example in Figure 1. If all the library elements can be matched,
then the library is said to be possibly imitated by the client.
For the same ten open-source Java projects as we use, their
approach reports 405 valid imitations in total with precision
average of 31% for explicitly imported libraries.

As shown in Section IV, our approach reports 313 valid
imitations with much higher average precision 82%. (We are
not able to compare two of the experimented results in detail
as the data is not available.) The high precision stems from
two sources: our approach is semantics-based, and the trace
subsumption relation employed here can capture the data flow
semantics inside method bodies; second, we use two heuristics
to post-validate detected imitations and eliminate invalid ones.
Furthermore, we also conduct case study on imitations of static
libraries encapsulating common functionalities, and detect 116
true imitations with precision average of 74%. Nevertheless,
there is no free lunch. We fail to identify a few valid imitations,
and as we construct data dependency graphs and test trace
subsumption relations, the overhead of our approach, albeit
manageable, is higher than theirs.

Another closely related work is Krinke’s approach [4]. Giv-
en two program dependency graphs, Krinke tries to construct
maximal similar subgraphs representing similar code. He first
chooses a starting vertex in each PDG and extends isomorphic
paths from it in a step-wise fashion until the paths cannot
be grown. Finally the two sets of paths, each from a PDG,
are considered as maximal subgraphs similar to each other.
From a technical viewpoint, his approach is quite similar to
ours. That is, we both employ path/trace-based algorithms to
measure the similarity between PDGs/DDGs. However there
are several differences: technically, he needs to first specify
starting vertices to grow maximal similar graphs; second he
does not consider complex similar code involving method
inlining; from the viewpoint of motivation, he tries to identify
similar code whereas we aim to improve usages of library
APIs.

Two other related research directions are duplicate code
and plagiarism detection. Gabel et al. proposes a scalable
technique to detect semantic clones in C/C++ programs [2].
They decompose program dependency graphs into semantic
threads and construct abstract syntax trees from threads. Then
each tree is transformed into a feature vector. Lastly they use
locality sensitive hashing [5] to cluster the nearest vectors
and regard each cluster as a clone group. As they reduce the
graph similarity to a nearest vector problem, their approach
is fairly scalable and has been applied to large programs.
Komondoor and Horwitz [6] [7] use program dependency
graphs to find semantically identical code fragments and
automatically extract procedures from these fragments. Since

their approach is based on subgraph isomorphism which is
NP-complete, it cannot scale well. Liu et al. detect software
plagiarism by checking γ-isomorphism of program dependen-
cy graphs [8]. A statistical lossy filter is used to to prune the
plagiarism search space for scalability reason. Schuler et al.
use object-level call sequences as an API birthmark based on
the observation of program interaction at runtime, which is
resilient to obfuscation techniques [9].

Another relevant work is API usage mining and adaptation.
Nguyen et al. propose a graph-based object usage model
(groum) similar to a program dependency graph to represent
multiple object usage patterns [10]. They first construct a
groum for each method and mine frequent sub-groums from
a set of groums as usage patterns. They also propose an
approach to recommending API usage adaptation for evolving
libraries [11]. Given two versions of a library, they first
extract the library API usage skeletons from client code before
and after library migration, next compare the skeletons to
recover API usage adaptation patterns, and finally suggest edit
operations for clients to be updated to the new version of the
library. They focus on adapting existing usage of a library
API to that of its new version, whereas we try to eliminate
imitations found at client site of library APIs. Xnippet [12]
is a context-sensitive code assistant framework that allows
developers to query a sample repository for code snippets that
are relevant to the programming task at hand. MAPO [13]
and Prospector [14] both accept code queries, perform data
mining at background and return frequent API usage patterns.
Researchers also have conducted studies on mining API usage
patterns via dynamic analysis. Lo et al. propose an iterative
pattern mining algorithm to discover temporal specification
of method calls from execution traces [15]. Pradel et al. mine
object usage specifications in the form of finite automata from
large method traces [16].

Our trace subsumption relation is inspired by trace refine-
ment [17]. Trace refinement states that a program P1 refines
another program P2 whenever the set of execution traces of
P1 is a subset of that of P2. It ensures that P1 cannot have any
behavior which is not permitted by P2. Thus, trace refinement
is suitable for describing how certain properties of a system
must be preserved between two programs, particularly in our
case, the common data flows.

VII. CONCLUSION & FUTURE WORK

Imitating API codes represents an ineffective usage of
libraries as such re-implementation is not necessary and the
existence of imitated codes creates maintenance burden. In this
paper, we propose a graph-based approach to detecting such
imitations. Our technique utilizes trace subsumption relation of
data dependency graphs to characterize the similarity between
client code and the imitated library. We have built a prototype
and investigated its utility on ten sizable open-source projects.
The experiment shows that our approach can report 313 valid
imitations in total with high precision average of 82% for
explicitly imported library APIs, and 116 valid imitations with
precision average of 75% for static library APIs.

In the future, we would like to explore the feasibility of
path-sensitive analysis to further improve our current solution
in terms of precision and number of detected valid imitations.

ACKNOWLEDGMENT

We are grateful to David Kawrykow at McGill University
for sharing the detail of iMaus, and to the reviewers for their
valuable comments. This work is partially supported by a
research grant R-252-000-403-112.

REFERENCES

[1] D. Kawrykow and M. P. Robillard, “Improving API Usage through
Automatic Detection of Redundant Code,” in ASE ’09: Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 111–122.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. Program. Lang.
Syst., vol. 9, no. 3, pp. 319–349, 1987.

[3] K. J. Ottenstein, “Data-flow Graphs as an Intermediate Program Form.”
Ph.D. dissertation, Purdue University, 1978.

[4] J. Krinke, “Identifying Similar Code with Program Dependence Graphs,”
in WCRE ’01: Proceedings of the Eighth Working Conference on Reverse
Engineering, 2001, p. 301.

[5] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” in VLDB ’99: Proceedings of the 25th
International Conference on Very Large Data Bases, 1999, pp. 518–
529.

[6] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” in SAS ’01: Proceedings of the 8th International
Symposium on Static Analysis, 2001, pp. 40–56.

[7] ——, “Semantics-preserving Procedure Extraction,” in Proceedings of
the 27th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, 2000, pp. 155–169.

[8] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis,” in KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 872–881.

[9] D. Schuler, V. Dallmeier, and C. Lindig, “A Dynamic Birthmark for
Java,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ser. ASE ’07, 2007, pp.
274–283.

[10] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based Mining of Multiple Object Usage Patterns,” in
ESEC/FSE ’09: Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2009, pp. 383–392.

[11] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to api usage adaptation,”
in Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, ser. OOPSLA ’10,
2010, pp. 302–321.

[12] N. Sahavechaphan and K. Claypool, “XSnippet: Mining for Sample
Code,” SIGPLAN Not., vol. 41, no. 10, pp. 413–430, 2006.

[13] T. Xie and J. Pei, “MAPO: Mining API Usages from Open Source
Repositories,” in MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, 2006, pp. 54–57.

[14] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid Mining:
Helping to Navigate the API Jungle,” SIGPLAN Not., vol. 40, no. 6, pp.
48–61, 2005.

[15] D. Lo, S.-C. Khoo, and C. Liu, “Efficient Mining of Iterative Patterns
for Software Specification Discovery,” in KDD ’07: Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2007, pp. 460–469.

[16] M. Pradel and T. R. Gross, “Automatic Generation of Object Usage
Specifications from Large Method Traces,” in ASE ’09: Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 371–382.

[17] A. W. Roscoe, C. A. R. Hoare, and R. Bird, The Theory and Practice
of Concurrency. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1997.

