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Feature-FL: Feature-Based Fault Localization
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Abstract—Fault localization aims at developing an effective
methodology identifying suspicious statements potentially respon-
sible for program failures. The spectrum-based fault localization
is the widely used methodology by analyzing the statistical coinci-
dences viewed from the spectrum to evaluate the suspiciousness of
each statement of being faulty. However, just analyzing statistical
coincidences in the coverage information perspective and without
combining diverse amount of information may restrict fault local-
ization effectiveness. Thus, this article proposes feature-based fault
localization (Feature-FL): A family fault localization methodol-
ogy of feature-based metrics by combining the feature diversity
from the view of program features into suspiciousness evaluation.
Specifically, Feature-FL defines a concept of branching execu-
tion probability to abstract program behaviors as the values of
features. Then, Feature-FL uses feature selection (i.e., a family
of feature-based metrics) to evaluate the relevance of each feature
with program failures. Finally, Feature-FL associates each fea-
ture with its corresponding statement, and uses the relevance as
the suspiciousness to locate suspicious statements. We present six
feature-based metrics for Feature-FL, and conduct an extensive
study to evaluate the effectiveness of Feature-FLand its potential
over the state-of-the-art spectrum-based formulas. Our results
provide insight into the potential among different feature-based
metrics and also show Feature-FL significantly outperforms the
state-of-the-art spectrum-based formulas, e.g., an average saving
of at least 30 % over spectrum-based formulas in case of real faults.

Index Terms—Execution probability, fault localization, feature
selection, statistical debugging, suspiciousness.
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I. INTRODUCTION

EING an essential activity in software development and

maintenance, debugging is a process of locating and fix-
ing bugs. For debugging engineers, debugging is a painstaking
task because it usually requires them to consume a significant
amount of time and resource in pinpointing the location of a
bug and understanding its cause of a failure [1], [2]. In order
to improve debugging performance, researchers try to develop
effective fault localization approaches, such as [3]-[14], to assist
debugging engineers by presenting some advice on suspicious
locations potentially responsible for the failures.

Among existing fault localization approaches, spectrum-
based fault localization (SFL) is a widely used and studied
methodology, showing its promising results over other fault
localization approaches [15], [16]. SFL [17] generally uses code
coverage information and test results to evaluate the suspicious-
ness of each statement of being faulty, and outputs a ranking list
of all statements in descending order of their suspiciousness.
The basic idea of SFL is that if a statement is executed by more
failing test cases and less passing test cases, the statement should
have a higher suspiciousness value of being faulty. Based on this
idea, researchers develop many types of SFL techniques, such
as Ochiai [18], Jaccard [19], Tarantula [20], and Wong [21],
advancing the state-of-the-art SFL techniques rapidly. Further-
more, both theoretical and experimental studies [15], [16], [22],
[23] have found the maximal SFL techniques, showing the
maximal effectiveness that SFL techniques can reach.

Although the ability in fault localization of SFL techniques
has been intensively studied by many researchers, existing
statistics- or probability-based SFL methods have clear limi-
tations. For instance, the statements in the same block (e.g.,
“if”” statement, “while” statement, and “for” statement) without
nested blocks will be assigned with the same suspiciousness
value because those statements will be executed sequentially
and then have the same coverage information accordingly. Apart
from that, many SFL methods use code coverage information
and test results for statistical analysis without considering var-
ious information from the program (e.g., structure information,
error message, and the textual information of the program).
Those limitations could heavily restrict the effectiveness of SFL
techniques. Thus, there is an urgent need to utilize various
information besides coverage information and reformulate fault
localization problems from a different perspective. Recently,
various deep learning models are used for more precise fault
localization [7], [8], [10], [24]-[28]. Among those models,
many of them also take code coverage information and the
corresponding test results as inputs, aiming to learn the nonlinear
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S1: | read(nums);

S2: | read(length);

S3: | for(int i = 0; 1 < length;){
S4: if(i <2){

S5: print(nums[i]);
Sé6: i++;}
S7: else{ print(nums[i]);
S8: i+t=1;}}
test cases
a feature
AN
\ Features
Test| S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | | Labels
I..Il I A .0._-_0-._9_-_.0.___(1_.' 0
asample!| T2 | 1 1 1 1 10.67/0.671033|0.33]})| O
T3 | 1 1 1 ]0.67[0.67[0.33]0.33 0
T4 | 1 1 1 1 [05]05]05]0.5 1
T5 | 1 1 1 1 [04[04]06]0.6 1
6 | 1 1 1 1 ]0.33]0.33]0.67]0.67 1
Fig. 1. Anexample to show the features, samples, and labels from the feature
perspective.

relationship between statements and failures. Their empirical
studies indicate that deep learning models can locate bugs more
effectively than traditional SFL techniques, which means that
there are distinguishing features (i.e., specific statements) that
can make a distinction more effectively between passing test
cases and failing ones. Motivated by these existing works, we
take the code coverage information as samples that are composed
of features. Thus, we can reformulate the fault localization
problem by finding the failure-relevant features. In our article,
we focus on fault localization techniques at the statement level,
so each executable statement is a feature. If the granularity is at
the method or class level, the feature should be a method or
a class.

Fig. 1 shows an example that demonstrates the features,
samples, and labels from the feature perspective. We can observe
that there are eight executable statements with the line number
at the top of Fig. 1, which means there are corresponding eight
features (i.e., from “S1” to “S8”). When the program executes the
test cases in the test suite, we will obtain all samples by collecting
coverage information. And we can get the corresponding label
by comparing the actual output and the expected one.

Thus, we can handle fault localization from a different per-
spective. We notice that a recent popular method named feature
selection in machine learning domain may be potential for effec-
tive fault localization. Feature selection [29], [30] (also known
as variable selection or attribute selection), in machine learning
and statistics, is a process of selecting a subset of relevant
features (e.g., variables, predictors) from data for improving
the data use in analysis, model construction, abnormal feature
detection, etc. To be more precise, feature selection methods are
usually implemented to identify and remove irrelevant features
from data that do not contribute to the accuracy of a predictive
model or may in fact decrease the accuracy of the model [31].
Various studies show that feature selection is effective to remove
irrelevant features without performance deterioration [32], [33].
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Fault localization targets at finding the faulty statements that
are the cause of program failures, and feature selection aims at
removing the irrelevant features that are not contributed with a
specific objective. Thus, there exists a natural connection be-
tween fault localization and feature selection. Since we take the
code coverage information as samples, we can apply the process
of feature selection into fault localization. Specifically, feature
selection removes the nonfaulty statements (i.e., irrelevant fea-
tures) and reserves the faulty statements (i.e., key features) that
are contributed to program failures.

Therefore, we try to explore using feature selection for es-
tablishing an effective fault localization methodology in this
article. We face a new challenge when bridging the gap between
fault localization and feature selection: How to abstract program
behaviors as the values of features (i.e., statements). Suppose
we use binary coverage information (i.e., the value is O or 1
for each feature) as the program behavior like many traditional
SFL techniques, which may drop a lot of essential information
related to the program itself. Without delicate program behavior
abstraction, the feature selection algorithm may be unable to
capture the important features that lead to program failures.
Thus, a more accurate description of program behavior is needed
by the feature selection.

Based on the above idea, we propose feature-based fault
localization (Feature-FL) to identify the suspicious state-
ments potentially responsible for program failures from the
feature perspective. Specifically, Feature-FL introduces a
concept of branching execution probability as the values of
features to depict each statement’s behavior with branching or
nonbranching features. In other words, each statement has its
own value denoted by branching execution probability. Branch-
ing execution probability is based on the branching module,
and the branching module is a set of code that consists of
the decision-making expression and the code that needs to be
executed based on the evaluation result of the decision-making
expression. The calculation of branching execution probability
is defined in Section III-D.

Then, Feature-FL uses the test results (passing or failing)
of each test case as labels. Next, Feature-FL uses feature
selection to evaluate the relevance between each statement (i.e.,
feature) and the labels. A high relevance means the feature has
a large effect on the labels, which means the behavior of the
statement has a large impact on test results.

Thus, Feature-FL uses the relevance evaluated by feature
selection as the suspiciousness to distinguish the suspicious
statements.

Feature-FL takes the branch information of the program
into consideration. Many existing studies also combine various
dimensional information. SOBER [34] is a fault localization
technique that also takes advantage of branch information. The
main idea of SOBER is that the results of predicates (i.e.,
“if” statements) by failing test cases are different from that by
passing test cases, which means SOBER can detect the abnormal
behavior of the branches and locate the bug in predicates (i.e.,
“if”” statements). Different from SOBER, Feature-FL mainly
focuses on bugs of the statements in the branching module, not
on that in “if” statements. The two kinds of fault localization
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techniques may be complementary with each other and further
studies should be conducted to validate. Apart from SOBER,
there are some recent studies that utilize various information of
the subject programs. DEEPRLAFL [28] devises an enhanced
coverage matrix and adopts a test case ordering technique to
fully explore the learning ability of the convolutional neural
network. DeepFL [10] collects the spectrum-based suspicious-
ness, mutation-based suspiciousness, complexity-based fault
proneness, and textual similarity information for more precise
localization. ABLFL [35] takes more comprehensive features,
i.e., statistical information (e.g., number of strings, number
of integers, and number of operators), semantic information
(e.g., code complexity and textual similarity), and dynamic
information (e.g., coverage matrix, stack trace, and dynamic
program slice), into account for localization. Generally, one
method with more information tends to be more effective and
less efficient than that with less information. However, the
effectiveness also relies on the algorithms and the quality of
input data.

Since feature selection consists of different feature selection
algorithms, it means that Feature-FL is a family method-
ology of different criteria. Based on the six basic and typi-
cal feature selection criteria (i.e., Pearson correlation coeffi-
cient [30], Spearman’s rank correlation coefficient [36], Kendall
rank correlation coefficient [37], mutual information [30], Fisher
score [29], [38], and Chi-squared test [39]), we present six
feature selection criteria for Feature-FL.

We conduct a large-scale experimental study on real-life
programs to study the fault localization potential among these
feature-based methods, and also compare Feature-FL to four
state-of-the-art SFL formulas [16]. The experimental results pro-
vide insight into the effectiveness distribution among different
feature-based methods, and show that Feature-FL signifi-
cantly outperforms the four state-of-the-art spectrum-based for-
mulas (i.e., Dstar [15], Ochiai [40], Barinel [41], and Op2 [17]),
e.g., the average saving is at least 40%.

The contribution of this article can be summarized as follows.

® We propose Feature-FL: A family fault localization

methodology by abstracting program behaviors as the val-
ues of features and linking the features with failures to
evaluate suspicious statements potentially responsible for
failures.

® We show the promising prospect of combining the feature

view of feature selection into fault localization for improv-
ing its effectiveness.

® We present six basic and typical feature-based methods of

Feature-FL, and study their fault localization effective-
ness distribution.

® We conduct an extensive study in two scenarios (i.e., arti-

ficial faults and real faults) to evaluate Feature-FL over
the state-of-the-art spectrum-based formulas, showing its
better effectiveness in improving fault localization.

The remainder of this article is organized as follows. Section II
introduces background information. Section III presents our
approach Feature-FL. Section IV shows the experimental
results and analysis. Section V discusses related work, and
Section VI concludes this article.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

II. BACKGROUND

This section will introduce the methodology of feature selec-
tion and the four state-of-the-art fault localization techniques.

A. Feature Selection

Feature selection is a process of selecting only a subset of mea-
sured features (variables, predictors) to construct a model [29],
[30], in an attempt to reduce the dimensionality of the training
problem. The usual implementation of feature selection methods
is to recognize and eliminate unneeded, irrelevant, and redun-
dant attributes from data that do not result in the accuracy of
a predicative model or possibly degrade the accuracy of the
model [31]. The objective of feature selection has three different
levels: Enhancing the prediction success rate of the predictors,
presenting more efficient and cost-effective predictors, and pro-
ducing a deeper understanding of the underlying process which
produced the data. Consequently, feature selection is widely
used for reducing the amount of data to deal with and the effect
of the noise produced in the process, leading to a performance
enhancement of the whole system.

In general, feature selection algorithms designed with differ-
ent strategies are classified into three categories: Filter, wrapper,
and embedded methods. The filter methods depend on the gen-
eral characteristics of data and assess features without involving
any learning algorithm. In contrast, the wrapper methods need a
predetermined learning algorithm and utilizing its performance
as evaluation criterion to select features. Embedded methods
treat variable selection as a part of the training process, and
feature relevance is obtained analytically from the objective of
the customized learning model. Feature selection with filter and
embedded methods may either produce the scores (measuring
feature relevance) of all features or a subset of selected features.
According to the type of the output, they can be divided into
feature scoring and subset selection algorithms. Feature selec-
tion with wrapper methods usually output a subset of chosen
features.

Since filter methods do not specify any learning algorithm in
comparison with wrapper and embedded methods, this article
considers filter methods. There are many types of filtering fea-
ture selection criteria, among which Pearson correlation coeffi-
cient [30], Spearman’s rank correlation coefficient [36], Kendall
rank correlation coefficient [37], mutual information [30], Fisher
score [29], and Chi-squared test [39] are the basic and typical
ones.

Table I lists the six feature selection criteria, where each
one shows how to evaluate the relevance between an arbitrary
attribute or variable X; of the data X and the target labels of
Y. Pearson correlation coefficient [30] is one of the simplest
method, where couv() is the covariance and o is the standard
deviation. Spearman’s rank correlation coefficient [36] between
two variables is equal to the Pearson correlation between the
rank values of those two variables. Kendall rank correlation co-
efficient [37] is a statistic used to measure the ordinal association
between two measured quantities. The mutual information [30]
of two random variables is a measure of the mutual dependence
between the two variables. Fisher score [29] refers to a vector of
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TABLE I
FORMULAS OF TYPICAL FILTERING FEATURE SELECTION CRITERIA
Criterion Formula Criterion Formula
_ couXi,Y) . . _ PCy)
Pearson PXY = X =1 Mutual infomation | I(Xi|Y) = X ex; Zyey p().c, y) log e
coo(rgyx; rgy) . s
Spearman | Iy = Prgy rgy = ~grgarar Fisher score Jisher(i) = ST’?’
gx; 07 O
o . bserved — expected )
Kendall Tp= —— Chi-squared test X2 =y (observed — expected )
B V(ng—n;)(ng—n2) q 2 expected

The rg* in formula of Spearman correlation coefficient means the ranking list of . For more detailed information in formula
of Kendall rank correlation coefficient and Chi-squared, refer to [42] and [43].

parameter derivatives of loglikelihood in a complicated model.
In the formula of Fisher score, Sg) is named between-class vari-

ance of the ith feature, and S‘(,f,) is named within-class variance
of the ith feature. Chi-squared test [39] is a statistical hypothesis
test that is valid to perform when the test statistic is chi-squared
distributed under the null hypothesis.

B. Fault Localization Techniques

Pearson et al. [16] recently have evaluated and summarized
the existing fault localization techniques, identifying several
optimal fault localization techniques, where we select the four
best techniques. Here we describe the principle of the four
localization techniques: Dstar [15], Ochiai [40], Barinel [41],
and Op2 [17]. The four localization techniques are generally
categorized into SFL, i.e., the four are all SFL. methods. SFL
utilizes the execution coverage information and test results to
construct program spectrum, specifying an execution profile
of program behavior. Based on program spectrum, SFL aims
to establish an effective suspiciousness evaluation formula for
evaluating the suspiciousness of a statement being faulty. De-
signing an evaluation formula generally shares an idea that if a
statement is executed more often by failing test cases and less
often by passing test cases, this statement should have a high sus-
piciousness value of being faulty. Following the idea, researchers
have proposed many types of SFL techniques, among which
this article considers Dstar [15], Ochiai [40], Barinel [41], and
Op2 [17]. The recent studies have shown that Dstar, Ochiai, and
Barinel are the most effective SFL techniques [16] and Op2 is
a type of maximal formula [22]. The following equations show
the suspiciousness evaluation structure of the four localization
techniques.

_ B failing(s)*
Dstar : SP(s) = passing(s) + (total failing — failing(s))
(1
failing(s)

Ochiai : SP(s) =

2)

inel - 1 passing(s)
Barinel : SP(s) = 1 passing(s) + failing(s) (3)
Op2 : SP(s) = failing(s) — passing(s) @

1 + totalpassing

Vtotal failing x (failing(s) + passing(s))

where variable * > 0. srepresents a statement and SP(s) denotes
the suspiciousness of the statement s. failing(s) is the number
of those failing test cases executing the statement s. Similarly,
passing(s) is the number of those passing test cases executing
the statement s. total failing is the number of failing test cases.
totalpassing is the number of passing test cases.

III. FEATURE-BASED FAULT LOCALIZATION

A. Overview of Feature-FL

This section will present the methodology of Feature-FL,
showing how Feature-FL takes advantage of feature selec-
tion to construct a fault localization methodology using the
feature view.

Fig. 2 shows the overall pipeline of Feature-FL.
Feature-FL runs the test cases in the test suite of a faulty
program and collects the coverage information just like the tra-
ditional SFL techniques do. Different from SFL, Feature-FL
identifies the branches of the program and saves the branch infor-
mation. Then, Feature-FL uses the location of the branching
module and the coverage information to calculate the branching
execution probability. Thus, we obtain the coverage matrix with
branching execution probability, which includes the abstraction
of the program behavior. Finally, Feature-FL utilizes the
power of feature selection algorithms to calculate the relevance
between each statement and program failure, and uses the rele-
vance as the suspiciousness value of each statement.

The contents of this section are organized as follows.

e We first explain the preliminary definition of the branching
execution probability in Section III-B, i.e., the calculation
of branching execution probability is not practical from the
theoretical perspective.

® Then, we give the formal definition about the data we used
for Feature-FL by constructing the FSet in Section III-
C.

® We depict the calculation of branching execution probabil-
ity in detail in Section III-D based on the formal definitions
in two former subsections.

* Asweobtained the data, we can evaluate the suspiciousness
by using feature selection. We describe the process in detail
in Section III-E.

e From the contents above, we demonstrate the details of
Feature-FL. To be more illustrative about Feature-
FL, we give a motivation example in Section III-F.

'We used the most thoroughly explored value [16], i.e., ¥ = 2.
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test cases execution
M feature sclection 1
— I g y—
IE_|§ 1 1 '3 —
program Q coverage matrix with suspiciousness
— branching execution probability evaluation

identify branches pranch

information

Fig.2. Overview architecture of Feature-FL.

B. Define Branching Execution Probability

Branching structure is the basic structure that is widely used in
program design and implementation [38], [44], which indicates
that branching is the basic program behavior. The execution
of a specific branch depends directly on the required condition
satisfaction of this branch. For describing the branching behavior
more accurately, we introduce a concept of branching execution
probability. Informally, for a statement s that is inside a branch-
ing module b, the branch execution probability of s is defined
as the ratio of the execution times of s to the execution times
of b. For instance, suppose we have a branching module, which
contains two mutually exclusive branches: one true branch and
one false branch. And the branching module is wrapped with a
forloop. For a concrete test case, the times of the for loop is set to
10, so the whole branching module is executed for 10 times. We
further suppose the number of executing true branch is 7 (three
times for false branch). In other words, a statement located in the
true branch is executed seven times during the whole 10 times
executions. Consequently, the branching execution probability
of this statement can be calculated easily (i.e., 7/10=0.7). On
the contrary, the calculation of branching probability defined by
theory tends to be tough in real scenarios. Compared to theo-
retical defined branching execution probability, ours mentioned
above is easier to be calculated by the executions of the test
suite. In addition, since the branching execution probability is
usually bounded with a specific test case or a specific set of test
cases, it helps to discover the particular or abnormal behaviors
of each statement in a test case or a set of test cases. Hence, we
can utilize the branching execution probability as the values of
features to describe each statement’s behaviors more precisely,
and more importantly, it offers a manner of initializing the idea
of using the feature selection methodology for fault localization.

C. Construct Feature Set

Next, we use branching execution probability to abstract
program behavior as the values of features, that is, we should
prepare the elaborate data for evaluating suspiciousness using
feature selection. We will give the definition of the data formally.
First, suppose that there is a program P, consisting of a set
of statements S = {s1, $2, ..., $)s} and running against a test
suite 7 = {t1, o, ..., t N }.Based on the program P, our method
defines a data set as the feature set FSet = {(fi,1;)}\,, where

i=1
fi=1fh 2, fM)T € RM* and [; specifies the label of f;

belonging to which class. fij denotes the branching execution
probability of the statement s; in the execution of test case
t;. Based on FSet, we further define F' = [fy, fo,..., fn] €
RM*N to denote the input data matrix.

Thus, FSet constructs M features, among which each fea-
ture is a row of the input data matrix I, denoted as fl=
(1,13, f4] € RN where j € {1,2,...,M}. f/is the jth
row of the input data matrix F', denoting the branching execution
probabilities of the statement s; in the executions of all test cases,
i.e., it represents the behavioral feature of the statement s;. In
contrast to f7, f; is the ith column of the input data matrix,
representing the overview branching features of M statements
in the execution of test case t;.

For an element ff, three cases are used.

1) fij = 0, if the statement s; is not covered by the execution

of the test case ¢;.

2) f! =1, if the statement s; which exists outside any
branching module is covered by the execution of the test
case t;.

3) f] = bep, if the statement s; belongs to a certain branch-
ing module in the program. bep is the branching execution
probability of s; in the execution of the test case ;.

Since f; is based on the execution information of the test case
t;, we utilize the test results (passing or failing) of t; to fix the
label of f;, showing that f; is for which class. Therefore, two
cases are used for /;.

1) I; =0, if ¢; is a passing test case.

2) l; = 1,if t; is a failing test case.

By this way, we successfully construct a feature set to depict
branching behavior of a program from the feature view.

D. Calculate Branching Execution Probability

To facilitate the understanding and use of the feature set FSet,
this step shows how to calculate the branching execution prob-
ability of the statements located in branching modules with the
feature set FSet. Specifically, we demonstrate the calculation of
branching execution probability along with the elements which
are already defined in the above feature set.

Suppose that the statement s; belongs to the module of a
certain branching statement sé-f s
by a test case t;. Furthermore, let num

and is executed num; times
if(5)
i

be the execution
times of s;f in the test case t;. Finally, we define the branching
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1: | /* Return nonzero when at end of file on input. */
2: |local int input eof()

3: | {

4: if (!decompress || last member)

5: return 1;

6: if (inptr == insize)

7 {

8: if (insize != INBUFSIZ || fill inbuf (1) == EOF)
9: return 1;

10: /* Unget the char that fill inbuf got. */
11: inptr = 0;

12: }

13: return 0;

14: |}

Fig. 3. A program segment from

execution probability of the statement s; in the test case #;, i.e.,
we calculate the value of f/ in the feature set FSet as follows:
num;

= 5
' num;f(a) )
In reality, it is common for a program to include nested
branching structures, e.g., the program segment from gzip 2
as shown in Fig. 3. However, (5) does not take nested branching
structures into consideration. For instance, suppose there is
a sub-branch in the true branch of a branching module, the
branching execution probabilities of the statements in the true
branch will be the same value by only using (5). In other words,
the behaviors of true sub-branch and the false sub-branch are not
well depicted, and consequently, the feature selection algorithms
could not capture the difference in the nested branch. Thus, we
need an extension equation to include the information of nested
branching structures. To this end, we extend our definition of
execution branching probability based on (5). Since the state-
ments of a nested branching module already owns an execution
probability bep®" from its outer branch before the execution
jumps into those statements, the branching execution probability
of each statement in this nested branching module is supposed
to be multiplied by bep®*'. In this case, the branching execution
probability of the statement s; in ; is defined as follows:

L Ay ©
numi

Equation (6) is followed by the nature of the branch structure
of the program. Although the branching execution probabilities
will be low if there are too many nested branches, our extensive
equation could also reflect the different behaviors of different
branches of a specific branching module. As a reminder, in
order to identify the branching modules belonging to which
branch statement, we search for key words (e.g., if and switch)
which stand for branching cases in the compiling phase. We
implement the calculation of branching execution probability
using recursive algorithm.

2 is a free data compression utility, and we used it for the experimental

study at Section IV.
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E. Evaluate Suspiciousness Using Feature Selection

Feature selection is an effective approach using feature view
to evaluate the relevance between features and the accuracy of
the model. If we can abstract each statement’s behavior as a
feature, it means that we may use a feature perspective for fault
localization to locate the root causes of failures. Following this
intuition, we define the feature set FSet, which successfully de-
picts each statement’s behaviors as features and associates those
features with the test results using the labeling function. Thus,
we construct a fault localization methodology based on feature
selection, using the relevance of each feature with test results
as the metric to measure the suspiciousness of each statement
being faulty. Specifically, in the feature set FSet, the vector f7
represents the feature of s;, showing the branching behavior of
the statement s; in the executions of all test cases. The labels
{l1,12,...,In} denote the test results of all test cases. Thus, we
use the feature vector of each statement as a feature representing
their behaviors, and the labels of all test results as a reference
feature referring to the relevance of each statement’s feature.
Feature-FL uses a feature selection criterion to evaluate the
relevance of each statement’s feature with the reference feature.

Therefore, Feature-FL is a family methodology of differ-
ent criteria. Table I shows the six well-known effective feature
selection criteria. Considering the popularity and effectiveness,
we use the six feature selection criteria for our study. Since
different feature selection methods share the same methodology
structure (i.e., they have the same input and output), we take
Pearson correlation coefficient [30] (i.e., the simplest but most
effective one of the six feature selection criteria by our exper-
imental study) as the representative to depict the methodology
of Feature-FL.

As we have (¢)) candidate Z’s out of X, it means that feature
selection faces a very challenging problem: A combinatorial
optimization problem. Since the main purpose of our feature
selection criteria is to find highly irrelevant feature and does not
concern the number of reduced features, we adopt the widely
used heuristic strategy to alleviate this problem. Specifically,
we compute a score for each feature independently, i.e., there
are only () = d candidates. Then, according to the common
formulas of filtering feature selection criteria and feature set
FSet, the score of the jth feature can be defined as follows:

score(f7,1) = criterion(f7,1) @)

where criterion() refers to any formula in Table I. For example,
if we use Pearson correlation coefficient as our criterion and
compute a score of the jth feature, the equation is defined as
follows:

cov(f1,1)

ofiol

score(f?,1) = pPrig = (8)

where cov() is the covariance and o is the standard deviation.
If we use Spearman’s rank correlation coefficient, the equation
is defined as follows:

cov(rgi,rar)
orgriorg

©))

score(f,1) = Pras g =

Authorized licensed use limited to: University of Waterloo. Downloaded on March 10,2022 at 15:16:25 UTC from IEEE Xplore. Restrictions apply.



270 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022
Program Bug information
S1: read(nums);
S2: read(length);
S3: for(int i = 0; 1 < length;){
S4: if(i <2){ S8 is faulty.
SS5: print(nums[i]); Correct form: i+=2;
S6: it}
S7:  else{ print(numsl[i]);
S8: it+=1:}}
input S1 | S2 | S3 | S4 S6 | S7 | S8 |output| oracle |failure
[1,0 1 1 1 0 0 0 0 - - 0
[1,2,3],3 1 1 1413112 ] 1 1 123 123 0
[2,3.4],3 1 1 [I@ ][I ]1D]12)] 1 1 234 234 0
[1,2,3.4],4 1 1 13 ][1@ 1) [ 12| 1(2) ] 1(2) | 1234 123 1
[1,2,3.4,5],5 1 1 1) 1512 1(2)| 1(3) | 1(3) [ 12345 | 1235 1
[1,2,3,4,5,6], 6 1 1 1(7) [ 1(6) | 1(2) | 1(2) | 1(4) | 1(4) |123456] 1235 1
suspiciousness | nan | nan | nan | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 Using Pearson
rank 6 7 8 1 3 4 5 correlation coefficient
Using branching execution probabilities
as the values of the features
input S1 S2 | S3 | S4 S6 | S7 | S8 |output| oracle |failure
[1,0 1 1 1 0 0 0 0 - - 0
[1,2,3],3 1 1 1 1 [0.67]0.67]0.33]0.33| 123 123 0
[2,3,4], 3 1 1 1 1 [0.67]0.67]0.33]0.33| 234 234 0
[1,2,3,4],4 1 1 1 1 0505|0505 | 1234 123 1
[1,2,3.4,5],5 1 1 1 1 04 | 04 | 0.6 | 0.6 |12345] 1235 1
[1,2,3.4,5,6],6 1 1 1 1 10.33[0.33]0.67 | 0.67 [123456] 1235 1
suspiciousness | nan | nan | nan | 0.45 [-0.08|-0.08 | 0.84 | 0.84 Using Pearson
rank 6 7 8 3 5 1 2 correlation coefficient
Fig. 4. An illustrative example. “1(*)” indicates the statement is executed * times by a test case. “~” means the output is null. “nan” means the suspiciousness

value is not a valid number due to the 0/0 case.

where p denotes the Pearson correlation coefficient, rgs; and
rg; are the rank variables that converted from variable f; and [,
respectively. In this way, all criteria could be applied to compute
the score of each feature. The score of f7 shows the relevance
of the jth feature (i.e., the behaviorial feature of the statement
s; in all test cases) with the corresponding labels (i.e., the labels
of test results). In other words, the score of f/ indicates the
relevance of the statement s; with the test results.

Thus, each statement finally obtains a score and a higher
score indicates a stronger correlation between the statement
and the failure. We use the score of each statement as their
suspiciousness values of being faulty, and rank all the state-
ments in descending order. Consequently, we construct a fault
localization methodology using the feature view to locate faults,
and name our approach as Feature-FL.

F. Motivation Example

From the above subsections, we fully depict the process of
Feature-FL, and in this subsection, we intend to show an
illustrative example about Feature-FL.

Fig. 4 shows a small but complete program. The fault of the
program is located in “S8.” and the correct form is “i+=2;}}".
The program has six test cases, and each test case has an
input (the “input” column) and a predicted output (the “oracle”

column). The “output” column means the actual output of the
program and the “failure” column means the results of each test
case. The columns “S1” to “S8” record the coverage information.
For example, S4 is executed three times by the second test case,
so the value of the cell is “1(3),” in which 1 means “S4” is
covered by the second test case and 3 in the brackets means the
statement is executed three times. The values in brackets are
used for the calculation of branching execution probability. The
last two rows of the upper table in Fig. 4 show the suspiciousness
values and the corresponding ranks of each statement by using
the Pearson correlation coefficient as the criterion. Note that we
use the information of covered (the value of 1) or not covered
(the value of 0). We can observe that “S4” to “S8” have the
same coverage information, so their suspiciousness values are
the same. Furthermore, because the rank strategy we adopt is
the statements are sorted in ascending order according to the line
number when the statements have the same suspiciousness value,
the faulty statement is ranked at last among the five statements.

From the upper table, we can observe that the effectiveness
of the feature selection algorithm is limited by the coverage
matrix that contains only binary information. Feature-FL
uses branching execution probabilities as the values of the fea-
tures as shown at the bottom of Fig. 4. For example, “S4” (e.g.,
“if” statement) is executed three times by the second test case,
and the results of the expression are True, True, and False,
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respectively. Thus, the “True” branch (e.g., “S5” and “S6”) is
executed two times and the “False” branch (e.g., “S7”” and ““S8”)
is executed for one time. Consequently, the value of “S5” and
“S6” is 0.67 (2/3) and that of “S7”” and “S8” is 0.33 (1/3). When
using the Pearson correlation coefficient as our criterion, the
rank of the faulty statement is 2, showing the improvement of
Feature-FL.

In this example, we demonstrate the usefulness of the branch-
ing execution probability and feature selection algorithms from
the practical view. In the next section, we conduct large-scale
experiments to validate the effectiveness of Feature-FL.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

To evaluate the localization effectiveness, the experiments
should achieve two goals. The first one is to evaluate the
effectiveness distribution of different feature selection criteria
of Feature-FL, and recommend the most effective crite-
rion of Feature-FL for debugging engineers. We select the
six well-known effective filtering feature selection criteria to
evaluate their localization effectiveness. As shown in Table I,
the six feature selection criteria are Pearson correlation coeffi-
cient [30], Spearman’s rank correlation coefficient [36], Kendall
rank correlation coefficient [37], mutual information [30], Fisher
score [29], and Chi-squared test [39]. Another one is to evaluate
the effectiveness of Feature - FL over the state-of-the-art tech-
niques. We compare Feature-FL with four state-of-the-art
localization techniques summarized by recent studies [16], [22].
Asshownin (1), (2), (3), and (4), the four localization techniques
are Dstar [15], Ochiai [40], Barinel [41], and Op2 [17].

Furthermore, this study [16] has shown that artificial faults
and real faults have different effect on fault localization effective-
ness, and recommended using real faults for fault localization.
Even so, artificial faults including seeded faults simulate the
real scenarios, and may still happen in practice. Thus, if a fault
localization approach can perform well in both artificial faults
and real ones, we can more safely conclude that this localization
approach is effective in comparison to the case of using only
real faults, because we verify this approach in more cases which
have already happened (i.e., real faults) or are potential to happen
(i.e., artificial faults).

Consequently, we choose the widely used real-life subject
programs as the benchmarks to evaluate Feature-FL over
the four localization techniques in two different contexts, i.e.,
artificial faults and real ones. In the context of artificial faults, we
chose Siemens, flex, and grep, each of which has a number
of faulty versions with seeded faults. Siemens developed by
Siemens Corporate Research has seven programs performing
a variety of tasks: print tokens and print tokens2
perform lexical analysis, replace is a pattern recognizer,
schedule and schedule2 perform priority scheduling,
tcas is an aircraft collision avoidance system, and tot_info
computes statistics given input data. £1lex and grep are two
typical UNIX utility programs, performing lexical analysis and
pattern recognition, respectively. In the context of real faults,
we used space, sed, 1ibtiff, python, and gzip, each
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of which contains a number of faulty versions with real faults.
space was first written by the European Space Agency and
function as an interpreter for an array definition language (ADL).
sed and gzip are also the typical UNIX utility programs,
conducting stream editing and data compression, respectively.
libtiff isafree and open-source library for reading and writ-
ing TIFF (Tagged Image File Format) graphics files. python
is a widely used general-purpose, high-level programming lan-
guage. We also use the widely used programs Chart, Clo-
sure, Lang, Math, Mockito, and Time.

Table II summarizes the information of the subject pro-
grams, including subject names (column ‘“Program’), numbers
of faulty versions used (column “Versions”), lines of code (col-
umn “Loc”), numbers of test cases (column “Test”), fault types
(column “Type”), as well as the functional description (column
“Description”). We merge the results of print tokens and
print tokens2, schedule and schedule2 as each two
have similar structures and functionalities. All artificial faults
and space are from SIR?; 1ibtiff, python, and gzip
are collected from ManyBugs“; the others are from Defects4])>.

Our study implements all the experiments on a 64-bit Linux
server with 16 Intel(R) Xeon CPUs and 128 G RAM. The
operating system is Ubuntu 16.04.3.

B. Evaluation Metrics

We adopt the following metrics for evaluating the perfor-
mance of a falut localization.

o EXAM: The EXAM metric [16], which is the most popular
metric, is the percentage of statements to be examined
before finding the first actual faulty statement. Specifically,
EXAM is n/N, where n is the rank of the first faulty
statement in the ranking list of all statements, and N
is the total number of all statements. A lower value of
EXAM means examining less code for locating the faulty
statement, showing better localization performance.

e Number of Top-K: It is the number of buggy versions
with at least one faulty statement that is within the first
K position of rank list by a fault localization technique.

e Relative Improvement: Given two fault localization tech-
niques, namely, FL1 and FL2, relative improvement (re-
ferred as RImp) [45] is to compare the total number of
statements that need to be examined to find all faults using
FL1 versus the number that need to be examined by using
FL2. A lower value of RImp means that FL1 examines less
code to locate the fault in comparison to FL2, showing
higher localization effectiveness over FL2.

® Wilcoxon-signed-rank test: Itis a metric that could evaluate
the effectiveness of a fault localization method over others
from the statistical perspective.

Specifically, when several statements have the same sus-
piciousness value, we adopt the statement order-based strat-
egy [46] that we sort the statements in ascending order according
to the line number.

3[Online]. Available: http:/sir.unl.edu/portal/index.php
4[Online]. Available: http://repairbenchmarks.cs.umass.edu/ManyBugs/
3[Online]. Available: https://github.com/rjust/defects4j
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TABLE II
SUMMARY OF SUBJECT PROGRAMS

[ Program [ Versions | Loc | Test [ Type | Description |
print_tokens (2 ver.) 15 570/726 | 316/393 | Seeded Lexical analyzer
replace 27 564 395 | Seeded Pattern recognition
schedule (2 ver.) 16 374/412 | 228/235 | Seeded Priority scheduler
tcas 29 173 83 | Seeded Altitude separation
tot_info 18 565 194 | Seeded Information measure
flex 53 10,459 567 | Seeded Lexical analyzer
grep 21 10,068 809 | Seeded Pattern recognition
Average 26 3,243 376
space 35 6,199 4,333 Real ADL interpreter
sed 29 14,427 370 Real Stream editor
gzip 5 491,000 12 Real Data compression
libtift 12 77,000 78 Real Image processing
python 8 407,000 355 Real General-purpose language
Chart 26 96,000 2,205 Real Java chart library
Closure 133 90,000 7,927 Real Closure compiler
Math 106 85,000 3,602 Real Apache commons-math
Lang 65 22,000 2,245 Real Apache commons-lang
Time 27 28,000 4,130 Real Standard date and time library
Mokito 38 67,000 1,075 Real Mocking framework for Java
Average 44 125,784 2394

C. Comparison Among Feature Selection Criteria for
Feature-FL

EXAM Distribution: Fig. 5 displays the EXAM distribution by
using six feature selection for fault localization. The legend of
this figure is shown at the last of this figure. A point in Fig. 5
means that when a EXAM value is reached, the percentage of
faulty versions has located their faults. From Fig. 5, we can
notice that the curves of Pearson correlation coefficient, Spear-
man’s rank correlation coefficient, and Kendall rank correlation
coefficient are always above the other three feature selection
criteria (i.e., mutual information, Fisher score, and Chi-squared
test), and mutual information seems to be less effective on
fault localization than other criteria in most programs. It means
that Pearson correlation coefficient, Spearman’s rank correlation
coefficient, and Kendall rank correlation coefficient outperform
the other three feature selection criteria in each program. There-
fore, under the EXAM distribution, we take Pearson correlation
coefficient, Spearman’s rank correlation coefficient, and Kendall
rank correlation coefficient as the candidate effective criteria for
Feature-FL. In addition, Fig. 6 presents the EXAM distribu-
tion of each feature selection criterion in the context of artificial
faults and real faults, respectively. As we can see, the curves
of Pearson correlation coefficient, Spearman’s rank correlation
coefficient, and Kendall rank correlation coefficient are also
always above the other three criteria in both cases of artificial
faults and real faults, which indicates the conclusion is consistent
with that of the single subject program comparsion.

RImp Distribution: In order to find the most effective feature
selection criterion in more detail, we use RImp to evaluate Pear-
son correlation coefficient [30] over Spearman’s rank correlation
coefficient, Kendall rank correlation coefficient [37], mutual
information [30], Fisher score [29], and Chi-squared test. Fig. 7
displays RImp of Pearson correlation coefficient [30] over the
other five feature selection criteria in 18 faulty programs. The
cells below the columns show the specific RImp values of Pear-
son correlation coefficient [30] acquired. Take gzip in mutual

information [30] as an example. The RImp is 67.32%, meaning
that Pearson correlation coefficient [30] takes up 67.32% of
examined code of mutual information [30] to locate all faults
in gzip. In other words, Pearson correlation coefficient [30]
obtains a saving of 32.68% (100% — 67.32%=32.68%) over
mutual information [30] in gzip.

As we can see from the cells below the columns, almost all the
specific RImp values are less than or equal to 100%. Notice that
the RImp values over Spearman’s rank correlation coefficient
and Kendall rank correlation coefficient [37] are around 100%,
which means these three feature selection criteria (i.e., Pearson
correlation coefficient [30], Spearman’s rank correlation coeffi-
cient, and Kendall rank correlation coefficient [37]) have similar
effectiveness in all programs, i.e., in different contexts of real
faults and artificial faults. Thus, according to the RImp distri-
bution, we can also take Pearson correlation coefficient [30],
Spearman’s rank correlation coefficient, and Kendall rank cor-
relation coefficient [37] as candidate effective feature selection
criteria of Feature-FL.

Number of Top-K: From the EXAM distribution and RImp
distribution, we can observe that the Pearson correlation co-
efficient, Spearman’s rank correlation coefficient, and Kendall
rank correlation coefficient are the most effective criteria among
the six criteria. However, in this study [47], they reported that
they have clear limitations to more experienced developers and
simpler code when applying the EXAM and RImp as the metrics.
An alternative metric named the number of Top-K is better
studied in Ref. [48]. For a concrete example, when comparing
approach A with approach B and A performs slightly better than
B (e.g., ranking the faulty statement at position 2 instead of 5),
but in one case A ranks another bug at position 500 and B ranks
it at position 100, RImp metric favors B over A. But under the
Top-3 values, approach A outperforms approach B. In a previous
study, most respondents view fault localization as successful
only if it can localize a bug in the Top-5 positions from a
practical perspective [49]. So we should apply multidimensional
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Fig. 6. EXAM distribution of six feature selection criteria in artificial faults and real faults.

evaluation metrics to demonstrate the effectiveness of a specific
fault localization approach. Following the prior work [10], [28],
[50], we assign K with the value of 1, 3, and 5 for our evaluation.

Tables IIT and IV show the results of Top-1, Top-3, and Top-5
for each program of artificial and real faults, respectively. The
“summation” rows in Tables III and IV list the sum of Top-K

Authorized licensed use limited to: University of Waterloo. Downloaded on

metrics of all listed program. From Tables III and IV, we can
observe that the Pearson correlation coefficient, Spearman’s rank
correlation coefficient, and Kendall rank correlation coefficient
can locate the most bugs under Top-1, Top-3, and Top-5 metrics.
Notice that the numbers of Top-K in terms of £1ex in Table III
and that of Top-K in terms of space and python in Table IV
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Artificial faults
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The bold numbers indicate the corresponding techniques with the most number of bugs
located.

is 0, which means the effectiveness of fault localization from the
practical perspective is heavily limited and still fault localization
has a long way to go.

Statistical Comparison: We compare the six feature selection
criteria using the three metrics (i.e., EXAM distribution, number
of Top-K, and RImp distribution) in detail. For a further rigorous
evaluation, we compare the six feature selection criteria by using
the paired Wilcoxon-signed-rank test [51] with a Bonferroni
correction [52], which is a nonparametric statistical hypothesis
test for testing the differences between pairs of measurements
F(z) and G(y), which do not follow a normal distribution. It
makes use of the sign and the magnitude of the rank of the
differences between F'(x) and G(y). At the given significant
level o, we can use both two-tailed and one-tailed p-value to
obtain a conclusion.

For the two-tailed p-value, if p > o, the null hypothesis H
that F'(x) and G(y) are not significantly different is accepted;
otherwise, the alternative hypothesis H; that F'(x) and G(y) are
significantly different is accepted. For one-tailed p-value, there
are two cases: the right-tailed case and the left-tailed case. In the
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Real faults

TrrYTTT

T T

RImp distribution in each program (pearson vs. other five feature selection criteria).

sed gzip libtiff python Chart = Closure Lang Math | Mockito =~ Time
100.00% | 99.71% = 99.83% ' 100.00% K 100.51% ' 100.00% 99.64% | 99.71% = 97.26% = 99.60%
100.00% ' 101.18% 99.91% | 97.67% & 100.51%  100.00% | 99.64% = 99.71% | 100.00% | 99.60%
95.55% | 95.56% | 86.73% | 96.13% | 96.32% = 92.28% = 7557% | 93.15% | 56.18% = 80.30%
70.32% | 67.32% | 73.91% | 93.53% = 21.58% = 53.11% & 20.25% = 18.04% | 76.98% & 69.40%
90.99% = 93.99% | 79.86% & 96.13% @ 87.64% 67.60% @ 2591% @ 37.76% | 106.18% 82.16%

mMutual information  @Fisher score

TABLE IV

COMPARISON AMONG FEATURE SELECTION CRITERIA UNDER THE NUMBER OF
Topr-1, ToP-3, AND TOP-5 METRICS OF EACH PROGRAM WITH REAL FAULTS

Pearson  Spearman  Kendall chlsquvaled . muufa} tvl?her
test information score
Top-1 0 0 0 0 0 0
space Top-3 0 0 0 0 0 0
Top-5 0 0 0 0 0 0
Top-1 0 0 0 0 0 0
sed Top-3 4 4 4 2 2 3
Top-5 5 5 5 3 3 4
Top-1 0 0 0 0 0 0
gzip Top-3 0 0 0 0 0 0
Top-5 1 1 1 0 0 1
Top-1 2 2 2 1 1 1
libtiff Top-3 2 2 2 1 1 2
Top-5 4 4 4 3 2 3
Top-1 0 0 0 0 0 0
python Top-3 0 0 0 0 0 0
Top-5 0 0 0 0 0 0
Top-1 3 3 3 3 2 3
Chart Top-3 6 6 6 5 4 5
Top-5 9 9 9 7 6 7
Top-1 5 5 5 3 1 5
Closure Top-3 14 13 13 7 6 16
Top-5 18 18 18 9 10 18
Top-1 5 5 5 5 4 2
Lang Top-3 17 17 17 16 15 13
Top-5 24 24 24 22 21 19
Top-1 16 16 16 18 11 10
Math Top-3 32 32 32 28 19 20
Top-5 39 39 39 35 23 28
Top-1 6 6 6 4 5 6
Mockito Top-3 11 11 11 5 7 8
Top-5 12 12 12 7 8 10
Top-1 2 2 2 2 2 3
Time Top-3 10 10 10 5 9 10
Top-5 10 10 10 8 9 11
Top-1 39 39 39 36 26 30
summation | Top-3 96 95 95 69 63 77
Top-5 122 122 122 94 84 101

The bold numbers indicate the corresponding techniques with the most number of bugs
located.

right-tailed case, if p > o, Hy that F'(x) does not significantly
tend to be greater than the G/(y) is accepted; otherwise, H; that
F(x) significantly tends to be greater than the G(y) is accepted.
And in the left-tailed case, if p > o, Hy that F'(x) does not
significantly tend to be less than the G(y) is accepted; otherwise,
H, that F'(x) significantly tends to be less than the G(y) is
accepted [53].

The experiments performed five paired Wilcoxon-signed-
rank test: The localization effectiveness of Pearson correlation
coefficient [30] vs. that of each of the other five feature selec-
tion criteria. Each test uses both the two-tailed and one-tailed
checking at the o level of 0.05. Given a program, we use the
list of the EXAM in all faulty versions of the program for using
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TABLE V
STATISTICAL COMPARISON OF PEARSON AND THE OTHER FIVE FEATURE SELECTION CRITERIA

‘ Program [ Comparison [ 2-tailed [ I-tailed(right) [ 1-tailed(left) | Conclusion |
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
printtokens(2 ver.) Pearson v.s. Chi-squared test 6.32E-01 5.02E-01 7.87E-01 SIMILAR
Pearson v.s. Mutual information 1.67E-02 8.99E-01 9.22E-03 BETTER
Pearson v.s. Fisher score 5.77E-01 4.33E-01 5.02E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
replace Pearson v.s. Chi-squared test 8.98E-01 8.52E-01 7.42E-01 SIMILAR
Pearson v.s. Mutual information 1.98E-01 5.19E-01 2.85E-01 SIMILAR
Pearson v.s. Fisher score 5.54E-01 4.17E-01 5.49E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
schedule(2 ver.) Pearson v.s. Chi-squared test 9.88E-01 8.98E-01 9.57E-01 SIMILAR
Pearson v.s. Mutual information | 8.97E-01 7.51E-01 I.17E-01 SIMILAR
Pearson v.s. Fisher score 7.54E-01 4.18E-01 8.58E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
tcas Pearson v.s. Chi-squared test 8.89E-01 6.33E-01 5.48E-01 SIMILAR
Pearson v.s. Mutual information | 2.89E-01 8.19E-01 3.80E-01 SIMILAR
Pearson v.s. Fisher score 1.87E-01 6.32E-01 1.84E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
tot_info Pearson v.s. Chi-squared test 9.89E-01 9.84E-01 9.89E-01 SIMILAR
Pearson v.s. Mutual information | 9.10E-01 3.91E-01 9.80E-01 SIMILAR
Pearson v.s. Fisher score 4.57E-01 2.18E-01 3.64E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
flex Pearson v.s. Chi-squared test 9.65E-01 9.22E-01 9.44E-01 SIMILAR
Pearson v.s. Mutual information 6.05E-01 3.04E-01 6.00E-01 SIMILAR
Pearson v.s. Fisher score 8.83E-01 1.32E-01 9.64E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
grep Pearson v.s. Chi-squared test 4.79E-01 8.55E-01 1.78E-01 SIMILAR
Pearson v.s. Mutual information | 4.02E-01 7.12E-01 4.05E-01 SIMILAR
Pearson v.s. Fisher score 9.83E-01 1.92E-01 8.44E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
gzip Pearson v.s. Chi-squared test 1.00E+00 6.05E-01 6.05E-01 SIMILAR
Pearson v.s. Mutual information | 2.25E-01 9.11E-01 1.40E-01 SIMILAR
Pearson v.s. Fisher score 6.55E-01 8.14E-01 5.00E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
libtiff Pearson v.s. Chi-squared test 6.55E-01 5.00E-01 8.14E-01 SIMILAR
Pearson v.s. Mutual information 1.80E-02 9.93E-01 1.12E-02 BETTER
Pearson v.s. Fisher score 6.55E-01 5.00E-01 8.14E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
python Pearson v.s. Chi-squared test 1.80E-01 9.63E-01 1.86E-01 SIMILAR
Pearson v.s. Mutual information | 6.79E-02 9.78E-01 5.02E-02 SIMILAR
Pearson v.s. Fisher score 4.65E-01 8.19E-01 2.92E-01 SIMILAR
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 1.00E+00 1.00E+00 1.00E+00 SIMILAR
space Pearson v.s. Chi-squared test 4.04E-04 1.00E+00 2.10E-04 BETTER
Pearson v.s. Mutual information 7.96E-03 9.96E-01 4.10E-03 BETTER
Pearson v.s. Fisher score 5.87E-03 9.71E-01 3.01E-02 BETTER
Pearson v.s. Spearman 8.82E-02 9.56E-01 4.49E-02 BETTER
Pearson v.s. Kendall 8.82E-02 9.56E-01 4.49E-02 BETTER
Defects4] Pearson v.s. Chi-squared test 8.03E-20 1.00E+00 4.03E-20 BETTER
Pearson v.s. Mutual information 1.24E-26 1.00E+00 6.23E-27 BETTER
Pearson v.s. Fisher score 2.54E-12 1.00E+00 1.27E-12 BETTER
Pearson v.s. Spearman 1.00E+00 1.00E+00 1.00E+00 SIMILAR
Pearson v.s. Kendall 9.99E-01 9.89E-01 9.95E-01 SIMILAR
total Pearson v.s. Chi-squared test 8.75E-01 8.65E-01 8.10E-01 SIMILAR
Pearson v.s. Mutual information | 7.06E-01 8.96E-01 8.11E-01 SIMILAR
Pearson v.s. Fisher score 8.87E-01 7.78E-01 7.21E-01 SIMILAR

Pearson correlation coefficient [30] as the list of measurements
of F(x), while the list of measurements of G(y) is the list of
EXAM for using one of the other five feature selection criteria.
Hence, in the two-tailed test, Pearson correlation coefficient [30]
has SIMILAR effectiveness as the compared feature selection
criterion when Hy is accepted at the significant level of 0.05. And
in the one-tailed test (right), Pearson correlation coefficient [30]
has WORSE effectiveness than the compared feature selection

criterion when H; is accepted at the significant level of 0.05.
Finally, in the one-tailed test (left), Pearson correlation coeffi-
cient [30] has BETTER effectiveness than the compared feature
selection criterion when H is accepted at the significant level
of 0.05.

Table V shows the statistical results of Pearson correlation
coefficient over each of the other five feature selection criteria in
all programs, i.e., in different contexts of real faults and artificial

Authorized licensed use limited to: University of Waterloo. Downloaded on March 10,2022 at 15:16:25 UTC from IEEE Xplore. Restrictions apply.



276 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022
rinttokens(2 ver, repalce schedule(2 ver. tcas
, 100% g { /g)(,//ﬁé —  100% L 8= » 100% ( o )-gﬁ Q& ,» 100% /’Q o8 Q=%
2 ﬁ'f -6~ ——© 2 i 4 & = < K7 57 5 s 8 s
S 80% y S 80% /@ =B S 80% L' S 80% o e
4 2 2 o~ 4
S g0 | 7 o g g%l ! - S 60% & g S 60% / al
2l I a=E 2, [ /& 2 ol B z ., #
S 40% ’, S 4%, 3 0% O S 40% 7 /
5 20% [/, 5 20% (/) 5 20% /ﬁ/ 5 20% /Q/ 7ﬁ
B3 X X 53 R
0% = 0% < 0% T 0%@F—#=
10% 30% 10% 30% 10% 30% 50% 10% 30% 50%
EXAM EXAM EXAM EXAM
totﬁ)@fu flex grep space
100% = =4 100% &% 100% =09 _ 100%
g o P g - 2 o B g oo 0% &@ﬁ
S 80% / P /;ﬁ S 80% }%@ S 80% X/ P S 80% Y.
g 60% //@ /// g 60% £ S eo%p - g 60% /Q/Q/ #
E & 2 B B
S 40% ’o % S 40% ﬁ/ S 40% | S 40% 2 @(@
3 1/ g = & : & 4 & 0
5 20% [/, 5 20| A7 5 20% [/ 5 20% &
= ® ’ R =
< 0% = 0% < 0% T 0%e-Ore
10% 20% 0% 30% 50% 10% 30% 10% 30% 50% 70%
EXAM EXAM EXAM EXAM
sed i libtiff thol
, 100% — ,};_ === , 100% g P % , 100% &= e —4& , 100% il 5
5 80% e 5 so% AT S so%| /g 5 ao% / /
[ & - [ Z _ 4 / [ | ;!
S 60% / 2 60% o — — O S 60% @ S 60% Pl
z / 2z 4 > / K 2z /
= 40% V2 £ 40% / S 40% [ S 40% LB A B A
2 v 2 V 8 /7 £ SOBB@
5 20% [y 5 20% [ , 5 20% [// 5 20% O-0rd £
S o = o S ow S ow
10% 20% 10% 20% 10% 20% 10% 30% 50% 70%
EXAM EXAM EXAM EXAM
) N Chart ) N Closure » N Lang » N Math
5 100% —R 5 100% Y 5 100% 3 YMJ 5 100% - e
2 g/H g o pooeeeecsend § %@f/#@%w ? g sl B 4
Q T > &x > o 4 > o Vi
)y 80% =% 80% 60%
= 8% ///8? e 2z |ee¥ et =2 "t
> s =] & =] <§/ S 40% [
8 ¥ 8 i 8 8
b - = 60% [ | = 60% w 20% [/
o /7+ o | o s}
X 60% : N ® X 0%
10% 20% 10% 30% 50% 70% 10% 30% 50% 70% 10% 20%
EXAM EXAM EXAM EXAM
%] Mockito %} Time
S 100% G}gggﬁ%a S 100% PS
? i< @ S —O— Dst;
8 & G 9R
; ; & O-0-&/A-H-B A —/>~ Ochiai
2 80% 2 /=t
5 S s /) Barinel
8 s ° —+— op2
S s ) —{~ Feature-FL
< 60% < |
10% 30% 50% 70%  90% 10% 30% 50%
EXAM EXAM
Fig. 8. EXAM distribution in each program.

faults. We view the programs in Defects4] as a whole for this
statistical comparison for convenience of presentation. We can
observe that Pearson correlation coefficient obtains SIMILAR
effectiveness over Spearman’s rank correlation coefficient and
Kendall rank correlation coefficient in most cases. Furthermore,
Pearson correlation coefficient obtains BETTER or SIMILAR
results over mutual information, Fisher score and Chi-squared
test. Based on the statistical results, we can also identify that
Pearson correlation coefficient, Spearman’s rank correlation
coefficient and Kendall rank correlation coefficient are the can-
didate effective feature selection criteria for Feature-FL.

Summary: Based on the above results (i.e., EXAM distribution,
number of Top-K, RImp distribution, and statistical compari-
son), we can safely conclude that Pearson correlation coeffi-
cient, Spearman’s rank correlation coefficient and Kendall rank
correlation coefficient are the most effective feature seleciton
criteria in fault localization in the two contexts (i.e., artificial
faults and real ones), recommending using the three feature
selection criteria as the candidates of applying Feature-FL
in practice.

D. Comparison Between Feature-FL and SFL

Since Pearson correlation coefficient is the simplest structure
and one of the most effective feature selection criteria, we use

Pearson correlation coefficient as the representative to be com-
pared with the four state-of-the-art techniques (i.e., Dstar [15],
Ochiai [40], Barinel [41], and Op2 [17]) in the two contexts (i.e.,
artificial faults and real ones).

EXAM Distribution: Fig. 8 displays the EXAM distribution of
each program by using each localization technique, respectively.
The first seven subfigures are those programs with artificial faults
while the subsequent 11 subfigures represent those programs
with real ones. The legend of these subfigures is shown at the
last of the figure. Apparently, if a curve of a fault localization
technique reaches the 100% of faulty versions more quickly,
this localization technique is more effective. As shown in Fig. 8,
the curves of the other fault localization techniques are always
beneath those of Feature-FL in each program. It means
that Feature-FL outperforms the other four state-of-the-art
techniques in each program. Furthermore, Fig. 9 summarizes
the EXAM distribution of each fault localization technique in
the context of artificial faults and real faults, respectively. We
can observe that Feature - FLreaches 100% of faulty versions
much faster than the other four localization techniques in both
cases of artificial faults and real faults. Thus, Feature-FL
significantly outperforms the four state-of-art fault localization
techniques.

RImp Distribution: For detailed improvement in each pro-
gram, we use RImp to evaluate Feature-FL over the four
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Fig. 9. EXAM distribution of Feature-FL and FL in artificial faults and real faults.
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Fig. 10.  RImp distribution in each program.

state-of-the-art localization techniques. Fig. 10 displays Rlmp
of Feature-FL over Dstar, Ochiai, Barinel, and Op2 in all
faulty versions of each program. The cells below the columns
show the specific RImp values of Feature-FL acquired.
Take print tokens (2 ver.) in Dstar as an example.
The RImp is 32.67%, meaning that Feature-FL takes up
32.67% of examined code of Dstar to locate all faults in
print tokens (2 ver.). In other words, Feature-FL
obtains a saving of 67.33% (100%-32.67% = 67.33%) over
Dstar in print tokens (2 ver.).

In the context of artificial faults, Feature-FL examines a
range from 32.67% to 87.10% of the examined code of Dstar
(12.90%—-67.33% saving), 17.80%-91.55% of the examined
code of Ochiai (8.45% to 82.20% saving), 18.31%—87.27% of
the examined code of Barinel (12.73%-81.69% saving), and and
19.35%-91.25% off the examined code of Op2 (8.75%—-80.65%
saving). In the context of real faults, Feature-FL examines
a range from 36.61% to 97.86% of the examined code of
Dstar (2.14%-63.39% saving), 40.02%-95.45% of the exam-
ined code of Ochiai (4.55%-59.98% saving), 39.12%-85.82%
of the examined code of Barinel (14.18%—-60.88% saving), and

31.26%-97.45% oft the examined code of Op2 (2.55%—68.74%
saving).

In summary, Feature-FL obtains an average saving of
42.68% in Dstar, 56.42% in Ochiai, 56.75% in Barinel, and
56.51% in Op2 in case of artificial faults while Feature-FL
acquires an average saving of 34.08% in Dstar, 33.73% in
Ochiai, 34.96% in Barinel, and 37.97% in Op2 in case of real
faults. Thus, Feature-FL significantly improves fault local-
ization effectiveness in different contexts, i.e., artificial faults
and real faults.

Number of Top-K: Like the comparison among the feature
selection criteria, we compare Feature-FL with the four
state-of-the-art fault localization techniques under the metrics
of number of Top-1, Top-3, and Top-5. From Tables VI and
VII, we can observe that Feature-FL can locate more bugs
than the other four SFL techniques in most programs under
the Top-1, Top-3, and Top-5 metrics. Specifically, for artificial
faults, Feature-FL can obtain the 15 optimal number of bugs
totally out of 21 comparisons, i.e., 7 (programs with artificial
faults) x 3 (metrics for each program) = 21 comparisons, the
values of Dstar, Ochiai, Barinel, and Op2 are only five, four, four,
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TABLE VI
COMPARISON BETWEEN Feature-FL AND FOUR FL TECHNIQUES UNDER
THE NUMBER OF TOP-1, TOP-3, AND TOP-5 METRICS OF EACH PROGRAM
WITH ARTIFICIAL FAULTS

Dstar  Ochiai Barinel Op2 Feature-FL
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The bold numbers indicate the corresponding techniques with the most number of bugs
located.

TABLE VII
COMPARISON BETWEEN Feature-FL AND FOUR FL TECHNIQUES UNDER
THE NUMBER OF TOP-1, TOP-3, AND TOP-5 METRICS OF EACH PROGRAM
WITH REAL FAULTS

Dstar  Ochiai Barinel Op2 Feature-FL
Top-1 0 0 0 0 0
space Top-3 0 0 0 0 0
Top-5 0 0 0 0 0
Top-1 0 0 0 0 0
sed Top-3 0 0 0 0 4
Top-5 0 0 0 0 5
Top-1 0 0 0 1 0
gzip Top-3 0 0 0 1 0
Top-5 1 1 1 2 1
Top-1 0 0 0 0 2
libtiff Top-3 2 2 2 2 2
Top-5 2 2 2 2 4
Top-1 0 0 0 0 0
python Top-3 0 0 0 0 0
Top-5 0 0 0 0 0
Top-1 3 3 2 2 3
Chart Top-3 6 6 5 5 6
Top-5 9 9 9 8 9
Top-1 6 5 5 8 5
Closure Top-3 13 13 10 13 14
Top-5 17 18 17 19 18
Top-1 5 5 5 5 5
Lang Top-3 17 17 17 16 17
Top-5 24 24 24 23 24
Top-1 9 9 9 7 16
Math Top-3 19 19 19 16 32
Top-5 21 22 22 18 39
Top-1 5 6 4 4 6
Mockito Top-3 12 12 9 9 11
Top-5 13 13 11 11 12
Top-1 2 2 2 3 2
Time Top-3 10 10 9 10 10
Top-5 10 10 10 10 10
Top-1 30 30 27 30 39
summation | Top-3 79 79 71 72 96
Top-5 97 99 96 93 122

The bold numbers indicate the corresponding techniques with the most number of bugs
located.
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and four, respectively. For real faults, Feature-FL can get the
18 optimal number of bugs totally out of 33 comparisons [i.e., 11
(programs) X 3 (metrics)], the values of Dstar, Ochiai, Barinel,
and Op2are 11, 12, 6, and 10, respectively. For the sed program
in Table VII, the four SFL techniques could not locate any bug
in the five positions, but Feature-FL can locate four and
five bugs in the three positions and five positions, respectively,
showing better performance of Feature - FL than the four SFL
techniques.

Statistical Comparison: Although RImp can show more de-
tailed improvement than the EXAM scores, the analysis using
RImp still evaluates Feature-FL from the overview of the
results, and may miss other detailed view of the results. For
example, suppose that Feature-FL just obtains very higher
effectiveness than Dstar in several faulty versions of a program,
and, however, Dstar has moderately higher effectiveness in most
faulty versions of the programs. The sheer high effectiveness of
Feature-FL in the several faulty versions may make its RImp
score lower than Dstar, showing that Feature-FL performs
better than Dstar. However, in such case, we cannot conclude
that Feature-FL performs better than Dstar.

Therefore, we further conduct a more scientific and rigor-
ous method, that is, the paired Wilcoxon-signed-rank test to
evaluate the effectiveness of Feature-FL over that of the
other four fault localization techniques. The experiments per-
formed one paired Wilcoxon-signed-rank test: The localization
effectiveness of Feature-FL vs. that of each of the other
four fault localization techniques. Each test uses both the two-
tailed and one-tailed checking at the o level of 0.05. Given a
program, we use the list of the EXAM in all faulty versions
of the program for using our approach Feature-FL as the
list of measurements of F'(x), while the list of measurements
of G(y) is the list of EXAM for using one of the other four
fault localization techniques. Hence, in the two-tailed test,
Feature-FL has SIMILAR effectiveness as the compared
fault localization technique when Hj is accepted at the signifi-
cant level of 0.05. And in the one-tailed test (right), Feature-
FL has WORSE effectiveness than the compared fault local-
ization technique when H; is accepted at the significant level
of 0.05. Finally, in the one-tailed test (left), Feature-FL
has BETTER effectiveness than the compared fault localiza-
tion technique when H; is accepted at the significant level
of 0.05.

Table VIII shows the statistical results of Feature-FL
over each of four state-of-the-art fault localization techniques
in each program. The ‘“total” row demonstrates the statisti-
cal comparison between Feature-FL and each of the four
fault localization techniques, in all artificial faults and all
real ones, respectively. For example, in comparison to Dstar
on print tokens (2 ver.), the p-values of 2-tailed, 1-
tailed(right), and I-tailed(left) are 3.08E-03, 9.55E—01 and
1.63E—02 respectively. It means that the EXAM of Feature-
FL significantly tends to be less than that of Dstar on
print tokens (2 ver.),leadingtoa BETTER result. We
can observe that Feature-FL obtains BETTER results over
the four fault localization techniques on all the subject programs.
Furthermore, Feature-FL also obtains BETTER results on
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TABLE VIII

STATISTICAL COMPARISON OF Feature-FL AND THE FOUR TECHNIQUES

Program Comparison 2-tailed 1-tailed(right) | 1-tailed(left) | Conclusion
Feature-FL v.s. Dstar 3.08E-03 9.55E-01 1.63E-02 BETTER

print_tokens Feature-FL v.s. Ochiai | 2.37E-03 9.99E-01 1.33E-0 BETTER
(2 ver.) Feature-FL v.s. Barinel 1.20E-03 9.99E-01 6.65E-04 BETTER
Feature-FL v.s. Op2 2.40E-03 1.00E+00 2.82E-03 BETTER

Feature-FL v.s. Dstar 3.94E-04 1.00E+00 2.07E-04 BETTER

replace Feature-FL v.s. Ochiai | 7.49E-04 1.00E+00 3.91E-04 BETTER
Feature-FL v.s. Barinel | 5.40E-04 1.00E+00 2.82E-04 BETTER

Feature-FL v.s. Op2 5.20E-04 1.00E+00 4.57TE-04 BETTER

Feature-FL v.s. Dstar 1.77E-02 9.15E-01 9.25E-03 BETTER

schedule Feature-FL v.s. Ochiai 1.56E-02 9.93E-01 8.30E-03 BETTER
(2 ver.) Feature-FL v.s.Barinel 1.39E-02 9.93E-01 7.37E-03 BETTER
Feature-FL v.s. Op2 1.24E-02 9.91E-01 7.32E-03 BETTER

Feature-FL v.s. Dstar 1.81E-03 9.99E-01 9.31E-04 BETTER

tcas Feature-FL v.s. Ochiai 8.06E-07 1.00E+00 4.19E-07 BETTER
Feature-FL v.s. Barinel | 1.16E-06 1.00E+00 6.02E-07 BETTER

Feature-FL v.s. Op2 4.40E-06 1.00E+00 5.32E-06 BETTER

Feature-FL v.s. Dstar 3.52E-03 9.98E-01 1.89E-03 BETTER

tot_info Feature-FL v.s. Ochiai 2.54E-04 1.00E+00 1.38E-04 BETTER
Feature-FL v.s. Barinel | 3.84E-04 1.00E+00 2.10E-04 BETTER

Feature-FL v.s. Op2 2.50E-04 1.00E+00 1.62E-04 BETTER

Feature-FL v.s. Dstar 1.89E-03 9.99E-01 9.58E-04 BETTER

flex Feature-FL v.s. Ochiai 1.52E-02 9.25E-01 7.64E-03 BETTER
Feature-FL v.s. Barinel 1.95E-03 9.99E-01 9.87E-04 BETTER

Feature-FL v.s. Op2 1.20E-03 9.95E-01 2.12E-03 BETTER

Feature-FL v.s. Dstar 3.68E-02 8.22E-01 1.91E-02 BETTER

grep Feature-FL v.s. Ochiai | 2.87E-02 8.62E-01 1.49E-02 BETTER
Feature-FL v.s. Barinel | 3.84E-02 9.68E-01 3.60E-02 BETTER

Feature-FL v.s. Op2 5.40E-02 9.21E-01 3.89E-02 BETTER

Feature-FL v.s. Dstar 2.35E-10 1.00E+00 1.18E-10 BETTER

total Feature-FL v.s. Ochiai 2.67E-17 1.00E+00 1.34E-17 BETTER
(artificial faults) | Feature-FL v.s. Barinel | 7.58E-20 1.00E+00 3.81E-20 BETTER
Feature-FL v.s. Op2 7.40E-18 1.00E+00 4.31E-20 BETTER

Feature-FL v.s. Dstar 8.16E-04 1.00E+00 4.25E-04 BETTER

space Feature-FL v.s. Ochiai 1.04E-03 9.99E-01 5.42E-04 BETTER
Feature-FL v.s. Barinel | 4.42E-03 9.98E-01 2.29E-03 BETTER

Feature-FL v.s. Op2 4.31E-03 9.89E-01 2.22E-03 BETTER

Feature-FL v.s. Dstar 2.42E-04 1.00E+00 1.27E-04 BETTER

sed Feature-FL v.s. Ochiai 4.62E-03 9.98E-01 2.41E-03 BETTER
Feature-FL v.s. Barinel | 2.03E-03 9.99E-01 1.06E-03 BETTER

Feature-FL v.s. Op2 8.40E-03 9.98E-01 2.91E-03 BETTER

Feature-FL v.s. Dstar 1.09E-02 9.69E-01 9.07E-03 BETTER

ezip Feature-FL v.s. Ochiai 1.09E-02 9.69E-01 9.07E-03 BETTER
Feature-FL v.s. Barinel 1.09E-02 9.69E-01 9.07E-03 BETTER

Feature-FL v.s. Op2 1.34E-02 9.53E-01 9.34E-03 BETTER

Feature-FL v.s. Dstar 3.62E-02 9.84E-01 2.05E-02 BETTER

libtiff Feature-FL v.s. Ochiai 3.62E-02 9.84E-01 2.05E-02 BETTER
Feature-FL v.s. Barinel | 3.62E-02 9.84E-01 2.05E-02 BETTER

Feature-FL v.s. Op2 5.22E-03 9.86E-01 2.36E-04 BETTER

Feature-FL v.s. Dstar 9.75E-03 9.96E-01 5.99E-03 BETTER

python Feature-FL v.s. Ochiai | 9.75E-03 9.96E-01 5.99E-03 BETTER
Feature-FL v.s. Barinel | 9.75E-03 9.96E-01 5.99E-03 BETTER

Feature-FL v.s. Op2 9.40E-03 9.88E-01 7.32E-03 BETTER

Feature-FL v.s. Dstar 9.75E-03 9.96E-01 5.99E-03 BETTER

Defects4] Feature-FL v.s. Ochiai | 9.75E-03 9.96E-01 5.99E-03 BETTER
Feature-FL v.s. Barinel | 9.75E-03 9.96E-01 5.99E-03 BETTER

Feature-FL v.s. Op2 9.49E-03 9.93E-01 5.82E-03 BETTER

Feature-FL v.s. Dstar 6.09E-09 1.00E+00 3.10E-09 BETTER

total Feature-FL v.s. Ochiai 9.45E-09 1.00E+00 4.80E-09 BETTER
(real faults) Feature-FL v.s. Barinel | 7.40E-08 1.00E+00 3.76E-08 BETTER
Feature-FL v.s. Op2 5.89E-07 1.00E+00 5.39E-07 BETTER
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“total” comparison over the four fault localization techniques in
both cases of artificial faults and real ones. The results show that
Feature-FL significantly outperforms the four state-of-the-
art fault localization techniques, despite whether it is the context
of artificial faults or real faults.

Summary: We evaluate Feature-FL over the four state-of-
the-art techniques in two different contexts, i.e., artificial faults
and real faults. We first show the EXAM distribution, then use
the RImp for obtaining detailed improvement. To overcome the
limitations of EXAM and RImp metrics and obtain the overall
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performance of a fault localization, we further show the results
under the Top-1, Top-3, and Top-5 metrics, and finally apply the
quantitative analysis using Wilcoxon-signed-rank test to justify
the advantages of Feature-FL. Based on all experimental
results, we can conclude that Feature-FL significantly im-
proves fault localization effectiveness in both artificial faults
and real faults.

E. Threats to Validity

Threats When There are Multiple Faults: The effectiveness
of Feature-FL on programs with multiple faults should be
explicitly discussed. We use the faulty versions of programs with
real faults in our subject programs to evaluate the effectiveness of
Feature-FL; they are a subset of all faulty versions of the last
11 programs in Table II. Followed by Wong et al. [15], we could
also apply EXAM to multiple faults through the definition of the
percentage of the statements to be examined before finding all
faulty statements. From Fig. 11, the curve of Feature-FL is
above the curves of the other four SFL techniques, which means
Feature-FL can also locate multiple bugs more effectively
than other four SFL techniques. Note that the Feature-FL could
not reach 100% faster than the other techniques, which means
Feature-FL has some limitations on multiple faults programs.
The reason may be that the feature selection algorithms we
used do not consider the combination of features. Further studies
about the combination features of feature selection algorithms
should be conducted to validate the effectiveness on multiple
faults.

Threats to Test Strategies: Different test strategies will lead
to different branching execution probabilities, which may con-
sequently influence the effectiveness of Feature-FL. Also,
the effectiveness of other localization techniques will vary as
the test strategy changes. The influence of test strategy on fault
localization is an important and interesting research topic, and
we will leave it to future work.

Threats to Internal Validity: This type of threats involves the
relationship between independent and dependent variables in
this study, which are beyond researchers’ knowledge. There may
be chances that some undetected implementation flaws existing
in our experiment may have affected the results. To ensure the
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accuracy of the experiments, we have carefully realized the
relevant techniques and comprehensive functional testing.

Threats to External Validity: This type of threats corresponds
to the generalization of the experimental results. A threat is
about the subject programs. For obtaining reliable experimental
results, we choose seven small programs with artificial faults and
seven large real-life programs mostly with real faults because
they are commonly used in debugging. Even so, there still exist
many unknown and complicated factors in realistic debugging.
Therefore, it would be worthwhile to use more programs (e.g.,
multiple-faults programs and large-sized programs) to further
strengthen the experimental results.

Threats to Construct Validity: This type of threats concerns the
appropriateness of the evaluation measurement. We use EXAM
and RImp to evaluate fault localization effectiveness. The two
metrics are widely used in fault localization community [16],
[45], and thus the threat is acceptably mitigated.

V. RELATED WORK

There exists a large body of research on fault localization,
e.g., information retrieval based fault localization [54]-[56]
and deep-learning-based fault localization [10], [26], [57]. This
section surveys closely related work on SFL techniques. More
other work on fault localization can refer to a survey by Wong
etal [1].

Due to its straightforward idea and promising results, SFL
has received considerable attention and motivated much re-
search on fault localization. SFL usually utilizes the coverage
information of program entities (e.g., statements [17], [20],
[58]-[60], basic blocks [18], components [19], and paths [61])
to evaluate the suspiciousness of an entity of being faulty. SFL
shares an intuition that a program entity, covered by more
failing test cases and less passing test cases, should have high
suspiciousness of being faulty. Following this intuition, re-
searchers have proposed many suspiciousness evaluation formu-
las, e.g., Ochiai [18], Jaccard [19], Tarantula [20], GP-evolved
formulas [62], Naishl [17], and Wongl [59]. Many of them
(e.g., Tarantula [20], Ochiai [17]) have been widely integrated
into automated program repair (APR) pipelines as a crucial
start in [63]-[70], which indicates SFL is one of the impor-
tant guidelines for the following steps of APR. However, the
above approaches mainly discover statistical coincidence and
lack the combination of diverse amount of information. Thus,
Feature-FL combines feature diversity into fault localization
to improve localization effectiveness.

In addition to the origin formulas, researchers have proposed
some enhanced fault localization techniques based on spectrum.
In order to alleviate the imbalancement of test cases, the method
of cloning failing test cases has been proposed [71], [72].
Gao et al. [71] first proposed a cloning failing test cases strategy
to produce a balanced test suite. They adopted rigorous analysis
from a theoretical perspective to prove that their idea would have
positive effect on SFL techniques. Followed by Gao et al. [71],
Zhang et al. [72] conducted a large-scale experiment of cloning
failing test cases on SFL techniques, which the empirical re-
sults are in line with the former theoretical analysis. In this
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work [73], they validate the effectiveness of cloning technique
on deep-learning-based fault localization. Li et al. [28] devised
the enhanced code coverage matrix (i.e., spectrum) by setting
the value of the error-exhibiting lines to — 1. The enhanced code
coverage matrix encodes more information than original one,
which can be fully explored by convolutional neural networks.
In contrast to optimizing test datasets, our work focuses on
presenting effective fault localization methodology.

Furthermore, for supporting locating multiple faults,
Jones et al. [74] adopted a clustering technique to divide failing
test cases into different clusters, where each cluster represents
only one fault. With the assistance of this clustering technique,
SFL techniques are applicable to locate multiple faults by lo-
cating the one fault of each cluster in parallel. Abreu et al. [75]
proposed a spectrum-based multiple fault localization approach
called Zoltar-M by integrating the methodology of SFL with
model-based diagnosis. Zheng et al. [76] proposed a fast soft-
ware multifault localization framework via utilizing genetic
algorithms with simulated annealing. Their solution success-
fully transforms a multifault localization problem into a search
one. For alleviating the test oracle problem, Abreu et al. [77]
designed invariants for fault localization and utilized error de-
tection to judge failures. Xie et al. [78] leveraged metamorphic
testing to define two key concepts (i.e., metamorphic slice
and metamorphic result) for constructing a fault localization
methodology, which successfully replaces a test result of being
failing or passing with a metamorphic result of being violated
or nonviolated. In order to reduce the inaccuracy caused by
sensitive factors such as the characteristic of faults and the
quality of the test suite, Gopinath et al. [79] incorporated the
merits of specification-based analysis into fault localization
to enable more precise fault localization. Le et al. [80], [81]
used machine learning (e.g., feature extraction) to predict the
effectiveness of fault localization techniques. Feature-FL
also faces the above problems (e.g., multiple faults and oracle
problem), and the above approaches can also serve potential
solutions to Feature-FL.

Since the rapid progress on SFL techniques has made a lot of
achievements in this research area. Some researchers try to sum-
marize SFL techniques from both theoretical and experimental
levels. Xie et al. [22], [23] theoretically summarized the max-
imal effectiveness that different SFL techniques can achieve.
Recently, Pearson et al. [16] systematically evaluated and sum-
marized the existing state-of-the-art techniques, showing that
the promising results of SFL techniques from a comprehensive
experimental study. From their studies, we can see the maximum
effectiveness of SFL techniques that have reached. Thus, we
leverage a recent popular method named feature selection to
propose Feature-FL for locating faults via a feature view
different from SFL. Our study has shown that Feature-FL
is more effective than four state-of-the-art SFL techniques, and
significantly improves localization effectiveness.

VI. CONCLUSION

In this article, we tried to propose a fault localization method-
ology different from the state-of-the-art view. To achieve this
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goal, we proposed a Feature-FL methodology by locating
faults from the feature view. Feature-FL defines branching
execution probability to depict program behaviors as the values
of features, then uses feature selection to quantify the relevance
of each feature to failures, and, finally, associates each feature
with its corresponding statement to rank all statements in terms
of suspiciousness computed by the relevance. We presented six
basic and typical feature selection criteria for Feature-FL.
We conducted a large-scale experimental study to investigate
the effectiveness distribution among different feature selection
criteria and evaluate Feature-FL over four state-of-the-art
techniques in two different contexts, namely artificial faults and
real faults. The results recommend for using the three effective
feature selection criteria (i.e., Pearson correlation coefficient,
Spearman’s rank correlation coefficient, and Kendall rank cor-
relation coefficient) as the candidates of applying Feature-FL
in practice. In addition, the results also showed that Feature-
FL significantly improves fault localization effectiveness, de-
spite whether it is the context of artificial faults or real faults.

As for future work, since feature selection is a family method,
we plan to optimize Feature-FL by taking more scoring
metrics into consideration. In addition, we plan to extend
Feature-FL to the context of multiple faults.
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