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Abstract: Although a test suite is indispensable for conducting effective fault localisation, not much work has been done to
study how the test suite impacts fault localisation. This study presents a systematic study for a deeper understanding of their
relation. Specifically, the authors' study reveals an interesting fact that there is no strong correlation between localisation
effectiveness and the size of the test suite. Furthermore, they show that, in a test suite, (i) the passing test cases that do not
execute the faulty statements and the failing test cases have a positive effect on the fault localisation effectiveness, while (ii) the
passing test cases that exercise the faulty statements have a negative impact on localisation performance. Their result is drawn
from a large-scale empirical analysis on the localisation effectiveness with respect to randomly sampled test suites. This study
presents the details of the study and their follow-up investigation on the findings. Their work provides a new perspective on fault
localisation and suggests fresh directions of research on an extensively studied topic.

1 Introduction
Debugging is a painstaking task in software development and
maintenance. In order to reduce the cost of debugging, much
research has been devoted to developing automated fault
localisation techniques such as [1–11]. Generally, these automated
debugging techniques analyse dynamic runtime information to
identify suspicious localisations (e.g. statements, branches and def–
use pairs) which are potentially responsible for a failure, thus to
help developers debug. Specifically, given a buggy program P and
a test suite T, the bug is localised in the following way: P is first
instrumented and run against T; then a set of dynamic information
is collected and analysed; finally, all the statements (or other
program elements) are ranked based on their correlation with faulty
program executions.

The test suite T is an indispensable component to initiate the
fault localisation process, as it is the driver to execute P so that
runtime information can be collected and analysed. Most of the
proposed fault localisation techniques assume a test suite, but it is
unclear whether the test suite is adequate. We still lack a deep
understanding of the criteria for a test suite to be adequate. Does
the performance of fault localisation increase with the size of T?
How do different parts of T interact with fault localisation? These
questions have not been explicitly answered yet in the literature.

Investigating the relation between test suite and fault
localisation is necessary and worthwhile. This is because not only
the knowledge and insights are interesting in their own right, but
perhaps more importantly, they may be leveraged to further
improve fault localisation. A considerable number of techniques
have been proposed to enhance the fault localisation models, but a
few tries to improve localisation accuracy by optimising the test
suite. With deeper understandings in this direction, we can advance
studies on test suites for fault localization, specifically test case
generation and reduction.

In this paper, we present a systematic study on the impact of
test suites on fault localisation, trying to study the structure of a test
suite to pinpoint what parts of a test suite correlate with fault
localisation. Our extensive empirical study is performed on a

standard benchmark (Siemens programs) and seven popular large
real-world programs (space, flex, grep, sed, libtiff, python
and gzip) with their respective test suites. Considering its
popularity in the fault localisation community, our study adopts
spectrum-based fault localisation (SFL) [12] to perform fault
localisation on the selected subject programs. Our study is based on
statistical analysis. We choose the basic attribute of a test suite,
which is the size of a test suite, to initiate our study for identifying
the relative makeup of a test suite that matters. Specifically, for
each buggy program P and its test suite T, we use random
sampling to generate a set of subsets of T; next, apply SFL on P
with T and each of its sampled subsets; finally we process and
analyse the accuracy data of all the applications of SFL using
statistical methods.

We find that the fault localisation effectiveness fluctuates
drastically across the randomly sampled subsets of T, and on
average 68.63% of random samples lead to improved results over
the original test suites. This rather surprising finding shows that
there is no strong correlation between localisation effectiveness and
the size of a test suite, i.e. enlarging T does not necessarily imply
increased fault localisation accuracy.

We analyse the cause of this interesting result and clearly
identify the positive or negative impact of different parts of a test
suite on fault localisation [positive means beneficial for fault
localisation, while negative means harmful for localisation
effectiveness.]. More concretely, in a test suite, two parts (i.e. the
passing test cases that do not execute the faulty statement and the
failing test cases) have a positive impact on the fault localisation
effectiveness, while those passing test cases that exercise the faulty
statement have a negative effect on localisation performance. We
further find that SFL can always benefit from the failing test cases,
and thus the observed fluctuations across the samples are mainly
due to passing test cases: Passing test cases cannot guarantee that
their executions do not exercise the faulty statement s f . If they
execute s f , then these test cases will reduce the suspiciousness of
s f , consequently affecting the final ranking of s f .
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Based on this analysis result, we define a new metric Passing
Test Discrimination (PTD), to compare two test suites by
identifying whose passing test cases help more in increasing the
suspiciousness of the faulty statement. In general, it is the ratio of
the number of passing test cases not executing the faulty statement
over the number of all passing test cases.

Given a test suite T, we can leverage PTD as a criterion to
optimise T so as to increase its PTD and consequently improve the
fault localisation performance. To demonstrate its feasibility, we
propose a simple heuristic to improve PTD. It is based on the
observation that if a passing test case t executes most of the
statements in S, where S is the set of statements executed by all the
failing test cases, then t tends to execute the faulty statement with a
high likelihood. If the similarity between those statements executed
by t and S exceeds a threshold, we remove t from T and use the
remaining test cases for fault localisation. Our experimental results
demonstrate that in general, the optimised test suite performs better
than the original test suite. And this application of PTD further
confirms our theoretical analysis.

Paper organisation: The remaining of this paper is organised as
follows. Section 2 introduces necessary background information.
Section 3 presents our study and theoretical analysis. Section 4
demonstrates a simple application of using PTD. Section 6 surveys
related work and Section 7 concludes.

2 Background on SFL
Given a program P, let S = {s1, s2, . . . , sM} denote its statements
and T = {t1, t2, . . . , tN} be the test suite. Fig. 1 shows the input to
SFL, an N × (M + 1) matrix. An element xi j is 1 if the statement sj
is covered by the execution of test case ti, 0 otherwise. The result
vector r at the rightmost column of the matrix represents the test
results. The element ri is 1 if ti is failing, 0 otherwise. 

SFL normally evaluates the suspiciousness of a statement by
utilising the similarity between the statement vector and result
vector of the matrix in Fig. 1. SFL defines four statistical variables
for each statement to facilitate the similarity computation, as
defined below:

a00(sj) = |{i | xi j = 0 ∧ ri = 0}|
a01(sj) = |{i | xi j = 0 ∧ ri = 1}|
a10(sj) = |{i | xi j = 1 ∧ ri = 0}|
a11(sj) = |{i | xi j = 1 ∧ ri = 1}|

(1)

a00(sj) and a01(sj) represent the number of test cases that do not
execute the statement sj and return the passing and failing test
results, respectively; a10(sj) and a11(sj) stand for the number of test
cases that execute sj, and return the passing and failing testing
results, respectively.

With the four variables, a large number of formulas have been
proposed to evaluate the suspiciousness of a statement being faulty
and they output a ranking list of all statements in descending order
of their suspiciousness. Xie et al. [6, 13] recently have theoretically
proved that 5 out of 30 human-discovered SFL suspiciousness
evaluation formulas and 4 out of 30 genetic programming-evolved
formulas are the most effective – referred to as the maximal
formulas – in the single-fault scenario.

Table 1 lists the nine maximal formulas with their definitions:
Wong1 [14], Russel & Rao [4], Binary [4], Naish1 [4], Naish2 [4],
GP13 [13], GP02 [13], GP03 [13] and GP19 [13]. Moreover,
among the nine maximal formulas, three formulas are equivalent
and constitute a group ER5, and the other three equivalent formulas
compose a group ER1′. 

Fig. 2 illustrates a simple example using Naish1 to show how
SFL works. As shown in Fig. 2, the example, with a faulty
statement st3, contains five statements {st1, st2, st3, st4, st5} and four
test cases {tc1, tc2, tc3, tc4}. The cells below each statement indicates
whether the statement was covered by the execution of a test case
or not and the rightmost cells represent whether the execution of a
test case is failing or not. The detailed description of the cells can
refer to the input matrix of SFL presented in Fig. 1. Take statement
st1 as an example. We can obtain the values of its four variables
defined in (1), i.e. a00(st1) = 0, a01(st1) = 0, a10(st1) = 3 and
a11(st1) = 1. Thus, Naish1 assigns 0 to st1 as its suspiciousness
value. Based on the statement coverage and test results of four test
cases, Naish1 computes the suspiciousness of each statement and
outputs a ranking list of all statements in descending order of
suspiciousness: {st2, st4, st3, st1, st5}. The faulty statement st3 is
ranked 3rd. 

3 Study design and results
This section presents the details of our extensive empirical study
on the impact of test suites on fault localisation. The general idea is
that we generate a large number of test suites that are randomly
sampled from the original test suite T, and then measure and
compare localisation effectiveness by using T and the sampled
subsets of T. If the size of a test suite is correlated with
localisation effectiveness, the distribution of localisation
effectiveness over the sizes of test suites should be consistent with
the sizes, namely, there should be no drastic fluctuation which is
inconsistent with the sizes. However, if we obtain apparent
fluctuation among the samples and furthermore, many samples
perform equally to or better than T, it possibly indicates no strong
correlation between the size of a test suite and localisation
effectiveness.

Fig. 1  Input to software fault localisation
 

Table 1 Maximal formulas of SFL
Name Formula

ER5 Wong1 a11(sj)
Russel & Rao a11(sj)

a11(sj) + a01(sj) + a10(sj) + a00(sj)
Binary 0, if a01(sj) > 0

1, if a01(sj) = 0
ER1′ Naish1 −1, if a01(sj) > 0

a00(sj), if a01(sj) = 0
Naish2 a11(sj) − a10(sj)

a10(sj) + a00(sj) + 1
GP13 a11(sj) 1 + 1

2a10(sj) + a11(sj)
GP02 2( a11(sj) + a00(sj) ) + a10(sj)
GP03 |a11(sj)2 − a10(sj)|
GP19 a11(sj) |a11(sj) − a01(sj) + a00(sj) − a10(sj)|

 

Fig. 2  Example illustrating SFL
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3.1 Study design

Benchmark selection: Siemens [http://sir.unl.edu/portal/index.php]
is a widely used benchmark in fault localisation. It contains seven
programs: print_tokens, print_tokens2, replace,
schedule, schedule2, tcas and tot_info, each of which has
a set of faulty versions. Siemens developed by Siemens Corporate
Research performs a variety of tasks: print_tokens and
print_tokens2 are lexical analysers, replace performs pattern
matching and substitution, schedule and schedule2 are priority
schedulers, tcas is an aircraft collision avoidance system, and
tot_info computes statistics given input data. Although Siemens
is all small-sized programs with seeded faults and even a little
older, we still include Siemens due to its wide usage in fault
localisation.

Besides Siemens, our study uses seven popular large real-
world programs, each of which also has a set of faulty versions.
space was first written by the European Space Agency, and
functions as an interpreter for an array definition language (ADL).
flex, grep, sed and gzip are four real-life typical UNIX utility
programs, conducting lexical analysis, pattern matching and
printing, stream editing and data compression, respectively.
libtiff is a free and open-source library for reading and writing

TIFF (Tagged Image File Format) graphics files on 32- and 64-bit
machines. python is a widely used general-purpose, high-level
programming language. In order to obtain reliable faults, all large
programs adopt real-happening faults except for flex and grep.

Table 2 lists the statistics including subject names, lines of
code, numbers of test cases, fault type, the functional description,
as well as the information of each faulty version. We merge the
results of print_tokens and print_tokens2, schedule and
schedule2 as each two have similar structures and functionalities.
libtiff, python and gzip are collected from ManyBugs [http://
repairbenchmarks.cs.umass.edu/ManyBugs/], and the others are
from SIR [http://sir.unl.edu/portal/index.php]. We used Gcov 5.4.0
[https://gcc.gnu.org/onlinedocs/gcc/Gcov.html] to collect coverage
information. As a reminder, the two large programs of flex and
grep use seeded faults because SIR only provides seeded faults for
the two programs. 

SFL formula selection: Recent studies [6, 13] have theoretically
proved that ER1′, ER5, GP02, GP03 and GP13 are the maximal
formulas for SFL in the scenarios of single faults. This line of
research, to the best of our knowledge, provides the best criteria for
choosing an effective set of formulas from a large number of
existing SFL formulas. Therefore, we adopt these formulas,

Table 2 Summary of subject programs
Program LoC Test Type Description Version
print_tokens (2
ver.)

570/726 316/393 seeded lexical analyser print_tokens: v1, v2, v3, v5, v7
print_tokens2: v1, v2, v3, v4, v5, v6, v7, v8, v9, v10

replace 564 395 seeded pattern
recognition

v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v13, v14, v15, v16, v17, v18, v19, v20,
v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31

schedule (2
ver.)

374/412 228/235 seeded priority
scheduler

schedule: v1, v2, v3, v4, v5, v6, v7, v8, v9
schedule2: v1, v2, v3, v4, v5, v6, v7, v8, v10

tcas 173 83 seeded altitude
separation

v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v15, v16, v17, v18, v19, v20, v21,
v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v37, v39, v40,

v41
tot_info 565 194 seeded information

measure
v1, v2, v3, v4, v5, v7, v8, v9, v11, v12, v13, v14, v15, v16, v17, v18, v20, v22, v23

space 6199 4333 real ADL interpreter v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21,
v22, v23, v24, v25, v26, v28, v29, v30, v31, v33, v35, v36, v37, v38

flex 10,459 567 seeded lexical analyser v2: F_HD_1, F_HD_2, F_HD_4, F_HD_5, F_HD_6, F_HD_7, F_HD_8, F_AA_1,
F_AA_2, F_AA_3, F_AA_4, F_AA_5, F_AA_6, F_JR_1, F_JR_2, F_JR_3, F_JR_4,

F_JR_5, F_JR_6, F_JR_7; v3: F_HD_1, F_HD_2, F_HD_4, F_HD_5, F_HD_6,
F_AA_1, F_AA_4, F_AA_5, F_JR_1, F_JR_2, F_JR_3, F_JR_4, F_JR_5; v4:

F_HD_3, F_HD_4, F_HD_5, F_AA_1, F_AA_2, F_AA_3, F_AA_4, F_AA_5, F_AA_6,
F_AA_7, F_JR_1, F_JR_2, F_JR_3, F_JR_4; v5: F_AA_3, F_AA_4, F_AA_5,

F_JR_1, F_JR_2
grep 10,068 809 seeded pattern

recognition
v1: FAULTY_F_DG_4, FAULTY_F_DG_8, FAULTY_F_KP_2, FAULTY_F_KP_5; v2:

FAULTY_F_DG_1, FAULTY_F_DG_2, FAULTY_F_KP_3, FAULTY_F_KP_4; v3:
FAULTY_F_DG_1, FAULTY_F_DG_2, FAULTY_F_DG_3, FAULTY_F_DG_8,
FAULTY_F_DG_10, FAULTY_F_KP_2, FAULTY_F_KP_3, FAULTY_F_KP_7,

FAULTY_F_KP_8; v4: FAULTY_F_KP_9, FAULTY_F_DG_3, FAULTY_F_KP_8
sed 14,427 370 real stream editor v2: FAULTY_F_AG_2, FAULTY_F_AG_19; v3: FAULTY_F_AG_5, FAULTY_F_AG_6,

FAULTY_F_AG_11, FAULTY_F_AG_15, FAULTY_F_AG_17, FAULTY_F_AG_18; v4:
FAULTY_F_KRM_1, FAULTY_F_KRM_2, FAULTY_F_KRM_3, FAULTY_F_KRM_4,

v5: FAULTY_F_KRM_1, FAULTY_F_KRM_2, FAULTY_F_KRM_8,
FAULTY_F_KRM_10; v6: FAULTY_F_KRM_1, FAULTY_F_KRM_4,

FAULTY_F_KRM_5, FAULTY_F_KRM_7, FAULTY_F_KRM_8, FAULTY_F_KRM_9;
v7: FAULTY_F_KRM_1, FAULTY_F_KRM_2, FAULTY_F_KRM_5,

FAULTY_F_KRM_6
libtiff 77,000 78 real image

processing
bug-2007-11-02-371336d-865f7b2, bug-2007-11-23-82e378c-cf05a83,
bug-2008-04-15-2e8b2f1-0d27dc0, bug-2008-09-05-d59e7df-5f42dba,

bug-2008-12-30-362dee5-565eaa2, bug-2009-02-05-764dbba-2e42d63,
bug-2009-06-30-b44af47-e0b51f3, bug-2009-08-28-e8a47d4-023b6df,
bug-2009-09-03-6406250-6b6496b, bug-2010-06-30-1563270-1136bdf,
bug-2010-11-27-eb326f9-eec7ec0, bug-2010-12-13-96a5fb4-bdba15c

python 407,000 355 real general-purpose
language

bug-69709-69710, bug-69783-69784, bug-69785-69789, bug-69831-69833,
bug-69934-69935, bug-69945-69946, bug-70056-70059, bug-70098-70101

gzip 491,000 12 real data
compression

bug-2009-08-16-3fe0caeada-39a362ae9d, bug-2009-09-26-a1d3d4019d-
f17cbd13a1, bug-2009-10-09-1a085b1446-118a107f2d, bug-2010-01-30-

fc00329e3d-1204630c96, bug-2010-02-19-3eb6091d69-884ef6d16c
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specifically, Binary out of the three equivalent maximal formulas
in ER5, Nash1 out of the three equivalent formulas in ER1′ and the
other three formulas GP02, GP03 and GP19. In light of the
equivalence in each group, the remaining of the paper uses ER5
and ER1′ to represent Binary and Naish1, respectively.

Random sampling: We leverage random sampling to generate
random test suites from the original test suite. Since SFL needs the
dynamic runtime information of passing and failing executions to
initialise the localisation process, we require that each of the test
suite samples should contain at least one failing and one passing
test cases. Algorithm 1 (see Fig. 3) describes the details of how to
generate a sample from T. 

Evaluation process: The steps of the experiments are designed
as follows. For each buggy program P,

i. We first randomly generate 10,000 subsets of T. For gzip, we
sample 1000 subsets instead because the number of test cases
in gzip is very small.

ii. Next, we run SFL with T and its subsets by using the five
maximal formulas and compute the accuracy of the
localisation.

iii. Finally, we investigate the relation between the fault
localisation effectiveness and the size of test suites (i.e. T and
its samples). Specifically, we validate whether the size of T
matters in fault localisation and whether the largest test suite T
outperforms all its subsets.

All the experiments were conducted on an Ubuntu 16.04
machine with 2.40 GHz Intel(R) Core(TM) i5 CPU and 8 GB of
memory.

Evaluation metric: We use the absolute rank of the faulty
statement in the ranking list of the statements as a metric to
evaluate the effectiveness of SFL, as recommended by Parnin and
Orso [15]. A higher rank of the faulty statement means better fault
localisation performance. For those statements with the same
suspiciousness, we adopt a conventional strategy [16] ranking them
according to their original line order in the source code.

3.2 Quantitative results

We use pooled mean and standard deviation [17] to compute and
present our experimental results. In statistics, pooled mean and
standard deviation are methods for estimating the mean and
standard deviation of different sample sets when the mean of each
sample set may be different. Our experiment has a similar context.
In our experiment, each subject program has a set of distinct faulty
versions, and each faulty version has a large number of test suites
randomly sampled from T. For each sample, we apply SFL to
obtain a data point, i.e., the rank of the faulty statement. For a
subject program, the mean of the localisation effectiveness for each
faulty version is usually different. Therefore, these two statistic
methods well fit here.

Suppose a program has a total of r faulty versions and there are
ni random samples of T for the faulty version i. Let Xi j denote the
rank of the faulty statement obtained by applying SFL with the jth
sample test suite of T (where 1 ≤ j ≤ ni). Then for a faulty version
i ∈ [1, r], its mean of localisation accuracy is defined as

Xi = ∑ j = 1
ni Xi j
ni

and its standard deviation is defined as

σi = ∑ j = 1
ni (Xi j − Xi)2

(ni − 1)

For a subject program, its pooled mean and standard deviation are
computed as follows:

mean =
∑i = 1

r ∑ j = 1
ni Xi j

∑i = 1
r ni

=
∑i = 1

r niXi

∑i = 1
r ni

StdDev =
∑i = 1

r ∑ j = 1
ni (Xi j − Xi)2

∑i = 1
r (ni − 1)

=
∑i = 1

r (ni − 1)σi
2

∑i = 1
r (ni − 1)

Tables 3 and 4 show the statistics of the original test suites, the
sampled test suites and the accuracy data of fault localisation by
using these test suites in small programs (Siemens) and large
programs, respectively. The columns are explained below:

• |T|: the number of test cases in the original test suite T.
• Mean size of all samples: the mean of the sizes of the test suites

randomly sampled from T.
• StdDev of sizes of samples: the standard deviation of sizes of the

sampled test suites.
• Mean rank of original suite: the rank of the faulty statement

output by SFL with T and the formula specified in the
parentheses (e.g. ER5, GP02).

• Mean rank of all samples: the pooled mean rank of the faulty
statement output by SFL with the sampled test suites.

• StdDev of ranks of all samples: the pooled standard deviation of
the rank of the faulty statement with the sampled test suites.

• Mean percentage of better and equal samples: the mean
proportion of the samples with which the localisation accuracy
is equal or improved.

• Mean size of better and equal samples: the mean size of the
samples with which the localisation accuracy remains or
improves.

• StdDev of sizes of better and equal samples: the standard
deviation of the sizes of the samples with which the localisation
accuracy remains or improves.

Take print_tokens (2 ver.) using ER5 formula (shown in the
first row of data in Table 3) as an example. The mean size of all the
samples is 181.98, i.e. 49.59% of |T|. The mean rank of the faulty
statement by using samples is a little smaller (that is better) than
that computed with the whole test suite T. The standard deviation
of the ranks is 15.95. Compared to the mean rank (46.56) of all
samples, this number indicates an obvious fluctuation of
localisation effectiveness. Moreover, on average 73.15% of the
samples perform better than or equal to T in terms of faulty
statement ranking, although their sizes are much smaller than T,
only 48.21% of |T|. 

Based on the results in Tables 3 and 4, it is surprising to find
that a total average of 69.36 and 67.90% of the random samples,
with smaller sizes, deliver improved localisation results over the
original test suites in small programs (Siemens) and large
programs, respectively. It is also unexpected that there is usually a
large standard deviation of the ranks of the faulty statements using
random samples in both small programs (Siemens) and large
programs.

Fig. 3  Algorithm 1: sampling a subset from a test suite T
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To obtain more understanding and insights on the results above,
we further use the Kendall rank correlation coefficient [18]
(denoted by r) to measure the correlation between the fault
localisation effectiveness and test suite sizes. In statistics, the
Kendall rank correlation coefficient is a statistic used to measure
the correlation between two measured variables. The value of the
correlation coefficient r is in the range of [−1, 1]. When r lies
around +1 or −1, then it is said to be a perfect degree of correlation
between the two variables. As the correlation coefficient value goes
towards 0, the correlation between the two variables will be
weaker. Based on the absolute value of the correlation coefficient r,
five cases are usually used:

1. |r | ∈ [0.8, 1.0], very strong correlation;
2. |r | ∈ [0.6, 0.8), strong correlation;
3. |r | ∈ [0.4, 0.6), medium correlation;
4. |r | ∈ [0.2, 0.4), weak correlation;
5. |r | ∈ [0.0, 0.2), very weak correlation or independence.

Table 5 shows the Kendall rank correlation coefficient between
the ranks of the faulty statements and test suite sizes in each
program using different maximal formulas. As shown in Table 5,
the absolute value of the coefficient r is smaller than 0.2 in all
cases. This means that there is no statistically significant
correlation between the localisation effectiveness and test suites
sizes. 

‘The results above show that there is no strong correlation
between localisation effectiveness and the size of a test suite,
namely, a large test suite does not necessarily imply high
localisation accuracy’.

3.3 Theoretical analysis and explanation

In this section, we conduct theoretical analysis to understand why
localisation effectiveness is not correlated with the size of a test
suite. Since how to evaluate the faulty statement with high

suspiciousness is the main concern of fault localisation, our
theoretical analysis will focus on the calculation of the
suspiciousness of the faulty statement in each maximal formula.
Specifically, we theoretically analyse the structure of each maximal
formula to identify which factors decide the calculation of the
suspiciousness of the faulty statement. With those identified
factors, we can see which parts of a test suite are correlated with
them, and furthermore recognise which parts of a test suite are
beneficial or harmful in increasing the suspiciousness of the faulty
statement. Thus, we can understand why localisation effectiveness
is not correlated with the size of a test suite, and more importantly,
we may reveal how a test suite impacts fault localisation by
increasing or decreasing the suspiciousness of the faulty statement.

Since our study focuses on single-fault subject programs, we
assume that a buggy program P has only one fault. A single fault
could contain a single faulty statement, or a sequence of faulty
statements of which executing each implies the execution of the
others (e.g. a list of faulty statements in the same basic block).
Without loss of generality, we assume that P has only a faulty
statement s f . We further use Nst (and N f t) to represent the total
number of passing (and failing) test cases in T, respectively.
Hence, based on the definitions of the four variables in (1), we
have Nst = a00(sj) + a10(sj) and N f t = a01(sj) + a11(sj). In general, a
faulty statement should be executed when a failure occurs,
especially in the context of a single fault. Thus, for the faulty
statement s f , a01(s f ) = 0 and a11(s f ) = N f t in our study. Note that
N f t is the maximal value of the variable a11.

ER5: We take the Binary formula out of the three equivalent
formulas to represent ER5. Unlike the other maximal formulas,
ER5 only utilises the variable a01 that only depends on the
information of failing test cases. In other words, all passing test
cases are unused for ER5 and therefore can be removed. If
a01(sj) = 0 holds, it means that statement sj is executed by all
failing test cases, i.e. a11(sj) = N f t. Therefore, ER5 will assign a
suspiciousness value of 1 to those statements whose a11 equals to

Table 3 Original test suites versus sampled test suites in small programs (Siemens)
Program |T| Mean size

of samples
StdDev of
sizes of
samples

Mean rank
of original

suite

Mean rank of
all samples

StdDev of
ranks of all
samples

Mean
percentage of

better and equal
samples

Mean size of
better and

equal
samples

StdDev of
sizes of

better and
equal

samples
print_tokens (2
ver.)

367 181.98 98.21 49.60 (ER5) 46.56 (ER5) 15.95 (ER5) 73.15% (ER5) 176.94 (ER5) 97.60 (ER5)
36.53 (ER1′) 36.20 (ER1′) 18.16 (ER1′) 67.62% (ER1′) 188.63 (ER1′) 97.19 (ER1′)
27.87 (GP02) 30.59 (GP02) 22.75 (GP02) 59.40% (GP02) 183.66 (GP02) 96.92 (GP02)
59.93 (GP03) 68.82 (GP03) 46.00 (GP03) 59.08% (GP03) 185.70 (GP03) 98.33 (GP03)
86.27 (GP19) 86.42 (GP19) 21.48 (GP19) 62.07% (GP19) 182.07 (GP19) 101.44 (GP19)

replace 395 197.77 110.41 59.59 (ER5) 58.47 (ER5) 15.96 (ER5) 71.81% (ER5) 188.61 (ER5) 108.00 (ER5)
16.00 (ER1′) 18.93 (ER1′) 10.16 (ER1′) 68.78% (ER1′) 217.39 (ER1′) 106.78 (ER1′)
30.19 (GP02) 30.12 (GP02) 17.91 (GP02) 69.37% (GP02) 203.20 (GP02) 106.91 (GP02)
64.63 (GP03) 87.07 (GP03) 63.46 (GP03) 60.50% (GP03) 207.08 (GP03) 109.65 (GP03)
72.33 (GP19) 72.54 (GP19) 19.70 (GP19) 65.08% (GP19) 192.45 (GP19) 110.85 (GP19)

schedule (2 ver.) 231 116.44 64.90 61.31 (ER5) 60.85 (ER5) 8.92 (ER5) 69.04% (ER5) 122.21 (ER5) 63.34 (ER5)
58.56 (ER1′) 60.27 (ER1′) 15.53 (ER1′) 54.29% (ER1′) 121.67 (ER1′) 62.06 (ER1′)
56.31 (GP02) 57.50 (GP02) 10.87 (GP02) 58.30% (GP02) 121.95 (GP02) 62.27 (GP02)
59.63 (GP03) 61.97 (GP03) 35.74 (GP03) 58.24% (GP03) 130.48 (GP03) 60.29 (GP03)
79.25 (GP19) 79.04 (GP19) 16.68 (GP19) 67.27% (GP19) 131.19 (GP19) 60.88 (GP19)

tcas 83 42.52 22.97 26.50 (ER5) 24.71 (ER5) 4.49 (ER5) 96.28% (ER5) 42.64 (ER5) 22.74 (ER5)
14.40 (ER1′) 14.31 (ER1′) 2.38 (ER1′) 86.74% (ER1′) 43.65 (ER1′) 22.60 (ER1′)
18.13 (GP02) 18.07 (GP02) 5.22 (GP02) 74.80% (GP02) 40.33 (GP02) 22.27 (GP02)
26.17 (GP03) 26.53 (GP03) 11.15 (GP03) 72.20% (GP03) 44.52 (GP03) 22.23 (GP03)
26.88 (GP19) 26.37 (GP19) 7.51 (GP19) 76.76% (GP19) 45.44 (GP19) 22.35 (GP19)

tot_info 194 85.02 39.06 70.00 (ER5) 65.83 (ER5) 14.12 (ER5) 85.53% (ER5) 87.82 (ER5) 39.51 (ER5)
55.28 (ER1′) 51.85 (ER1′) 19.28 (ER1′) 71.71% (ER1′) 89.22 (ER1′) 39.88 (ER1′)
56.67 (GP02) 56.63 (GP02) 23.14 (GP02) 58.65% (GP02) 86.10 (GP02) 40.22 (GP02)
55.28 (GP03) 55.33 (GP03) 18.99 (GP03) 66.66% (GP03) 84.44 (GP03) 38.62 (GP03)
35.17 (GP19) 40.25 (GP19) 18.51 (GP19) 69.85% (GP19) 94.14 (GP19) 37.52 (GP19)
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Table 4 Original test suites versus sampled test suites in large programs
Program |T| Mean size

of samples
StdDev of
sizes of
samples

Mean rank
of original

suite

Mean rank of
all samples

StdDev of
ranks of all
samples

Mean
percentage of

better and equal
samples

Mean size of
better and

equal
samples

StdDev of sizes
of better and

equal samples

space 4333 2186.67 1152.08 1543.72
(ER5)

1350.32 (ER5) 458.97 (ER5) 57.87% (ER5) 2606.35 (ER5) 456.03 (ER5)

1467.06
(ER1′)

1445.23 (ER1′) 324.89 (ER1′) 48.51% (ER1′) 2448.47 (ER1′) 373.85 (ER1′)

1466.06
(GP02)

1445.23
(GP02)

332.22 (GP02) 51.10% (GP02) 2466.59
(GP02)

373.90 (GP02)

1470.89
(GP03)

1290.75
(GP03)

450.04 (GP03) 54.35% (GP03) 2209.97
(GP03)

393.41 (GP03)

1506.26
(GP19)

1452.16
(GP19)

375.51 (GP19) 53.93% (GP19) 2092.48
(GP19)

302.01 (GP19)

flex 567 284.65 132.40 1921.45
(ER5)

1949.58 (ER5) 424.16 (ER5) 45.88% (ER5) 276.80 (ER5) 127.99 (ER5)

1870.38
(ER1′)

1868.95 (ER1′) 138.46 (ER1′) 47.46% (ER1′) 298.72 (ER1′) 126.81 (ER1′)

1931.58
(GP02)

1925.40
(GP02)

151.91 (GP02) 60.44% (GP02) 306.05 (GP02) 129.57 (GP02)

1923.25
(GP03)

1914.67
(GP03)

125.56 (GP03) 60.35% (GP03) 307.56 (GP03) 128.74 (GP03)

1937.98
(GP19)

1928.78
(GP19)

182.98 (GP19) 64.44% (GP19) 291.86 (GP19) 129.95 (GP19)

grep 809 405.33 214.19 679.60 (ER5) 686.69 (ER5) 195.19 (ER5) 65.21% (ER5) 431.06 (ER5) 206.19 (ER5)
335.70 (ER1′) 327.29 (ER1′) 75.17 (ER1′) 65.53% (ER1′) 442.14 (ER1′) 207.53 (ER1′)

455.45
(GP02)

422.05 (GP02) 317.26 (GP02) 64.50% (GP02) 407.32 (GP02) 206.44 (GP02)

414.35
(GP03)

516.31 (GP03) 347.32 (GP03) 63.85% (GP03) 434.95 (GP03) 209.37 (GP03)

374.85
(GP19)

365.71 (GP19) 94.18 (GP19) 66.11% (GP19) 419.31 (GP19) 206.50 (GP19)

sed 360 181.18 97.77 342.77 (ER5) 365.94 (ER5) 117.18 (ER5) 62.20% (ER5) 194.58 (ER5) 90.53 (ER5)
347.58 (ER1′) 353.96 (ER1′) 89.88 (ER1′) 64.64% (ER1′) 203.29 (ER1′) 92.92 (ER1′)

470.08
(GP02)

466.19 (GP02) 80.48 (GP02) 70.21% (GP02) 187.93 (GP02) 98.63 (GP02)

567.00
(GP03)

603.25 (GP03) 202.04 (GP03) 70.97% (GP03) 185.83 (GP03) 98.81 (GP03)

425.85
(GP19)

412.38 (GP19) 152.52 (GP19) 65.06% (GP19) 187.94 (GP19) 99.42 (GP19)

libtiff 78 37.47 18.75 4634.00
(ER5)

4626.32 (ER5) 134.43 (ER5) 48.04% (ER5) 51.47 (ER5) 13.18 (ER5)

4634.17
(ER1′)

4672.22 (ER1′) 72.77 (ER1′) 43.95% (ER1′) 53.09 (ER1′) 11.79 (ER1′)

5326.06
(GP02)

5263.08
(GP02)

97.01 (GP02) 92.71% (GP02) 38.51 (GP02) 17.54 (GP02)

5326.53
(GP03)

5269.18
(GP03)

81.71 (GP03) 95.43% (GP03) 35.19 (GP03) 18.34 (GP03)

4969.89
(GP19)

4754.71
(GP03)

104.73 (GP03) 97.14% (GP03) 33.93 (GP03) 16.95 (GP19)

python 355 176.27 76.12 645.25 (ER5) 646.90 (ER5) 102.25 (ER5) 73.21% (ER5) 48.40 (ER5) 43.91 (ER5)
668.25 (ER1′) 668.41 (ER1′) 100.47 (ER1′) 92.06% (ER1′) 48.64 (ER1′) 43.89 (ER1′)

828.00
(GP02)

799.48 (GP02) 74.09 (GP02) 85.38% (GP02) 48.69 (GP02) 43.99(GP02)

867.25
(GP03)

830.66 (GP03) 87.99 (GP03) 92.52% (GP03) 48.63 (GP03) 43.97 (GP03)

668.75
(GP19)

668.66 (GP19) 82.60 (GP19) 95.28% (GP19) 48.57 (GP19) 43.96 (GP19)

gzip 12 6.78 3.44 674.67 (ER5) 655.79 (ER5) 165.49 (ER5) 64.55% (ER5) 4.28 (ER5) 2.42 (ER5)
757.50 (ER1′) 733.19 (ER1′) 157.93 (ER1′) 66.77% (ER1′) 5.26 (ER1′) 2.33 (ER1′)

510.17
(GP02)

519.92 (GP02) 78.44 (GP02) 57.65% (GP02) 5.52 (GP02) 2.82 (GP02)

514.17
(GP03)

505.89 (GP03) 59.23 (GP03) 84.80% (GP03) 4.92 (GP03) 2.53 (GP03)

643.67
(GP19)

634.83 (GP19) 82.18 (GP19) 84.43% (GP19) 4.82 (GP19) 2.44 (GP19)
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N f t, 0 otherwise. For the faulty statement s f , its a11 is always N f t
and thus its suspiciousness value is always 1. It means that the
faulty statement has the highest suspiciousness value. Therefore,
the only factor influencing the localisation effectiveness is those
statements of which the a11 values equal to N f t because they have
the same suspiciousness as the faulty statement. Those statements
of which the a11 values equal to N f t mean that they are executed by
all failing test cases. If we add more failing test cases decreasing
the number of those statements executed by all failing test cases,
the number of the statements with the same suspiciousness as the
faulty statement will decrease.

Because the set of failing test cases is different among the
samples, the sets of statements executed by all failing test cases are
often different. This is the main reason why the localisation
effectiveness of ER5 fluctuates among samples.

ER1′, GP03, GP19: We take Naish1 from the three equivalent
formulas to represent ER1′. For any statement sj,
a10(sj) = Nst − a00(sj) and a01(sj) = N f t − a11(sj) hold. For simplicity,
we replace a10(sj) and a01(sj) with Nst − a00(sj) and N f t − a11(sj) in
Naish1, GP03 and GP19, respectively, and thus these formulas
have only two variables (i.e. a11 and a00) thereafter. The variable a11
is only determined by failing test cases and a00 is determined by
passing test cases. Furthermore, the two variables are independent
of each other. Therefore, we just need to study each separately by
considering the other as a constant to investigate the impact of its
related test cases (i.e. failing test cases or passing test cases) on the
suspiciousness evaluation of the faulty statement.

The impact of failing test cases (a11): In this case, we assume a00
to be a constant. For a faulty statement, since it a11 is the maximal
value N f t, the faulty statement has obtained the maximal benefit
(the highest possible suspiciousness) from failing test cases in
Naish1, GP03 and GP19. Therefore, the only optimisation related
to failing test cases is to minimise the number of correct statements
which are executed by all the failing test cases.

The impact of passing test cases (a00): In this case, we assume
a11 to be a constant. Since the faulty statement s f  has obtained the
maximal benefit from failing test cases (i.e. a11(s f ) = N f t), we
further replace a11(s f ) with N f t in each formula. Therefore, its
suspiciousness is mainly determined by the magnitude of benefit
from passing test cases. For ER1′, since a01(s f ) = 0 always holds,
the suspiciousness value of s f  equals a00(s f ). For GP03, the
suspiciousness value of s f  is decided by − N f t − a00(s f ), which is
also determined by a00(s f ). For GP19, the new equivalent form of
calculating the suspiciousness of s f  is Nst |2a00(s f ) + N f t − Nst|,
also decided by a00(s f ).

Based on the analysis above, the suspiciousness of the faulty
statement s f  calculated by ER1′, GP03 and GP19 is mainly
determined by a00(s f ), and the faulty statement can achieve the
highest suspiciousness when a00(s f ) increases to the maximal value
Nst. Since Nst varies in different test suites, it is difficult to
distinguish which absolute value of a00(s f ) should be better among
different test suites. To address this problem, based on

Nst = a00(s f ) + a10(s f ), we apply normalisation to define a new
metric Passing Test Discrimination (PTD) consistent with a00(s f ),
i.e.

PTD(s f ) = a00(s f )
Nst

(passing test discrimination)

To verify the analysis above, we use Kendall rank correlation
coefficient [18] (denoted as r) to measure the correlation between
fault localisation effectiveness and PTD. Table 6 shows that r is
smaller than −0.8 in all cases, i.e. as PTD increases, the ranks of
faulty statements always become higher. The analysis and results
above show that the suspiciousness of the faulty statement is
consistent with PTD of a test suite and has no strong correlation
with the size of a test suite. In practice, since it cannot be
guaranteed that the execution of a passing test case is free of a
faulty statement, PTD can greatly vary among the samples. That is
why there is an apparent fluctuation of localisation effectiveness in
these formulas. 

GP02: Likewise, we conduct case analysis on GP02:
The impact of failing test cases (a11): Similarly, we replace

a10(sj) with Nst − a00(sj) in GP02, and assume a00 to be a constant. In
this case, a statement can also obtain the highest value if it a11 is the
maximal value N f t. Since a11(sj) = N f t, the faulty statement s f  has
also obtained the maximal benefit from failing test cases in GP02.

The impact of passing test cases (a00): The analysis of failing
test cases above shows that the suspiciousness of the faulty
statement s f  is mainly decided by the magnitude of the benefit
obtained from passing test cases. Therefore, we further replace
a11(s f ) with N f t in GP02. Apparently, the suspiciousness of s f  is
determined by 2 a00(s f ) + Nst − a00(s f ). With differentiation, we
can easily identify that the faulty statement s f  obtains the highest
suspiciousness value when a00(s f ) = 4Nst /5. The executions of
passing test cases cannot guarantee that a00(s f ) is around 4Nst /5,
and thus there is an also noticeable fluctuation in GP02.

Summary: Let us recall the basic idea of SFL [5]. SFL tries to
assign a high suspiciousness value to a statement frequently
executed by failing test cases and infrequently executed by passing
test cases. Following this idea, we should increase a11(s f ) and
decrease a00(s f ), e.g. optimising test suites, to maximise the
suspiciousness value of the faulty statement s f . In general, a faulty
statement should be executed by a failing test case when a failure
occurs. Therefore, the a11 is always maximal for the faulty
statement. ER5 takes advantage of this property by just using the
information of failing test cases and therefore passing test cases do
not affect ER5. Besides failing test cases, ER1′, GP03 and GP19
use the information of passing test cases and try to obtain a high a00
for the faulty statement. Although GP02 also utilises the
information of passing test cases, its intuition is different from that
of most existing SFL techniques. For example, suppose that a
faulty statement is not executed by any passing test case, i.e. its a00
equals to Nst. Because the best value of a00 for the faulty statement

Table 5 Kendall rank correlation coefficient between the localisation effectiveness and test suite sizes
Program ER5 ER1′ GP02 GP03 GP19
print_tokens (2 ver.) 0.07 −0.03 0.01 −0.02 0.04
replace 0.05 0.02 0.02 0.06 0.08
schedule (2 ver.) 0.03 0.01 0.00 0.02 −0.01
tcas 0.05 −0.02 0.05 0.03 0.07
tot_info 0.07 0.03 0.06 −0.02 0.07
space 0.02 0.01 0.01 −0.01 0.01
flex −0.03 0.01 0.00 0.01 0.00
grep −0.04 −0.06 0.01 0.04 −0.06
sed −0.06 −0.05 −0.06 −0.06 0.03
libtiff −0.05 −0.06 0.07 0.07 0.10
python 0.11 0.08 0.09 0.04 0.06
gzip 0.10 0.09 0.03 0.06 0.10

 

196 IET Softw., 2018, Vol. 12 Iss. 3, pp. 190-205
© The Institution of Engineering and Technology 2018



is 4Nst /5, the suspiciousness of the faulty statement is not maximal
in GP02. GP02 [13] is learned from genetic programming and may
have new insights and intuitions ignored by human beings. This
interesting topic should be further studied.

In contrast to the fact that the executions of failing test cases
can always include the faulty statement, the executions of passing
test cases cannot be guaranteed to be free of a faulty statement,
leading to a coincidental correctness problem [19]. Therefore, the
different PTD of passing test cases in different sampled test suites
is the reason for causing the significant fluctuation among these
samples.

Based on the analysis above, the PTD of a test suite is
consistent with the suspiciousness of the faulty statement being
faulty and therefore is correlated with faulty localisation
effectiveness. However, the size of a test suite has no strong
connection with localisation effectiveness. Therefore, we
summarise the impact of the different parts of a test suite on fault
localisation as follows:

Failing test cases: In a single-fault program, the faulty
statement must be executed by all the failing test cases. Therefore,
the a11 of the faulty statement has its maximum value N f t.
However, for those non-faulty statements which are executed by all
the failing test cases (denoted as a set of statements Scorrect), their
a11 is also N f t. In order to improve the rank of the faulty statement,
what we can do with the failing test cases is to create new failing
test cases to decrease the non-faulty statements in Scorrect. In other
words, minimise the number of non-faulty statements executed by
all failing test cases.

Passing test cases: Based on the definition of PTD, two kinds of
passing test cases can affect the fault localisation effectiveness.
One is the passing test cases which do not execute the faulty
statement and this component has a positive impact on fault
localisation. The other is the passing test cases which execute the
faulty statement and this component penalise fault localisation.
Therefore, in order to improve localisation accuracy, we should try
to expand the first component and eliminate the second one.

To further understand and verify the impact of passing test
cases, we compare the fault localisation effectiveness among the
original test suites Torig, the original test suites without those

passing test cases which do not execute the faulty statement
(denoted as Tbad), and the original test suites without those passing
test cases which exercise the faulty statement (denoted as Tgood).
Based on the analysis, the relationship of localisation effectiveness
should be Tgood > Torig > Tbad. To verify the above relationship,
we adopt a rigorous and scientific method: the paired Wilcoxon-
signed-rank test [18]. The paired Wilcoxon-signed-rank test is a
non-parametric statistical hypothesis test for testing that the
differences between pairs of measurements F(x) and G(y), which
do not follow a normal distribution. The study conducts two paired
Wilcoxon-signed-rank tests: the localisation effectiveness of all
faulty versions using Tgood versus that using Torig and the
localisation effectiveness using Torig versus that using Tbad to
verify the above relationship. Each test uses both the 2-tailed and
1-tailed checking at the σ level of 0.05. Because ER5 does not use
the information of passing test cases, its effectiveness remains the
same among the three test suites. Therefore, Table 7 does not
include the statistical results of ER5. As shown in Table 7, all
formulas even including GP02 conform to the effectiveness
relationship:

Tgood > Torig > Tbad

4 Simple application of using PTD
In addition to the theoretical analysis above, this section presents
the further empirical validation of our hypothesis.

4.1 Test suite optimisation

Our analysis in Section 3.3 pinpoints that the PTD of a test suite is
consistent with the suspiciousness of the faulty statement. To
empirically validate the analysis result, we leverage this knowledge
and propose a simple test suite optimisation technique, referred to
as Passing Tests Discrimination-based Test-suite Optimisation
(PTD-TO). The goal of PTD-TO is to obtain a smaller test suite that
performs no worse than the original one. In light of the relationship
between PTD and the suspiciousness of a faulty statement, the

Table 6 Kendall rank correlation coefficient between the localisation effectiveness and PTD
Program ER1′ GP03 GP19
print_tokens (2 ver.) −0.87 −0.88 −0.88
replace −0.88 −0.82 −0.93
Schedule (2 ver.) −0.90 −0.86 −0.90
tcas −0.89 −0.82 −0.83
tot_info −0.90 −0.84 −0.88
space −0.82 −0.81 −0.91
flex −0.83 −0.81 −0.80
grep −0.84 −0.86 −0.81
sed −0.86 −0.85 −0.86
libtiff −0.86 −0.88 −0.89
python −0.91 −0.81 −0.86
gzip −0.88 −0.84 −0.90

 

Table 7 Statistical comparison among Tgood, Torig and Tbad
Formula Comparison 2-tailed 1-tailed (right) 1-tailed (left) Conclusion
ER1′ Tgood versus Torig 1.29 × 10−41 1.00 6.50 × 10−42 BETTER

Torig versus Tbad 8.72 × 10−55 1.00 4.40 × 10−55 BETTER

GP02 Tgood versus Torig 4.50 × 10−4 0.99 2.25 × 10−4 BETTER

Torig versus Tbad 4.95 × 10−4 0.99 2.48 × 10−4 BETTER

GP03 Tgood versus Torig 4.53 × 10−44 1.00 2.28 × 10−44 BETTER

Torig versus Tbad 1.35 × 10−42 1.00 6.78 × 10−43 BETTER

GP19 Tgood versus Torig 2.05 × 10−43 1.00 1.03 × 10−43 BETTER

Torig versus Tbad 3.52 × 10−47 1.00 1.77 × 10−47 BETTER
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basic idea of PTD-TO is to increase the suspiciousness of the faulty
statement by increasing the PTD of the test suite. More concretely,
PTD-TO tries to identify and remove passing test cases that execute
the faulty statement.

PTD-TO takes the advantage of the dynamic runtime
information from failing test cases to identify such passing test
cases. Generally, if a passing test case executes similar statements
as the failing test cases, then we deem it as a candidate likely to
execute the faulty statement. The following describes this heuristic
as well as the measurement of the similarity between passing and
failing test cases: We define the set of statements that are executed
by all failing test cases as Minimum Suspicious Set (MSS). Clearly,
the faulty statement is in MSS as it is the reason why a test case is
classified as failing, and the other statements are benign. Next,
given a passing test case t and its covered statements S, if S shares
a large portion of MSS (i.e. |S ∩ MSS | / |MSS | ≥ θ where θ is a
threshold), then we remove t as we believe that t tends to execute
the faulty statement with a certain likelihood. The likelihood is
determined by the similarity threshold θ.

There is one issue related to our approach: what is the
appropriate value for θ? For example, suppose a passing test case
only covers one statement in MSS. For this passing test case, its
chance of covering the faulty statement is low and our approach
should not remove this test case. If θ = 100%, then the passing test
case definitely exercises the faulty statement and should be
removed. It is necessary to conduct an experimental study to
investigate what the proper value of θ should be in practice. The
following study empirically investigates a feasible percentage for
PTD-TO. Because ER5 only relies on the information of failing test
cases and does not use any passing test cases, PTD-TO will not
change its fault localisation results. Therefore, we do not include it
in this study.

Note that since PTD-TO takes as input the coverage matrix
generated by existing fault localisation techniques and performs a
linear scan over the matrix, hence it incurs negligible overhead.

4.2 Experimental design

This experiment also uses the subject programs, their original test
suites and all random samples of the original test suites in Section
3. The process of our test suite optimisation is listed as follows:

i. PTD-TO removes those passing tests whose execution covers
more than a specific percentage of the statements in MSS. Our
optimisation adopts the percentage of the statements in MSS
from 10 to 90%, in 10% increments. This step only performs
the optimisation on existing test suites, i.e. the original test
suites.

ii. We analyse the optimisation results on original test suites to
find a feasible percentage, and investigate the reasons for this
feasible percentage.

iii. Besides the original test suites, our optimisation should be
applied to more test suites to investigate its effectiveness.
Furthermore, it also needs to answer whether PTD-TO performs
better than the approach that randomly generates a subset of
the original test suite as an optimised test suite. Therefore, we
apply our optimisation approach to all random samples used in
Section 3 and compare PTD-TO with a pure random approach
that randomly generates the subsets of the random samples as
the optimised test suites.

4.3 Optimisation on existing test suites

Table 8 shows the mean rank of the faulty statement using the
existing test suites and their optimised test suites generated by
PTD-TO in each program. Take ER1′ in replace as an example. The
mean rank of the faulty statement using the existing test suite for
replace is 16.00 (column ‘Original rank’) in ER1′. PTD-TO
removes those passing test cases whose execution covers more than
a percentage (between 10 and 90%) of the statements in MSS. For
example, after PTD-TO removes those passing test cases of which
the execution covers >90% of the statements in MSS, the mean rank

of the faulty statement using the optimised test suites for replace is
11.67 (column ‘90%’) in ER1′, which is <16.00. That means ER1′
using the original test suite performs a bit worse than ER1′ using
the optimised test suite. In GP02, PTD-TO does not perform well,
which conforms to our aforementioned analysis. Compared with
the other percentages, we observe that PTD-TO using 90% in ER1′,
GP03 and GP19 always performs better than the original test suites
in all subject programs except for print_tokens(2 ver.). This
suggests that the feasible percentage value for PTD-TO is 90%, i.e.
PTD-TO should remove those passing test cases that execute <90%
of the statements in MSS. 

Fig. 4 shows the ratio of the size of the optimised test suites to
that of the original test suites when our optimisation approach
adopts 90% as its reduction value. Table 9 illustrates the execution
time in seconds of the optimised test suites and the original test
suites, and the ratio of the time between them. As shown in Fig. 4
and Table 9, our approach produces significantly smaller test suites
incurring considerably less time cost. 

As a reminder, PTD-TO aims at producing a smaller test suite
that performs no worse than the original one. Surprisingly, the
smaller test suite performs slightly better than the original one.

From the results above, we further analyse the reason why PTD-
TO performs well using 90% reduction value. It seems that those
passing test cases covering more than a high percentage of the
statements in MSS have a high probability of executing the faulty
statement. We select several high percentages (from 90 to 99%, in
1% increments) of the statements in MSS to investigate this
conjecture. Table 10 illustrates the percentage of the test cases
executing the faulty statement in those passing test cases covering
more than a specific percentage of the statements in MSS. As shown
in Table 10, the set of those passing test cases covering more than a
higher percentage of the statements in MSS, the percentage of the
test cases executing the faulty statement in this set increases. Thus,
it reveals why PTD-TO performs well using 90% as the reduction
value. As a reminder, the feasible value does not mean it is the
optimal value for PTD-TO. This study just concentrates on
validating the analysis in Section 3.3 and demonstrating the
potential application of PTD. Finding an optimal value for PTD-TO
needs much future research, and is not the main focus of this study.

The above study shows that it is useful to improve fault
localisation by removing those passing tests whose execution
statements is highly similar to the statements in MSS. It is
interesting to investigate the effect of keeping those similar test
cases on fault localisation. Thus, we remove those dissimilar test
cases that cover a low percentage of the statements in MSS to keep
the similar ones, and compared their localisation effectiveness with
that of the original suites.

Table 11 shows the statistical results using the paired Wilcoxon-
signed-rank test [18] at the σ level of 0.05. Take 1% as an example.
After removing those test cases whose executions cover less than
1% of the statements in MSS, the reduced test suites in all
suspiciousness evaluation formulas perform WORSE than the
original ones. As shown in Table 11, except for few SIMILAR
results, almost all reduced test suites in different percentages
significantly have WORSE results than the original ones.
Therefore, the passing test cases whose execution statements have
high similarity with the statements in MSS are not much useful for
fault localisation. 

4.4 PTD-TO and pure random approach on all random
samples

In order to further verify the effectiveness of our optimisation
approach, we apply PTD-TO to all random samples generated for
each subject program in Section 3 and compare PTD-TO with the
pure random approach that randomly generates the subsets of the
random samples as the optimised test suites. Since 90% is a
feasible threshold for PTD-TO, we use this value for this
experiment. For each faulty version of a subject program, there is a
large number of random samples (10,000 random samples from the
experiments in Section 3). Therefore, we conduct a rigorous and
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scientific comparison, the paired Wilcoxon-signed-rank test [20],
to evaluate the effectiveness on each faulty version of a subject
program using PTD-TO overall random samples and their random
subsets generated by the pure random approach.

The experiments performed two paired Wilcoxon-signed-rank
tests [18]: the localisation effectiveness of the optimised test suites
by PTD-TO on all random samples versus that of all random
samples, and versus that of optimised test suites randomly
generated by pure random approach on all random samples in each
faulty version. The test uses both the 2-tailed and 1-tailed checking
at the σ level of 0.05 to check that the optimised test suites have
SIMILAR, WORSE or BETTER effectiveness over their original

random samples and their random subsets generated by the pure
random approach in each faulty version.

Table 12 summarises the number of SIMILAR, BETTER and
WORSE cases in all versions of each program by using the
effectiveness of test suites optimised by PTD-TO over that of all
original random samples, and over that of the test suites optimised
by the pure random approach. Table 12 also lists the execution time
of the optimised test suites (column ‘Optimised Tests’), the
execution time of the original random samples (column ‘Original
Tests’), the ratio of the execution time of the optimised test suites
to that of the original random samples (column ‘Time Ratio’), and
the ratio of the size of the optimised test suites to that of the

Table 8 Localisation effectiveness of the existing test suites and their optimised suites
Program Formula Original rank Percentage of the statements in MSS

10% 20% 30% 40% 50% 60% 70% 80% 90%
print_token (2 ver.) ER1′ 36.53 44.20 44.20 43.53 43.53 43.40 43.20 38.20 37.73 37.47

GP02 27.87 44.20 44.20 43.53 43.53 43.40 46.40 38.47 35.73 37.00
GP03 59.93 60.67 60.67 60.00 60.00 59.87 59.67 54.67 54.20 53.93
GP19 86.27 55.27 55.27 49.87 49.53 49.20 48.60 40.93 37.87 35.40

replace ER1′ 16.00 42.57 42.10 37.13 36.57 34.40 34.10 28.87 16.87 11.67
GP02 30.19 40.13 42.08 40.10 34.83 35.17 41.57 45.00 34.93 27.40
GP03 64.63 55.80 55.50 54.53 52.63 52.80 50.13 50.53 46.83 42.83
GP19 72.33 58.07 57.63 52.47 56.57 51.00 45.90 47.60 47.47 44.57

schedule (2 ver.) ER1′ 58.56 66.28 66.17 66.56 60.83 60.28 58.11 58.44 57.39 51.89
GP02 56.31 65.33 60.17 60.28 67.28 63.89 64.28 61.17 55.44 53.06
GP03 59.63 64.06 62.83 62.11 59.22 60.67 60.44 55.33 54.72 53.17
GP19 79.75 66.06 66.44 60.61 61.78 60.22 56.61 55.61 48.06 44.61

tcas ER1′ 14.40 14.19 14.19 14.19 14.19 14.19 13.62 13.46 13.78 12.16
GP02 18.13 14.19 14.19 14.19 14.19 14.19 13.46 13.35 13.35 17.14
GP03 26.17 20.11 20.43 20.43 20.57 16.35 16.35 16.35 16.35 15.78
GP19 26.88 16.24 17.08 17.08 15.68 14.19 14.19 14.19 14.19 13.43

tot_info ER1′ 55.28 61.25 61.25 61.25 60.42 59.58 58.75 58.67 55.00 51.42
GP02 56.67 63.08 63.08 63.08 63.08 58.08 58.08 58.33 51.75 48.17
GP03 55.28 57.92 57.92 57.92 57.92 57.75 57.75 57.75 51.75 48.17
GP19 25.17 37.50 37.08 37.08 37.08 34.33 34.50 34.33 20.67 23.17

space ER1′ 1467.06 1420.40 1524.00 1678.80 1422.40 1426.87 1427.00 1426.20 1425.07 1424.80
GP02 1466.06 1507.81 1442.61 1676.21 1421.55 1425.35 1425.41 1424.61 1423.48 1423.21
GP03 1470.89 1584.71 1487.37 1283.77 1453.97 1438.37 1436.17 1437.51 1438.64 1438.97
GP19 1506.26 1521.81 1523.95 1530.48 1530.35 1528.68 1527.81 1499.28 1517.61 1463.75

flex ER1′ 1870.38 1909.64 1909.64 1909.64 1896.49 1891.92 1876.98 1876.98 1867.55 1858.11
GP02 1931.58 1925.89 1925.89 1925.89 1934.77 1936.83 1924.70 1924.70 1921.96 1921.96
GP03 1923.25 1926.40 1926.40 1926.40 1918.36 1916.45 1919.91 1919.91 1919.91 1919.91
GP19 1937.98 1932.72 1932.72 1932.72 1920.81 1919.38 1925.77 1925.77 1933.55 1933.83

grep ER1′ 335.70 359.70 363.10 349.90 373.05 361.50 346.00 354.85 331.95 308.85
GP02 455.45 422.40 412.80 389.50 459.90 481.85 528.15 465.85 610.35 589.65
GP03 414.35 415.80 409.85 357.95 374.45 362.95 333.15 391.95 372.00 376.40
GP19 374.85 392.15 379.60 349.45 368.85 357.30 341.45 351.05 310.40 308.35

sed ER1′ 347.58 387.85 387.23 387.23 386.54 385.85 377.50 347.31 347.31 340.62
GP02 470.08 414.77 414.73 414.73 414.92 415.12 405.54 492.54 493.54 486.65
GP03 567.00 414.77 414.15 414.15 413.46 412.77 416.12 572.54 572.54 565.85
GP19 425.85 390.65 390.92 390.92 391.12 390.42 391.96 391.08 395.46 388.77

libtiff ER1′ 4634.17 4644.43 4644.43 4643.57 4643.57 4643.57 4643.43 4633.57 4631.57 4591.57
GP02 5326.06 5339.62 5301.62 5290.62 5285.34 5283.91 5283.91 5283.91 5255.34 5255.34
GP03 5326.53 5347.48 5284.91 5291.34 5300.05 5293.91 5293.91 5293.91 5265.34 5265.34
GP19 4969.89 4964.43 4953.34 4950.76 4948.54 4944.43 4944.43 4940.71 4934.57 4932.57

python ER1′ 668.25 668.75 665.25 662.50 652.50 650.00 645.00 645.00 642.00 634.50
GP02 828.00 837.75 832.50 807.50 785.00 762.50 732.50 725.00 707.50 682.50
GP03 867.25 875.25 870.00 845.00 822.50 799.50 769.50 762.25 744.25 719.75
GP19 668.75 673.75 667.75 665.25 661.75 657.75 654.25 651.25 648.75 647.75

gzip ER1′ 757.50 777.40 770.00 766.80 766.80 752.00 752.00 752.00 706.00 706.00
GP02 510.17 518.80 518.80 521.40 518.80 516.40 515.80 504.80 492.20 484.80
GP03 514.17 564.00 564.00 516.40 516.40 507.40 490.00 481.00 476.20 472.20
GP19 643.67 662.80 662.80 662.80 656.60 656.60 645.60 652.00 644.80 630.40
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original random samples (‘Size Ratio’) in each program. The last
row (‘Overall’) shows the overall results of all programs. As shown
in Table 12, PTD-TO obtains BETTER results over pure random
approach in almost all faulty versions, demonstrating that PTD-TO
significantly outperforms pure random approach. In case of the
optimisation on all original random samples, for ER1′, GP03 and
GP19, the optimised test suites performs similarly or better than the
random samples in most faulty versions and in the overall results.
For GP02, the optimised test suites do not obviously show an
advantage over the random samples in most faulty versions and in
the overall results. These results also confirm the previous analysis
of GP02 in Section 3, i.e. GP02 has different intuitions from the
general ones of SFL techniques. Our optimisation approach is
designed from the general intuition of SFL and it is not surprising
for it not to work well on GP02. In addition, the size ratio in
Table 12 shows that PTD-TO significantly reduces the size of the
original test suites, and the execution time and time ratio illustrate

that the optimised test suites of PTD-TO consume considerably less
execution time. 

Based on all results above, we conclude that PTD-TO performs
better than the random approach, and is effective to reduce the size
of the original test suites and execution time by exhibiting a similar
or better result than the original test suites, thus providing
empirical support for our analysis in Section 3.3.

Please note that the main purpose of PTD-TO is to serve as a
simple example illustrating the potential application of PTD, and
offers empirical support for our analysis in Section 3.3. Currently,
its algorithm is simple. Our future research will include further
optimisation of PTD-TO (e.g. using concolic execution to generate
‘useful’ test cases), and the extension of the experiments with more
programs and comparisons.

Fig. 4  Size of optimised test suites versus that of the original test suites with the reduction value of 90%
 

Table 9 Time cost of optimised test suites versus that of the original test suites with the reduction value of 90%
Program Execution time, s Time ratio, %

Optimised tests Original tests
print_tokens (2 ver.) 3.81 8.17 46.59
replace 5.66 8.83 64.07
schedule (2 ver.) 5.42 12.14 44.62
tcas 1.62 3.77 43.04
tot_info 4.97 9.77 50.90
space 274.16 375.41 73.03
flex 77.40 89.25 86.73
grep 58.31 92.75 62.87
sed 34.00 40.83 83.27
libtiff 13.95 16.43 84.90
python 9.95 14.00 71.06
gzip 2.56 2.80 91.56

 

Table 10 Percentage of the test cases executing the faulty statement in the removed test cases
Program 90% 91% 92% 93% 94% 95% 96% 97% 98% 99%
print_tokens (2 ver.) 61.59 62.75 63.82 65.86 75.39 76.29 81.21 87.28 97.62 99.92
replace 66.13 66.87 67.25 67.45 67.74 69.99 75.06 82.06 83.22 93.33
schedule (2 ver.) 94.68 94.90 95.30 95.60 96.13 96.31 97.15 98.46 98.43 98.47
tcas 92.32 92.80 94.14 94.26 94.26 97.05 97.73 100.00 100.00 100.00
tot_info 94.39 98.79 98.79 98.81 100.00 100.00 100.00 100.00 100.00 100.00
space 55.90 57.62 58.12 59.18 59.43 59.85 60.67 65.26 78.74 79.66
flex 88.07 88.70 89.95 90.64 90.77 91.02 91.35 91.48 91.64 91.81
grep 56.87 59.94 60.39 65.89 67.09 72.23 76.62 90.13 96.00 100.00
sed 35.85 35.93 42.88 42.91 48.01 53.13 58.26 63.39 68.52 74.40
libtiff 96.75 96.75 97.11 97.11 97.11 97.11 98.19 98.19 98.19 100.00
python 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.58
gzip 96.67 96.67 96.67 98.33 98.33 100.00 100.00 100.00 100.00 100.00
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5 Threats to validity
Threats to internal validity: Chances are that some implementation
flaws exist in our experiment and could have affected the results.
To assure the correctness of the implementation, we have carefully
realised the implementation of the five SFL techniques and
conducted adequate testing.

Threats to external validity: Our study assumes that faulty
statements are executed when a failure happens. This assumption
should generally hold, especially in the single-fault scenarios of
our study. However, the assumption may not hold in some cases,
such as in the context of multiple faults. For multiple faults, we can
apply the clustering technology (e.g. [21]) to transform the context
of multiple faults into that of single faults, and thus our approach
can be applied to multiple faults. In addition, the recent research
[22] has shown that multiple faults pose a negligible effect on the
effectiveness of fault localisation despite the effect of fault
localisation interference. These findings increase our confidence in

the experimental results in the context of multiple faults. It would
be worthwhile to incrementally extend our study to more
applications to obtain additional insight on this issue.

Another threat is the subject programs. We choose seven small
programs (a standard benchmark Siemens) with seeded faults and
seven large real-life programs mostly with real-happening faults to
obtain reliable experimental results because they are commonly
used in debugging. Even so, there still exist many unknown and
complicated factors in realistic debugging. Therefore, it would be
worthwhile to use more programs (e.g. multiple-faults programs
and large-sized programs) to further strengthen the experimental
results.

Threats to construct validity: We use the rank of the faulty
statement in the ranking list to evaluate the effectiveness of SFL
techniques. This metric is highly recommended by the recent
research [15] and thus the threat is acceptably mitigated.

Table 11 Statistical comparison between original test suites and their similar ones
Percentage ER1′ GP02 GP03 GP19

1% 2-tailed 1.12 × 10−12 3.24 × 10−27 4.0527 × 10−302 2.56 × 10−28

1-tailed(right) 5.60 × 10−13 1.64 × 10−27 2.0289 × 10−302 1.28 × 10−28

1-tailed(left) 1.00 1.00 1.00 1.00
conclusion WORSE WORSE WORSE WORSE

2% 2-tailed 8.33 × 10−5 3.10 × 10−118 1.02 × 10−4 1.02 × 10−1

1-tailed(right) 7.45 × 10−5 1.55 × 10−118 8.68 × 10−4 0.97

1-tailed(left) 0.98 1.00 0.97 8.68 × 10−2

conclusion WORSE WORSE WORSE SIMILAR
3% 2-tailed 3.85 × 10−2 3.96 × 10−4 9.87 × 10−17 6.79 × 10−2

1-tailed(right) 2.03 × 10−2 1.99 × 10−4 5.06 × 10−17 0.98

1-tailed(left) 0.98 1.00 1.00 5.02 × 10−2

conclusion WORSE WORSE WORSE SIMILAR
4% 2-tailed 1.76 × 10−52 4.88 × 10−5 4.31 × 10−2 1.93 × 10−2

1-tailed(right) 8.81 × 10−53 2.44 × 10−5 2.95 × 10−2 9.67 × 10−3

1-tailed(left) 1.00 1.00 0.99 0.99
conclusion WORSE WORSE WORSE WORSE

5% 2-tailed 5.87 × 10−23 3.76 × 10−2 3.86 × 10−1 8.33 × 10−2

1-tailed(right) 2.94 × 10−23 1.88 × 10−2 2.07 × 10−1 0.98

1-tailed(left) 1.00 0.98 8.27 × 10−1 7.45 × 10−2

conclusion WORSE WORSE WORSE WORSE
6% 2-tailed 7.53 × 10−3 8.15 × 10−3 1.96 × 10−4 8.73 × 10−1

1-tailed(right) 4.18 × 10−3 5.37 × 10−3 1.07 × 10−4 4.35 × 10−1

1-tailed(left) 0.99 0.99 1.00 5.68 × 10−1

conclusion WORSE WORSE WORSE SIMILAR
7% 2-tailed 4.31 × 10−2 1.41 × 10−4 1.83 × 10−4 1.81 × 10−1

1-tailed(right) 2.95 × 10−2 7.58 × 10−5 1.05 × 10−4 0.96

1-tailed(left) 0.98 1.00 1.00 1.92 × 10−1

conclusion WORSE WORSE WORSE SIMILAR
8% 2-tailed 4.88 × 10−2 7.85 × 10−22 1.83 × 10−4 2.56 × 10−6

1-tailed(right) 4.45 × 10−2 3.98 × 10−22 1.05 × 10−4 1.35 × 10−6

1-tailed(left) 0.98 1.00 1.00 1.00
conclusion WORSE WORSE WORSE WORSE

9% 2-tailed 7.37 × 10−3 1.78 × 10−152 1.16 × 10−2 4.55 × 10−2

1-tailed(right) 4.39 × 10−3 8.88 × 10−153 7.07 × 10−3 3.59 × 10−2

1-tailed(left) 0.99 1.00 0.99 0.98
conclusion WORSE WORSE WORSE WORSE

10% 2-tailed 1.43 × 10−2 4.09 × 10−3 1.80 × 10−5 1.78 × 10−3

1-tailed(right) 9.83 × 10−3 2.11 × 10−3 9.63 × 10−6 9.29 × 10−4

1-tailed(left) 0.99 0.99 1.00 0.99
conclusion WORSE WORSE WORSE WORSE
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6 Related work
This section surveys closely related work on test case generation
and test suite reduction for fault localisation [More other work on
fault localisation can refer to the surveys [11, 23].].

Test case generation: Baudry et al. [24] add new test cases to
existing test cases by maximising the number of distinguished
dynamic basic blocks. Artzi et al. [25] propose a concolic-
execution based approach to generate new test cases that are
similar to a given failing test case. Rößler et al. [26] utilise a failing
test case and a set of facts correlated with executed program

Table 12 Optimisation of PTD-TO on all original random samples and its comparison on pure random approach
PTD-TO Optimisation on all original

random samples
Comparison of pure random

approach
Execution time, s Time

ratio
Size
ratio

BETTER SIMILAR WORSE BETTER SIMILAR WORSE Optimised
tests

Original
tests

print_token (2
ver.)

ER1′ 10 4 1 15 0 0 22391.19 38433.32 58.26 52.82
GP02 4 3 8 14 1 0
GP03 10 4 1 15 0 0
GP19 13 2 0 15 0 0

replace ER1′ 19 6 5 30 0 0 30056.14 42820.52 70.19 66.76
GP02 12 5 13 28 1 1
GP03 19 8 3 30 0 0
GP19 24 3 3 30 0 0

schedule (2
ver.)

ER1′ 10 7 1 18 0 0 37474.04 59501.66 62.98 59.54
GP02 10 4 4 18 0 0
GP03 10 6 2 18 0 0
GP19 13 5 0 18 0 0

tcas ER1′ 25 9 3 37 0 0 14158.30 18254.68 77.56 73.12
GP02 26 0 11 36 1 0
GP03 21 11 5 37 0 0
GP19 27 10 0 37 0 0

tot_info ER1′ 12 2 5 19 0 0 28927.07 39944.03 72.42 79.85
GP02 10 0 9 17 2 0
GP03 12 3 4 19 0 0
GP19 12 3 4 19 0 0

space ER1′ 27 5 3 35 0 0 122720.13 173062.70 70.91 74.35
GP02 15 14 6 34 0 1
GP03 31 4 0 35 0 0
GP19 29 3 3 35 0 0

flex ER1′ 36 11 6 52 1 0 367451.81 424608.27 86.54 91.97
GP02 40 2 11 51 2 0
GP03 42 4 7 53 1 0
GP19 31 20 2 52 1 0

grep ER1′ 10 10 1 21 0 0 323744.02 424459.30 76.27 73.84
GP02 6 8 7 18 1 2
GP03 12 8 1 21 0 0
GP19 12 8 1 21 0 0

sed ER1′ 12 15 2 29 0 0 139090.37 195085.52 71.30 79.73
GP02 14 10 5 28 0 1
GP03 13 14 2 29 0 0
GP19 16 10 3 29 0 0

libtiff ER1′ 7 4 1 12 0 0 64284.45 75947.76 84.64 81.21
GP02 6 2 4 10 1 1
GP03 6 5 1 12 0 0
GP19 7 5 0 12 0 0

python ER1′ 4 4 0 8 0 0 46015.52 68365.70 67.31 71.74
GP02 4 1 3 6 0 2
GP03 4 3 1 8 0 0
GP19 5 3 0 8 0 0

gzip ER1′ 3 2 0 4 0 1 13555.38 14995.24 90.40 92.83
GP02 1 1 3 2 1 2
GP03 2 3 1 4 1 0
GP19 2 3 0 4 1 0

overall ER1′ 175 79 28 280 1 1 1209868.41 1575478.72 76.79 74.81
GP02 148 50 84 262 10 10
GP03 182 73 28 280 2 0
GP19 191 75 16 280 2 0
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entities and states to isolate failure causes. Wang and
Roychoudhury [27] alter the outcome of the branches in a failing
run to generate a feasible successful run and construct a bug report
for debugging engineers according to the branch instances
evaluated differently in the failing run and the successful run. Lei
et al. [28] simulate the interactions between developers and fault
localisation to iteratively generate new test cases for the existing
test suite. An entropy-based test generation approach [29] applies
probability theory concepts using entropy to generate new test
cases for fault localisation. Xuan and Monperrus [30] generate
purified versions of failing test cases, which include only one
assertion per test and exclude unrelated statements of this assertion,
for improving fault localisation. Abreu et al. [31] use a generation
strategy of passing test cases in terms of the failing ratio. Artzi et
al. [32] use the variation on combined concrete and symbolic
execution to generate a test suite for locating the faults of the
dynamic web application. Zhang et al. [33] generate new test cases
by cloning failing test cases to improve fault localisation.
González-Sanchez et al. [34] utilise the structural characteristics of
the test coverage matrix to construct an analytic model, introducing
coverage density and coverage distribution for guiding test case
generation. In addition, González-Sanchez et al. [35] introduce a
metric called ambiguity for a test suite to identify the same
involvement pattern among test cases and generate new test cases
to improve the ambiguity of a test suite for fault localisation. Perez
et al. [36] recently summarise test cases generation approaches
(e.g. [24, 34, 35]), and propose an integrated metric DDU by taking
advantage of three metrics of density [34], diversity [37] and
uniqueness [35], for the guidance of generating optimised tests for
fault localisation. Inozemtseva and Holmes [38] conduct an
empirical study showing that the coverage of a test suite is not
strongly with the effectiveness of fault detection. Differently, our
study focuses on the effect of test suites on the effectiveness of
fault localisation rather than fault detection. Search-based test data
generation [39, 40], as a typical application of search-based
software engineering, has been a burgeoning interest for many
researchers [41–43] and also shown its promising results on
generating effective test suites for finding faults [44–46]. It is
simple to adopt search-based test generation to different test data
generation problem by simply changing the input space and fitness
function, thus this approach is a natural candidate for utilising our
findings in the future test data generation research on fault
localisation. In contrast to these approaches above, our work
focuses on investigating the impact of test suites on fault
localisation to obtain a deeper understanding of the relation
between test suites and fault localisation. We believe that our
findings provide a new perspective on test case generation for fault
localisation and can benefit existing and further research on this
direction, such as utilising the promising search-based test data
generation for obtaining a high-quality localisation test suite.

Test case reduction for fault localisation: Test case reduction for
fault localisation can be roughly categorised into two types: one is
to remove redundant test cases; the other one including our study is
to remove harmful test cases. Yu et al. [47] investigate whether
traditional test suite reduction strategies used in testing work well
in fault localisation. Their results show that traditional test suite
reduction strategies do not work well on fault localisation. They
propose a vector-based reduction approach for fault localisation to
reduce those redundant test cases with the same set of executed
statements. Hao et al. [48] propose three reduction strategies to
remove redundant test inputs for fault localisation. Their strategies
select test cases from the given test collection based on the

execution traces of the test collection to distinguish as many
suspiciousness values as possible for fault localisation. Zhao et al.
[49] define the notion of a coverage vector to obtain distinct
execution paths and measure the relation of each coverage vector
with the failing behaviours to reduce similar test cases. Gong et al.
[50] introduce the concept of Diversity Speedup to order a set of
unlabelled test cases and use this order to obtain a smaller number
of test cases by delivering good localisation results.
Bandyopadhyay [51] leverage difference set and union set of
executed statements in passing test cases and failing ones, and use
their ratio as a heuristic to reduce a test suite. Masri and Assi [52]
use the Euclidean metric to measure the similarity between passing
test cases and failing ones, and removing those similar passing
ones from the current test suite. Genetic algorithms [53] are
adopted to identify the relation between program statements and
failures for exploring the reduction of test suites. Dandan et al. [54]
present a two-step test suite reduction approach. Their approach
not only uses test cases coverage to perform coverage matrix-based
reduction but also analyses the concrete path information to
conduct path vector based reduction. Perez et al. [36] pinpoint that
the test-suite reduction based on the adequacy criteria (e.g. multi-
object optimisation [55, 56] greedy-based reduction [57], and
profile-based reduction [58]) could preserve localisation accuracy
by incorporating diagnostic metrics. Differently, our approach
utilises the coverage of MSS to optimise test suites, and our findings
provide a theoretical and empirical explanation and support for
their approach. Mutation-based fault localisation [9, 10] utilise
mutation analysis to propose an evaluation metric for improving
fault localisation, and our impact finding test cases are also
applicable to the evaluation metric, e.g. Equation 1 in [9]. Masri
and Assi [59] propose a technique named Technique-I.
Technique-I is based on the concept of defect-based failures
claiming that those passing test cases causing a defect-based failure
are harmful to fault localisation, and tries to remove those passing
test cases. As a reminder, the discussion on defect-based failures,
in comparison to our findings, is at the next subsection of Defect-
based Failures. They realise it by discarding those passing test
cases whose execution covers a statement executed by all failing
test cases but not so often by all passing test cases. Technique-I
focuses on just a statement executed by all failing test case, and the
execution frequency of this statement in all passing test cases. In
contrast, our technique PTD-TO is based on our findings in Section
3 showing that those passing test cases covering the faulty
statements are harmful to fault localisation, and tries to discard
those passing test cases. In general, a failing test case implies that
its executed statements should include a faulty statement. It means
that the faulty statement should be included in those statements
executed by all failing test cases. Thus, those passing test cases
covering a high faction, rather than one, of those statements, are
more probable to hit the faulty statement. We implement PTD by
removing those passing test cases. On the contrary, a passing test
case does not provide a definite conclusion whether its executed
statements are free of a faulty statement, PTD does not use the
uncertain information delivered by passing test cases. It also
reveals that a statement executed not so often in all passing test
cases does not necessarily mean that the statement has a strong
correlation with the failures. However, Technique-I still uses this
uncertain information as the clue for removing potentially harmful
passing test cases. Furthermore, this heuristic of PTD-TO is
supported by the data presented in Table 10 and empirically
demonstrated to be effective.

Defect-based failures: For understanding the insight of the
technique of Maris and Assi [59], we will discuss defect-based
failures in comparison to our study. Masri and Assi [59] define a
defect-based failure: the execution of a test case satisfying the
values of the oracle added flags. Take the illustration used in their
work as an example (see Fig. 5). The last line of code is inserted
into the original program as an oracle added flag. If the execution
of a test case satisfies the condition, it is called a defect-based
failure. In contrast to defect-based failures, an output-based failure
is determined by executing the original and seeded versions, and
compares their respective outputs. If their respective outputs are
different, a defect-based failure happens. The goal of introducing

Fig. 5  Code snippet from Masri and Assi [59]
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defect-based failures is to exclude coincidentally correct test cases
caused by using output-based failures. Their definition on defect-
based failures classifies those passing test cases executing the
faulty statement into two types: those causing defect-based failures
are harmful for fault localisation; whereas the others are not
harmful. However, our study has theoretically and empirically
proved that the above two types of passing test cases are both
harmful for fault localisation. As shown in Fig. 5, in case of the
enumerator having one element in it, a passing test executing the
faulty statement will not cause a defect-based failure. Nevertheless,
this passing test is still harmful for coverage-based fault
localisation, as all the suspiciousness metrics (including the one
used in [59]) only take as input the coverage matrix. Furthermore,
our study considers not only the effect of the above passing test
cases, but also the impact of those passing test cases not executing
the faulty statement.

In comparison with these approaches above, the main purpose
of our test suite optimisation is to empirically validate our
theoretical analysis and provide further insight on our findings. In
addition, our study focuses on studying the impact of test suites on
fault localisation to provide a deeper understanding of the impact
of test suites on fault localisation, such as the insight missed by
Masri and Assi [59].

7 Conclusion
This paper has presented an extensive empirical analysis to
quantify and explain the impact of test suites on fault localisation.
In particular, we have found that localisation effectiveness is not
strongly correlated with test suite size. We have also identified the
positive or negative impact of different parts of a test suite. That is,
in a test suite, the passing test cases that do not execute the faulty
statements and the failing test cases have a positive impact on the
fault localisation effectiveness, whereas the passing test cases that
exercise the faulty statements have a negative effect on localisation
performance. Furthermore, we find that the SFL can obtain the
maximal benefit from the failing test cases, and thus the
fluctuations of the localisation performance are mainly caused by
the passing test cases. Therefore, we introduced the Passing Tests
Discrimination metric to shed light on the relationship between
localisation effectiveness and a test suite, and demonstrated its
potential with a simple but effective test suite optimisation
approach.

We believe that our findings provide a new perspective on fault
localisation and suggest interesting directions for future work. For
example, it will be worthwhile to seek test prioritisation for fault
localisation by utilising the commonality of tests with MSS, and
also investigate a stronger case for the benefits of PTD-TO in
practice. It will be also interesting to utilise our findings to improve
test case generation and test suite optimisation for fault
localisation, and extend our study to multiple-fault scenarios.
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