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Program reduction has demonstrated its usefulness in facilitating debugging language implementations in
practice, by minimizing bug-triggering programs. There are two categories of program reducers: language-
agnostic program reducers (AGRs) and language-speci�c program reducers (SPRs). AGRs, such as HDD and
Perses, are generally applicable to various languages; SPRs are speci�cally designed for one language with
meticulous thoughts and signi�cant engineering e�orts, e.g., C-Reduce for reducing C/C++ programs.

Program reduction is an NP-complete problem: �nding the globally minimal program is usually infeasible.
Thus all existing program reducers resort to producing 1-minimal results, a special type of local minima.
However, 1-minimality can still be large and contain excessive bug-irrelevant program elements. This is
especially the case for AGR-produced results because of the generic reduction algorithms used in AGRs. An
SPR often yields smaller results than AGRs for the language for which the SPR has customized reduction
algorithms. But SPRs are not language-agnostic, and implementing a new SPR for a di�erent language requires
signi�cant engineering e�orts.

This paper proposes Vulcan, a language-agnostic framework to further minimize AGRs-produced results
by exploiting the formal syntax of the language to perform aggressive program transformations, in hope of
creating reduction opportunities for other reduction algorithms to progress or even directly deleting bug-
irrelevant elements from the results. Our key insights are two-fold. First, the program transformations in
all existing program reducers including SPRs are not diverse enough, which traps these program reducers
early in 1-minimality. Second, compared with the original program, the results of AGRs are much smaller,
and time-wise it is a�ordable to perform diverse program transformations that change programs but do not
necessarily reduce the sizes of the programs directly. Within the Vulcan framework, we proposed three simple
examples of �ne-grained program transformations to demonstrate that Vulcan can indeed further push the
1-minimality of AGRs. By performing these program transformations, a 1-minimal program might become a
non-1-minimal one that can be further reduced later.

Our extensive evaluations on multilingual benchmarks including C, Rust and SMT-LIBv2 programs strongly
demonstrate the e�ectiveness and generality of Vulcan. Vulcan outperforms the state-of-the-art language-
agnostic program reducer Perses in size in all benchmarks: On average, the result of Vulcan contains 33.55%,
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21.61%, and 31.34% fewer tokens than that of Perses on C, Rust, and SMT-LIBv2 subjects respectively. Vulcan
can produce even smaller results if more reduction time is allocated. Moreover, for the C programs that are
reduced by C-Reduce, Vulcan is even able to further minimize them by 10.07%.
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Additional Key Words and Phrases: Program Reduction, Automated Debugging, Test Input Minimization
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1 INTRODUCTION

Given a program % and a property k that % exhibits, program reduction produces a minimized
program % ′ that still exhibits k . This technique has demonstrated its usefulness in facilitating
debugging language implementations (e.g., compilers, interpreters, debuggers) in practice. For
example, given a program % that triggers a bug in GCC or LLVM, program reduction reduces % to a
smaller one % ′ that still triggers the same bug. Many compilers and interpreters, such as GCC, Clang
and JerryScipt, have explicitly required bug reporters to reduce the bug-triggering programs before
submitting bug reports [GCC-Wiki 2020; JerryScript 2022; LLVM 2022; MozillaSecurity 2022].
Program reducers can be classi�ed into two categories: language-agnostic program reducers

(AGRs) and language-speci�c program reducers (SPRs). AGRs are designed to be generally applicable
to a wide range of programming languages, such as Delta Debugging (DD) [Zeller and Hildebrandt
2002], Hierarchical Delta Debugging (HDD) [Misherghi and Su 2006], and Perses [Sun et al. 2018].
SPRs are designed to reduce programs in one speci�c language L with L-speci�c algorithmic
optimizations, thus usually producing smaller results than AGRs for L. An exemplary program
reducer in this category is C-Reduce [Regehr et al. 2012], which implements C/C++ speci�c
transformations with Clang Libtooling [LLVM/Clang 2022].

The goal of program reduction is to �nd the minimal program that still exhibits the given property
k . However, obtaining the global minimum is NP-complete [Misherghi and Su 2006; Zeller and
Hildebrandt 2002]. To make program reduction practical, all existing program reducers resort to
producing 1-minimal results, a type of local minima �rst proposed by Zeller and Hildebrantdt [Zeller
and Hildebrandt 2002]. A reduced program is 1-minimal if and only if deleting any single element
from the program makes the program lose the propertyk . The 1-minimality has been demonstrated
to be an e�ective goal. For example, it enables the state-of-the-art AGR Perses to reduce programs
from hundreds of thousands of tokens to just hundreds or even tens of tokens quickly [Sun et al.
2018].
Problems with 1-minimality of AGRs. However, the 1-minimal results produced by AGRs
can still be large and contain excessive bug-irrelevant program elements, making the reduced
programs suboptimal for debugging. Therefore, it remains desirable but also challenging to further
reduce results by AGRs beyond 1-minimality. One feasible solution is to design and implement
SPRs. For example, C-Reduce tackles this problem by leveraging well-crafted domain-speci�c
program transformations to reduce C/C++ programs [Regehr et al. 2012]. These language-speci�c
transformations, such as source-to-source function inlining, transform programs in di�erent ways
from how AGRs do. As a result, C-Reduce can output much smaller results than those from HDD
or Perses when reducing C/C++ programs. However, constructing such a language-speci�c tool
requires extensive language-speci�c knowledge and signi�cant engineering e�orts, and the crafted
tool usually can work e�ectively for only one speci�c programming language. In fact, to the best of
our knowledge, only C/C++, Java, and SMT-LIBv2 have C-Reduce, J-Reduce [Kalhauge and Palsberg
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2021], and ddSMT [Kremer et al. 2021; Niemetz and Biere 2013] as their language-speci�c reducers;
other programming languages do not have such counterparts.
Vulcan. In this study, we propose Vulcan, a language-agnostic reduction framework to push the
limit of 1-minimality of AGRs. Vulcan can further minimize the results of AGRs by exploiting the
formal syntax of the language to perform diverse program transformations, in hope of creating
reduction opportunities for other reduction algorithms to progress or even directly deleting bug-
irrelevant elements from the results. The key insights of this work are two-fold.
(1) The program transformations in all existing program reducers, especially AGRs, are not diverse

enough. To the best knowledge of the authors, all previously proposed AGRs only support
deletion-based program transformations, i.e., program transformations that only delete elements
from the original program. This limitation traps AGRs early in 1-tree-minimality, and is the
main reason that AGRs do not perform as well as SPRs.

(2) Compared to the original bug-triggering program which might contain hundreds of thousands
of tokens, the 1-minimal result produced by AGRs are relatively small; thus, performing
more deletion-based program transformations with di�erent deletion strategies and even non-
deletion-based program transformations e.g., program transformations that do not necessarily
reduce the sizes of the programs, becomes time-wise a�ordable.

Vulcan incorporates an AGR as the main reducer and a series of auxiliary reducers to keep pushing
the limit of 1-minimality of the main reducer. Given a program to be reduced, Vulcan �rst invokes
the main reducer to produce a 1-minimal result. Then, one of the auxiliary reducers is invoked to
perform program transformations in hope of directly deleting nodes from the 1-minimal result or
creating reduction opportunities. Next, the new program produced by the auxiliary reducer is sent
back to the main reducer for further reduction until 1-minimality is achieved again. In this way,
Vulcan can e�ectively further minimize the results of AGRs with reasonable computational cost.

Accompanied with our framework, we proposed the following three language-agnostic program
transformations as examples.
Identi�er Replacement. A large number of unique identi�ers may lead to complex data-�ow
and control-�ow in a program, which is hard to analyze. By minimizing the number of unique
identi�ers, a bug-triggering program may be simpli�ed and reduced to a smaller size, which can
further facilitate the debugging of language processors. With this insight, we propose Identi�er
Replacement to further minimize the number of unique identi�ers and the size of the program.
Sub-Tree Replacement. This program transformation is inspired by mutation-based compiler
fuzzing, which is a testing technique that randomly generates test programs by mutating existing
programs to test the target compiler. Replacing a sub-tree of the program with a new one is a typical
mutation operation applied in many existing mutation-based compiler testing work [Aschermann
et al. 2019; Wang et al. 2019]. During a fuzzing process, it is common that di�erent generated
test programs trigger the same bug. Therefore, we believe by replacing a sub-tree of a 1-minimal
program, it is likely to derive di�erent programs inducing the same bug, and such programs might
either be smaller or bring potential reduction opportunities.
Tree-Based Local Exhaustive Enumeration. A straightforward approach to further reducing
1-minimal result is changing the reduction goal to =-minimality, where = > 1. Speci�cally, we can
further reduce 1-minimal result by enumerating all the programs that can be derived by deleting
< nodes, where< ≤ = and then performing property tests on them. However, the computational
cost of such an approach is too expensive, thus being impractical. To overcome this obstacle,
we propose Tree-Based Local Exhaustive Enumeration. This program transformation restricts the
exhaustive enumeration in a �xed-length sliding window, which slides through each level of the
tree representation of the program.
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Our extensive evaluation shows Vulcan is e�ective while being general. First, the experiment
conducted with 20 bug-triggering C programs demonstrated that Vulcan can not only e�ectively
further reduce 1-tree-minimal result produced by the state-of-the-art AGR Perses but also further
reduce results produced by C-Reduce, the state-of-the-art SPR in reducing C programs. On average,
the output of Vulcan contains 33.55% fewer tokens than that of Perses on the C program benchmarks,
and Vulcan can further reduce the size of C-Reduce’s results on these benchmarks by 10.07% on
average. Second, evaluation results on Rust programs and SMT-LIBv2 programs demonstrate the
generality of Vulcan on diverse languages. On average, the output of Vulcan contains 21.61%
and 31.34% fewer tokens than that of Perses on Rust benchmarks and SMT-LIBv2 benchmarks
respectively. Moreover, we conducted ablation studies to comprehend the contribution of each
proposed program transformation towards breaking the limit of 1-tree-minimality. The results
show all the proposed transformations are helpful to further reduce the program after achieving
1-tree-minimality. At last, by comparing Vulcan with Vulcan+, a variant with more aggressive
reduction settings than the default Vulcan, we demonstrated that Vulcan can further trade o�
execution time for a smaller result. On average, the output of Vulcan+ contains 5.89% fewer tokens
than that of Vulcan at the cost of taking 1.81× the execution time of Vulcan to �nish.
Contribution. We make the following contributions.
• We propose a language-agnostic program reduction framework named Vulcan, which can
further minimize the results of AGRs. It is the �rst language-agnostic program reduction
technique that performs diverse program transformations by exploiting the formal syntax of
the language to eventually help produce smaller reduction results.
• Accompanied with the framework, we propose three simple but e�ective examples of language-
agnostic program transformations and analyze their computational complexity.
• We implemented a prototype of Vulcan on top of Perses, the state-of-the-art language-agnostic
program reduction tool, with all the proposed program transformations incorporated. By
conducting comprehensive experiments with multilingual benchmarks of C, Rust and SMT-
LIBv2 programs, the e�ectiveness and generality of Vulcan are strongly demonstrated.

2 A MOTIVATING EXAMPLE

In this section, we use a compiler crash bug LLVM-26760 [Bugzilla 2016] as a motivating example
to elaborate how Vulcan further reduces a 1-minimal program produced by Perses.
Figure 1a: Result of Perses. Figure 1a shows the program reduced by Perses from the original
bug-triggering program for LLVM-26760. Despite being 1-minimal, the program still has 116 tokens
remaining for compiler developers to analyze. If this program can be automatically further reduced
to a smaller program, it might be easier and faster for the compiler developers to debug and pinpoint
the root cause.
Figure 1b: Progress made by replacing an identi�er. In Figure 1a, if we replace l_790 on
line 28 with g_100, the resulting program can still trigger the same crash bug. More importantly,
after this change the assignment statements marked in red (lines 19–21 and 24) can be all eliminated
by Perses. Figure 1b shows the further reduced program.
Without this change, Perses cannot eliminate these assignments because deleting them breaks

the assignment chain which passes the value of g_100 to l_790, where l_790 is used as the
predicate of the if statement on line 28. It turns out that if we delete the statements on lines 19–21
and 24 without replacing l_790, then l_790 becomes uninitialized and the bug cannot be triggered.
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1 typedef signed int8_t;

2 typedef short int16_t;

3 typedef int int32_t;

4 typedef unsigned uint32_t;

5 int8_t g_100;

6 int16_t func_33() {

7 int8_t l_790;

8 int32_t l_919 = 0x24F96B7BL;

9 uint32_t l_1052;

10 if (l_790)

11 for (;;)

12 break;

13 else for (; l_919; --l_919);

14 int32_t l_1081 = 1L;

15 int32_t B4o4obl_919 = l_919;

16 // The following three assignments

17 // and line 24 essentially pass

18 // the value of g_100 to l_790

19 int8_t B4o4ocg_100 = g_100;

20 int32_t B4o4odl_1369 = B4o4ocg_100;

21 uint32_t B4o4ofl_1433 = B4o4odl_1369;

22 LABEL_4o4og:;

23 l_1052 = l_1052 >> l_1081;

24 l_790 = B4o4ofl_1433;

25 // if we can replace the l_790 on line 28,

26 // we can delete all the assignments

27 // mentioned above

28 if (l_790) {

29 l_1052 = l_1052 << B4o4obl_919;

30 goto LABEL_4o4og;

31 }

32 }

33 int main() {}

(a) 1-tree-minimal result by Perses.

1 typedef signed int8_t;

2 typedef short int16_t;

3 typedef int int32_t;

4 typedef unsigned uint32_t;

5 int8_t g_100;

6 int16_t func_33() {

7 int8_t l_790;

8 int32_t l_919 = 0x24F96B7BL;

9 uint32_t l_1052;

10 if (l_790)

11 for (;;)

12 break;

13 else for (; l_919; --l_919);

14 int32_t l_1081 = 1L;

15 int32_t B4o4obl_919 = l_919;

16 LABEL_4o4og:;

17 l_1052 = l_1052 >> l_1081;

18 if (g_100) {

19 l_1052 = l_1052 << B4o4obl_919;

20 goto LABEL_4o4og;

21 }

22 }

23 int main() {}

(b) Result obtained from (a) by replacing l_790 in

orange with g_100 and re-applying Perses.

1 typedef signed int8_t;

2 typedef int int32_t;

3 typedef unsigned uint32_t;

4 int8_t g_100;

5 short func_33() {

6 int8_t l_790;

7 int32_t l_919 = 0x24F96B7BL;

8 uint32_t l_1052;

9 if (l_790) for (;;) break;

10 else for (; l_919; --l_919);

11 int32_t l_1081 = 1L;

12 int32_t B4o4obl_919 = l_919;

13 LABEL_4o4og:;

14 l_1052 = l_1052 >> l_1081;

15 if (g_100) {

16 l_1052 = l_1052 << B4o4obl_919;

17 goto LABEL_4o4og;

18 }

19 }

20 int main() {}

(c) Result obtained from (b) by replacing int16_t in

orange with short and re-applying Perses.

1 typedef signed int8_t;

2 typedef int int32_t;

3 typedef unsigned uint32_t;

4 int8_t g_100;

5 short func_33() {

6 int8_t l_790;

7 int32_t l_919 = 0x24F96B7BL;

8 uint32_t l_1052;

9 if (l_790) for (; l_919; --l_919);

10 int32_t l_1081 = 1L;

11 int32_t B4o4obl_919 = l_919;

12 LABEL_4o4og:;

13 l_1052 = l_1052 >> l_1081;

14 if (g_100) {

15 l_1052 = l_1052 << B4o4obl_919;

16 goto LABEL_4o4og;

17 }

18 }

19 int main() {}

(d) Result obtained from (c) by deleting for statement

and the keyword else.

1 typedef unsigned uint32_t;

2 short l_1052() {

3 uint32_t main = 0x24F96B7BL;

4 uint32_t l_1052;

5 for (; l_1052; --main)

6 ;

7 uint32_t uint32_t = 1L;

8 main:;

9 l_1052 = l_1052 >> uint32_t;

10 l_1052 = l_1052 << main;

11 goto main;

12 }

13 int main() {}

(e) Result produced by Vulcan.

Fig. 1. A set of programs that trigger the crash bug LLVM-26760. (a) is the 1-tree-minimal result reduced

by Perses from the original bug-triggering program. (b) is obtained by replacing a single identifier of (a)

and applying Perses on the modified program again. (c) is obtained from (b) by changing a type specifier

to a di�erent one and applying Perses again. (d) is obtained from (c) by removing two nodes in its tree

representation simultaneously. (e) is the result produced by Vulcan.
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However, with this replacement, these statements become redundant as l_790 is not used, and
thus are eliminated by Perses.
Figure 1c: Progress made by replacing a sub-tree. In the program in Figure 1b, if the type
speci�er int16_t marked in orange (a sub-tree in the view of tree representation) is replaced with
a di�erent one (e.g., short), the typedef statement on line 2 can be eliminated without losing the
property as the only usage of the de�ned alias is removed. By applying Perses on the program
after the replacement, a smaller program shown as Figure 1c is obtained. Without this replacement,
Perses cannot further reduce the program in Figure 1b, because Perses performs only deletion-based
program transformation.
Figure 1d: Progress made by deleting more than one node simultaneously. The 1-
minimality that Perses pursues only promises that deleting a single node in the tree representation
of the program will de�nitely make the program lose the property. Therefore if more than one
node is deleted simultaneously, it is still possible for the property to be preserved. In the 1-minimal
program shown in Figure 1c, deleting either the node representing the for statement or the one
representing the keyword elsemakes the program lose the property due to 1-minimality. However,
if these two nodes are deleted together, the property is preserved.
Figure 1e: Final Result of Vulcan. Figure 1e shows the result of Vulcan. It contains only 56
tokens, which is 51.72% fewer than the result of Perses. This result demonstrates that the potential
of further reduction on 1-minimal results can be substantial. We strongly believe that the debugging
process of language implementations can bene�t from such a further minimized program with
fewer bug-irrelevant elements.

3 BACKGROUND

This section introduces the concept of program reduction, the existing program reduction ap-
proaches and the local minima proposed by them.

3.1 Program Reduction

Given a program % and a propertyk that % exhibits, the task of program reduction is to explore
the search space P in order to �nd a minimal % ′ which still exhibitsk , where the search space P is
de�ned by concrete program reduction algorithm [Sun et al. 2018].1 Mathematically,k is a function
that maps the program search space P to B = {true, false}, such thatk (?) = true if p exhibits the
property, otherwisek (?) = false. The goal of program reduction is to �nd the minimal program
?min de�ned as follows:

?min ∈ {? |k (?) ∧ ? ∈ P ∧ ∀?
′ ∈ P.|?′ | < |? | ⇒ ¬k (?′)} (1)

where |? | denotes the size of ? , which is usually measured according to the number of tokens in ? .
Please note that there could be multiple ?min satisfying the above requirements.

3.1.1 Delta Debugging. Delta Debugging (DD) is the �rst work that formulated a generic approach
for test-case reduction [Zeller and Hildebrandt 2002]. It proposed an algorithm named ddmin to
minimize a failure-inducing test case. ddmin treats the test case as a list of elements and keeps
testing di�erent subsets of this list to �nd a smaller failure-inducing test case. Speci�cally, ddmin
�rst splits the list into = partitions. Then, it traverses each partition to test whether there is a
partition that can solely trigger the failure. If so, it removes all the other partitions and starts
over from the obtained smaller test case. Otherwise, it traverses all the partitions again to test
whether there is a partition whose complement can trigger the failure. If so, it removes the partition
to obtain a smaller test case and restarts. If the test case cannot be reduced during the above

1
P is the universe of candidate programs that a program reducer can derive from % , instead of the universe of all programs.
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process, ddmin further splits the list into 2= partitions and repeats the process. ddmin can minimize
bug-triggering programs by considering them as a list of tokens or lines. However, since ddmin
does not leverage the structures of programs, its e�ciency and e�ectiveness in program reduction
are suboptimal [Misherghi and Su 2006; Sun et al. 2018].

Parser
Delta

Debugging

Input Parse Tree Reduced Input

Fig. 2. An example workflow of tree-based program reduction.

3.1.2 Tree-Based Program Reduction Approach. Hierarchical Delta Debugging (HDD) is the �rst
tree-based program reduction proposed by Misherghi and Su [Misherghi and Su 2006]. HDD aims
to speed up ddmin, especially the performance when handling complex and structured inputs, by
leveraging the tree structure information of the input. Figure 2 illustrates the work�ow of HDD.
First, the input program is parsed to a parse tree by a language parser (step 1 and 2 ). Next, the
parse tree is reduced in a top-down manner. Speci�cally, HDD performs ddmin to the parse tree
level by level to eliminate bug-irrelevant elements from coarsest to �nest (step 3 ). After applying
the ddmin algorithm to each level of the parse tree, a reduced input is obtained (step 4 ). It should
be noted that the reduced input may be able to further reduced by the same tree-based reduction
algorithm since the deletion of some nodes may enable other nodes to be deleted. Therefore, in
practice, to obtain a small program as much as possible, a tree-based program reduction algorithm
is usually run in �xpoint mode, in which the algorithm is iteratively applied on the reduced input
until the size can no longer be smaller (step 5 ).
Perses [Sun et al. 2018] further leverages language syntactic rules to facilitate the reduction.

Speci�cally, it utilizes context-free grammar to ensure the derived program variants are always
syntactically valid and avoid futile e�orts on syntactically invalid variants. Since it is the state-of-
the-art reducer in terms of both e�ectiveness and e�ciency, we use it as our baseline.

3.2 Relaxed Goal in Program Reduction

Finding the minimal program ?min de�ned in §3.1 is NP-complete [Misherghi and Su 2006; Zeller
and Hildebrandt 2002]. In practice, to complete the reduction in a reasonable time, this goal is
usually relaxed by existing reducers to local minima, i.e., 1-minimality or 1-tree-minimality [Heo
et al. 2018; Misherghi and Su 2006; Sun et al. 2018; Wang et al. 2021; Zeller and Hildebrandt 2002].
1-Minimality. 1-minimality is proposed by DD [Zeller and Hildebrandt 2002]. Speci�cally, a
1-minimal program ?1-min is a local minimal solution: (1) ?1-min passes the property testk and (2)
any program variant derived from ?1-min by deleting a single element (e.g., a token) cannot pass the
property testk . It can be formally de�ned as follows:

?1-min ∈ {? |k (?) ∧ ? ∈ P ∧ ∀?
′ ∈ P.|? | − |?′ | = 1⇒ ¬k (?′)} (2)

1-Tree-Minimality. 1-tree-minimality is a generalized version of the 1-minimality on the tree
level. When the reduction is performed on the tree structure of the test input in a top-down manner,
the concept of 1-minimality becomes inappropriate since the sub-trees rooted in di�erent tree
nodes may represent parts with di�erent sizes. A 1-tree-minimal program ?1-min not only passes
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the property test q , but also requires any program variant that is derived from it by deleting a
single sub-tree cannot pass the property test q . Mathematically, ?1-tree-min is de�ned as follows:

?1-tree-min ∈ {? |k (?) ∧ ? ∈ P ∧ ∀?
′ .simplify () (?),) (?′)) ⇒ ¬k (?′)} (3)

where ) (?) is the parse tree of program ? , and the predicate simplify (C, C ′) : T × T → B is true
only if C ′ can be derived from C by deleting a single sub-tree.
It should be noted that 1-minimality and 1-tree-minimality do not mean that no element or

sub-tree can be further reduced from ?1-min or ?1-tree-min. If multiple elements or sub-trees are deleted
at the same time, the derived program might still pass the property test.

4 APPROACH

Parser
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Reducer

Input Parse Tree 1-Tree-Minimal Result

Identifier 

Replacement

Auxiliary

Reducers Tree-based Local 

Exhaustive Search

Sub-tree

Replacement

Smaller Result

Or

Transformed Result

Tree-based Program Reduction

Fig. 3. The workflow of Vulcan.

Overview. Figure 3 shows the work�ow of Vulcan. Compared with the work�ow of tree-based
program reduction, Vulcan contains extra components, i.e., auxiliary reducers. Given a program
to be reduced, Vulcan �rst invokes the main reducer to produce a 1-minimal result. Then, Vulcan
utilizes one of the auxiliary reducers to produce either a smaller program or a potentially non-1-
minimal program by performing program transformations on the 1-minimal result (step 1 and
2 ). This new program is then fed to the main reducer for further reduction until 1-minimality is
achieved again (step 3 ).

The detailed work�ow of Vulcan is described in Algorithm 1. It takes as input the program to be
reduced % and the property checking functionk , and eventually outputs a minimized program ?

such thatk (?) is true. Vulcan contains the following three stages.
Requirements on the main and auxiliary reducers. In the proposed algorithm, the main
reducer must produce a 1-minimal program that either has a smaller size than the input program
or is identical to the input program. For auxiliary reducers, the sizes of their outputs should either
be smaller than or equal to the size of input program. Additionally, if auxiliary reducers cannot �nd
any new program that can pass the property test, they should return the input program without
any change. Conceptually, the main reducer is to quickly produce a 1-minimal result by performing
aggressive, coarse-grained program transformations such as Perses and HDD, whereas the auxiliary
reducers are designed to perform more �ne-grained program transformations to either directly and
slightly minimize the 1-minimal program or create reduction opportunities for the main reducer.
Initialization. First, Vulcan initializes a series of variables. minimum is the current program
satisfyingk . It is initialized with the program to be reduced % (line 1). prev_by_main is the program
from which minimum is derived. It is initialized with null (line 2). index is the index of the current
auxiliary reducer being used, and it is initialized to 0 (line 3). a�empts records the number of
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Algorithm 1:Work�ow of Vulcan
Input :% , the program to be reduced.
Input :k : P→ B, the property checking function
Output :A minimized program ? ∈ P B.C . k (? )

Data: main_reducer: the main program reducer
Data: aux_reducers: the list of the auxiliary reducers

1 minimum← %

2 prev_by_main← null

3 index← 0

4 a�empts← 0

5 while true do

// run the main reducer to produce a 1-minimal result

6 prev_by_main← minimum

7 minimum← main_reducer.Reduce(minimum,k )

8 if |minimum | < |prev_by_main | then

9 a�empts← 0

10 prev_by_main← minimum

// Start running auxiliary reducers

11 while minimum == prev_by_main ∧ index < |aux_reducers | do

12 minimum← aux_reducers[index] .Reduce(minimum,k )

13 a�empts← a�empts + 1

14 if minimum == prev_by_main then

15 index← index + 1

16 a�empts← 0

17 if |minimum | < |prev_by_main | then

// If progress was directly made by the auxiliary reducer

18 a�empts← 0

19 else if a�empts > flimit then

20 index← index + 1

21 a�empts← 0

22 if index >= |aux_reducers | then return minimum

attempts of the current auxiliary reducer. Whenever Vulcan switches to the next auxiliary reducer or
the current auxiliary reducer helps advance the reduction progress, a�empts is reset. It is initialized
to 0 (line 4).
Reduction with the Main Reducer. After the initialization, Vulcan iteratively reducesminimum

(i.e., the currently smallest program) in a while loop (line 5-22). In each iteration, Vulcan �rst
utilizes the main reducer to obtain a 1-minimal program. Speci�cally, the current minimum is �rst
saved to prev_by_main (line 6), and then the main reducer is invoked to produce a new minimum

by reducing the current minimum (line 7). This new minimum should either be smaller than or
exactly the same as prev_by_main, and more importantly, it should always be 1-minimal. If the new
minimum is smaller than prev_by_main, which means reduction progress is advanced by the main
reducer, a�empts is reset (line 9) and prev_by_main is updated with minimum again. (line 10).
Further Reduction with Auxiliary Reducers. Once a 1-minimal result is produced by the
main reducer, Vulcan utilizes auxiliary reducers in an inner while loop to produce either a smaller
program or a program that can be potentially reduced by the main reducer (line 11-16). In this
inner loop, a new program is �rst produced by the currently selected auxiliary reducer (line 12),
and a�empts is incremented by one (line 13). As long as the new minimum is di�erent from
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prev_by_main, this inner while loop for auxiliary reducers is terminated. Otherwise, if the auxiliary
reducer cannot �nd any other program that can pass the property test, and thus it produces a
program that is identical to its input (line 14), Vulcan switches to the next auxiliary reducer by
incrementing index (line 15) and resets the a�empts to 0 (line 16). After the increment, if index is
no longer smaller than the number of auxiliary reducers (i.e., there is no more auxiliary reducer
to use), Vulcan terminates the while loop, and eventually returns the current minimum as the
�nal result on line 22. Otherwise, Vulcan repeats the same process with the next selected auxiliary
reducer. The size of the new minimum produced by the auxiliary reducers should either be smaller
than or equal to the size of prev_by_main.

• If minimum is smaller than prev_by_main (i.e., progress has been directly made by the auxiliary
reducer) (line 17), a�empts is reset (line 18), and Vulcan invokes the main reducer again to
reduce this smaller program (line 6-10).
• If minimum is equal in size to prev_by_main (i.e., progress can potentially be made by the
main reducer from this new minimum), Vulcan �rst checks the value of a�empts. If a�empts

is larger than a pre-set limit flimit, Vulcan switches to the next auxiliary reducer (line 20), resets
the a�empts to 0 (line 21), and terminates if all the auxiliary reducers have been used (line 22).
Otherwise, Vulcan invokes the main reducer again to reduce the new program produced by the
auxiliary reducer (line 6-10).

Vulcan can work with an arbitrary number of auxiliary reducers, as long as they satisfy the
aforementioned requirements. In this paper, we proposed three simple yet e�ective program
transformations. In the following sections, we will introduce them in detail.

4.1 Identifier Replacement

This program transformation is designed to minimize the number of unique identi�ers and the
size of the program. Speci�cally, Identi�er Replacement replaces the usages of one identi�er in the
programs by others. By doing so, Identi�er Replacement attempts to make the identi�er unused in
the program. If the program still preserves the property after this replacement, it implies that this
identi�er is not necessary for triggering the bug, and the de�nition or initialization of the unused
identi�er can be removed in the subsequent reduction. Although Identi�er Replacement does not
reduce the size of the program directly, the result it produces is likely to be further reduced by the
tree-based reduction algorithm via removing the unused identi�ers.
Algorithm 2 details the algorithm of Identi�er Replacement. The transformation takes as input

the program to be transformed and the property checking function. It �rst parses the program to
get the parse tree in line 1. Then, it �nds all the identi�er nodes in the parse tree and clusters them
according to their names in line 2, such that all the identi�er nodes in the same cluster have
the same unique identi�er name. id_clusters is the list of all clusters and its length is equal to the
number of unique identi�er names in the parse tree C . Next, the algorithm traverses id_clusters
and generates programs by renaming the identi�ers in one of the clusters, i.e., cluster (line 3-8).
Speci�cally, for each cluster, the algorithm traverses all the other clusters in id_clusters and
replaces all the identi�ers in cluster except the �rst one with the identi�er name of the other
selected cluster, i.e., anotherCluster, as shown in line 5-6. The �rst appearance is not replaced
since in most programming languages the �rst appearance of an identi�er is usually a de�nition or
initialization, and the following appearances are usually the usages of this identi�er. After each
replacement, the algorithm checks whether the property is preserved. If so, the modi�ed program
is returned (line 7-8).
Computational Complexity Analysis. To analyze the computational complexity, we can focus
on the number of property tests required by the auxiliary reducer. This is because, during the
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Algorithm 2: Identi�er Replacement

Input :% , the program to be transformed.
Input :k : P→ B, the property checking function
Output :A transformed program ?, B .C . k (?)

1 C ← ParseTree (% )

2 id_clusters← �nd all the identi�er nodes in C and cluster them by their name.

3 foreach cluster ∈ id_clusters do

4 foreach another_cluster ∈ id_clusters \ { cluster } do

5 id_name← the identi�er name of another_cluster

6 C ′← a new parse tree by replacing the identi�ers in cluster except the �rst one with id_name

7 ? ← program derived from C ′

8 if k (?) then return ?

9 return %

reduction process, most time is spent on the executions of property tests [Sun et al. 2018]. Given
a program, the number of property tests directly performed by Identi�er Replacement is at most
=2 (=2 − 1) where =2 is the number of clusters (sets of identi�ers that have the same name). If it
succeeds in �nding a program passing the property test, the main reducer needs to be invoked
subsequently. The property tests required by the tree-based reduction algorithm may vary based
on which speci�c algorithm is used in the framework. In practice, the computational complexity of
HDD is $ (=2) at worst and $ (=) in typical cases approximately where = represents the size of the
parse tree [Misherghi and Su 2006]. Perses has the same worst computational complexity though
it requires fewer property tests on average than HDD [Sun et al. 2018]. If the main reducer fails
to reduce the size, Identi�er Replacement will produce another program and send it to the main
reducer again. This process is continued until the 1-minimal result is successfully reduced or the
pre-set limit of failed attempts is reached or Identi�er Replacement can no longer �nd programs
that can pass the property test. Consequently, let C be the number of attempts, which is limited to a
small value by a pre-set parameter, the worst computational complexity of Identi�er Replacement

can be represented as follow:

O(C (=2 (=2 − 1) + =
2)) = O(=22 + =

2) = O(=2) (4)

This result proves that Vulcan has the same worst computational complexity as HDD and Perses.

4.2 Sub-Tree Replacement

This transformation is inspired by mutation-based compiler fuzzing [Aschermann et al. 2019;
Donaldson et al. 2017; Le et al. 2014, 2015; Sun et al. 2016], a testing technique that randomly
generates test programs by mutating existing programs and make the target compiler compile these
generated programs in the hope of some unexpected behavior can be triggered, thus detecting bugs.
Replacing a sub-tree of the program’s parse tree with a new one is a typical mutation operation
applied in many existing work [Aschermann et al. 2019; Wang et al. 2019] During a fuzzing process,
it is common that di�erent generated test programs trigger the same bug. Therefore, we believe
that by replacing a sub-tree of a bug-triggering program, it is likely that a di�erent program that
triggers the same bug can be obtained, and this di�erent program might either be smaller or bring
potential reduction opportunities. To sum up, Sub-Tree Replacement is designed to �nd di�erent
programs that trigger the same bug like how it happens in the compiler fuzzing process.
Before describing the transformation, we �rst introduce some concepts and knowledge about

parse trees and formal grammar in this paragraph. Each non-leaf node of a parse tree corresponds
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to a non-terminal symbol in the grammar. Sub-trees whose roots correspond to the same non-
terminal symbol are syntactically compatible structures. In a language grammar, some non-terminal
symbols have di�erent production rules, which means they can have di�erent forms. For example,
a non-terminal symbol typeSpeci�er can be int, char, or any other type, and a symbol statement

may refer to a if statement or while statement. We refer to these di�erent forms of a non-terminal
symbol as its alternatives. Replacing a sub-tree with a di�erent alternative of the non-terminal
symbol corresponded by the root does not break syntactical validity. Given a grammar and a speci�c
non-terminal, a sub-tree can be generated by keeping selecting and applying production rules
from the given non-terminal symbol until only terminal symbols are left [Aschermann et al. 2019;
Kreutzer et al. 2020].

Algorithm 3: Sub-Tree Replacement

Input :% , the program to be transformed.
Input :k : P→ B, the property checking function
Output :A transformed program ?, B .C . k (?))

1 C ← ParseTree (% )

2 alternative_nodes← All the nodes that correspond to non-terminal symbols with multiple production

rules in C

3 foreach node ∈ alternative_nodes do

4 CBD1 ← generate a sub-tree rooted in the same non-terminal as node

5 C ′ ← replace sub-tree rooted in node with CBD1 in C

6 ? ← program derived from C ′

7 if k (?) then return ?

8 return %

In summary, Sub-Tree Replacement systematically replaces a sub-tree with a di�erent alternative
(e.g., replacing an int with a char). Algorithm 3 describes how this transformation works in detail.
First, all the nodes that correspond to non-terminal symbols with multiple production rules are
found out (line 2). Next, the algorithm traverses all these nodes (line 3). For each node, a new
sub-tree is generated from the same non-terminal as the current node to replace the original one
(line 4-5). Same as the last transformation we introduced, if the modi�ed parse tree passes the
property test, the program derived by this parse tree is returned (line 7-7). To narrow down the
search space and make generation e�cient, we only generate new sub-trees that are not larger than
the original sub-tree and only replace sub-trees whose non-terminal symbols represent low-level
structures with a relatively small number of alternatives.
Computational Complexity Analysis. Compared to Identi�er Replacement, Sub-Tree Replace-
ment provides more possibility in terms of creating reduction opportunities. The possible programs
to which it can transfer are usually more than those of Identi�er Replacement, but the chance that
the main reducers can continue to reduce elements from these new programs is lower as it lacks the
heuristic which powers Identi�er Replacement. Although, theoretically, this auxiliary reducer can
directly reduce the size of the program by replacing a sub-tree with a smaller alternative, it often
does not happen in practice as we limit it to only replace a sub-tree whose non-terminal represents
a simple structure. Even if it produces a smaller program, the size it reduced is very limited. So, the
main way this auxiliary reducer enables further reduction is also converting the 1-minimal result
to a non-1-minimal one and enables the main reducer to further reduce the size of the program.

Suppose on average, each node in the tree has =0 alternatives, and = is the size of the parse tree,
the number of property tests directly performed by Sub-Tree Replacement is at most = × =0 . Given
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that not every node has alternatives, and we restrict the transformation to only target non-terminals
with a relatively small number of alternatives, =0 is smaller than = in most cases Let C be the number
of attempts, the worst computational complexity is as follows:

O(C (= × =0 + =
2)) = O(=2) (5)

Therefore, Sub-Tree Replacement has the same worst computational complexity as HDD and Perses
too. But Sub-Tree Replacement often requires more property tests than Identi�er Replacement to
enable further reduction, as programs produced by this auxiliary reducer are less likely to be
reduced by the main reducer, which means the C required for enabling further reduction is often
larger with this auxiliary reducer.

4.3 Tree-Based Local Exhaustive Enumeration

In this section, we propose a deletion-based program transformation named Tree-Based Local

Exhaustive Enumeration which uses a di�erent deletion strategy from those that have been applied
in previous AGRs. The general idea of Tree-Based Local Exhaustive Enumeration is to maintain a
sliding window and make it slide through each level of the tree representation of the program to
be reduced. For each position of the sliding window, the algorithm enumerates all the programs
that can be derived by deleting nodes in the window, and then performs property tests on them.

Algorithm 4: Tree-Based Local Exhaustive Enumeration

Input :% , the program to be transformed.
Input :k : P→ B, the property checking function
Output :A reduced program ?, B .C . k (?)

1 C ← ParseTree (% )

2 node_sequence← [root node of C ]

3 while length of node_sequence < fwsize do

4 node_sequence← nodes in the next level of C

5 while true do

6 window_position← 0

7 while window_position +fwsize < length of node_sequence do

8 node_set← node_sequence[window_position: window_position +fwsize]

9 proper_subsets← all true subsets of node_set

10 filtered_proper_subsets← {B | B ∈ proper_subsets ∧|node_set \ B | ≥ 2 }

11 foreach B ∈ filtered_proper_subsets do

12 nodes_to_remove← node_set \ B

13 C ′ ← a new tree obtained by removing nodes in nodes_to_remove from C

14 ? ← program derived from C ′

15 if k (?) then

16 reduced← true

17 C ← C ′

18 remove the removed nodes from node_sequence

19 else window_position← window_position + 1

20 if all nodes in node_sequence are leaf nodes then break

21 node_sequence← nodes in the next level of C

22 return ?
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Algorithm 4 details this algorithm. At the beginning, node_sequence is initialized with the
highest level of the parse tree containing not less than fwsize nodes, where fwsize is the pre-set
sliding window size (equal to 4 by default in our implementation) (line 2-4). After that, the algorithm
starts another while loop to slide the window through node_sequence. At the beginning of the loop,
the position of the sliding window is set to 0, i.e., to include �rst fwsize nodes in the node_sequence
(line 6). Next, for each position of the sliding window, the algorithm enumerates all the proper
subsets of the node_set (i.e., the set consisting of nodes in the sliding window) (line 8-9). As 1-
minimality promises removing any single node breaks the property, the algorithm only needs to
search for parse trees that are derived by deleting at least two nodes from C . Therefore, the proper
subsets with only one element missing are �ltered out (line 10).
For each remaining proper subset B , a smaller parse tree is generated by removing those nodes

that are in node_set but not in B (line 11-14), and the program derived from this smaller parse
tree is tested against the property (line 15). If the property test is passed, the algorithm does not
terminate immediately, because there might be more nodes that can be deleted. Instead, it sets
the �ag reduced to true (line 16), updates the parse tree to be reduced with the smaller parse tree
(line 17), removes the deleted nodes from node_sequence, and �nally repeats the enumeration
with the sliding window staying at the same position. (line 18). If the property test fails and the
sliding window has not reached the end, the window_position is incremented by one (line 19),
and the enumeration is repeated. When the sliding window reaches the end of node_sequence.
node_sequence is updated to contain nodes in the next level (line 21). If the current level is the last
level, the algorithm terminates and returns the reduced program ? (line 20-20).

Figure 4 illustrates how sliding window moves in Tree-Based Local Exhaustive Enumeration with
a concrete example. At the beginning, there is only one node which is the root of the parse tree
in the node sequence. When the number of nodes is fewer than the length of the sliding window,
the algorithm updates the node sequence with nodes in the next level (i.e., replace all the non-leaf
nodes in the node sequence with their children). In this case, the root has four children, and the
length of the sliding window is three, so we update the node sequence to contain the four children
of the root and make the initial sliding window include the �rst three nodes in the node sequence.
When the sliding window has not reached the end of the node sequence, it moves forward by 1 node
each time (step 1 and 3 in Figure 4). Otherwise, the node sequence gets updated by replacing
all non-leaf nodes with their children again (step 2 in Figure 4) and the sliding window is again
moved to the beginning of the node sequence.

Fig. 4. An illustrative example that shows how the sliding window (marked in orange box, length = 3) moves

during the process of tree-based local exhaustive search. If the window has not reached the end of the current

node sequence (marked with red), it moves forward by one node (step 1 and 3 ). Otherwise, the node

sequence is updated by replacing all non-leaf nodes with their children (step 2 ).

Computational Complexity Analysis. Di�erent from the Identi�er Replacement and Sub-Tree

Replacement, Tree-Based Local Exhaustive Enumeration is designed to directly reduce elements
from the program. The computational complexity of this auxiliary reducer depends on the size
of the tree and the window size. Suppose the parse tree to be reduced contains = nodes with a
constant branching factor 1, and the depth of the tree is ℎ. Also, let the window size equal to F .
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Then, in the worst case, the number of property tests required by this auxiliary reducer equals to
∑ℎ

8=1<0G (18−F, 0)∗(2F−F), which can be considered as O(=) at worst whenF is limited to a small
value. For the previous two auxiliary reducers, it might take several rounds of alternate invocation
of the auxiliary reducer and the main reducer to eventually make progress on further reduction.
However, for Tree-Based Local Exhaustive Enumeration, multiple executions are meaningless, and
Vulcan will immediately switch to the next auxiliary reducer or terminate once the invocation of
Tree-Based Local Exhaustive Enumeration does not make progress.

4.4 Order of Auxiliary Reducers

The order of auxiliary reducers may a�ect the e�ciency and e�ectiveness of the reduction process.
If the size of the program to be reduced can be quickly reduced by the very �rst auxiliary reducer,
the computational cost of the following reducer invocations can be reduced, thus accelerating the
reduction process. Moreover, di�erent sequences of auxiliary reducers may also lead to di�erent
results, because the previous auxiliary reducers may create or kill potential reduction opportunities,
which can be caught by the subsequent auxiliary reducer.

It is non-trivial to deduce an optimal order that can achieve the best e�ciency and e�ectiveness.
First, it is hard to precisely predict how many elements each auxiliary reducer can reduce per unit
time on a speci�c 1-minimal result before we run them. Second, without conducting extensive
experiments, the e�ect of the order on the size of the results can hardly be analyzed.

To propose a relatively reasonable order, we recall the design goal and computational complexity
of each auxiliary reducer. Among all the auxiliary reducers, Tree-Based Local Exhaustive Enumeration

is designed to directly reduce elements from the program. Also, di�erent from others,Tree-Based
Local Exhaustive Enumeration will be switched once it cannot produce a smaller result, which
does not waste too much time even if it cannot help the reduction. Due to these reasons, we set
Tree-Based Local Exhaustive Enumeration as the �rst auxiliary reducer. As for Identi�er Replacement

and Sub-Tree Replacement, we put the former in front of the latter, because Identi�er Replacement

tends to require fewer rounds of alternate executions between the auxiliary reducer and the main
reducer as the programs generated by this transformation are more likely to be non-1-minimal.

4.5 Parameters and Fixpoint Mode

There are two parameters that can be adjusted to control the behavior of the auxiliary reducers. For
auxiliary reducers that perform non-deletion-based program transformations, the parameter flimit

limits the maximum number of attempts an auxiliary reducer can make before successfully further
reducing the 1-minimal result. If the auxiliary reducer continuously produces flimit programs and
none of them is either smaller or able to be further reduced by the main reducer, Vulcan will
switch to the next auxiliary reducer. For the auxiliary reducer perform Tree-Based Local Exhaustive

Enumeration, the parameter fwsize decides the size of the sliding window. Both parameters can a�ect
the performance of Vulcan. Within a certain range, when flimit increases, the result produced by
Vulcan will tend to be smaller since auxiliary reducers which perform non-deletion-based program
transformations will try more times to search for reduction opportunities. However, the execution
time of Vulcan will also be increased due to the same reason. Similarly, when fwsize increases, the
number of programs that Tree-Based Local Exhaustive Enumeration generates will increase, thus
can potentially produce smaller results at the cost of longer execution time.

In program reduction, it is common to perform the reduction algorithm multiple times to achieve
smaller results. This is possible because the deletion of some elements may enable other elements
to be deleted. AGRs including HDD and Perses run in a so-called �xpoint mode to promise 1-
minimality [Misherghi and Su 2006; Sun et al. 2018]. In this mode, the reduction algorithm is kept
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performing until the program can no longer be reduced (i.e., reaching a �xed point). The main
reducer of Vulcan should always run in �xpoint mode to directly produce a 1-minimal result.
Besides, Vulcan can also run its auxiliary reducers in �xpoint mode. By default, Vulcan terminates
after all the auxiliary reducers have been used. However, it is possible that the �rst auxiliary reducer
can continue to help further reduction after the program is reduced with the help of the subsequent
auxiliary reducers. Therefore, by using auxiliary reducers iteratively rather than using them only
once, Vulcan can trade o� the execution time for a potentially smaller result.

Table 1. Number of queries required by performing Tree-Based Local Exhaustive Enumeration with di�erent

values of fwsize. &?>B (fwsize) is the number of queries required by each position of the sliding window given

the fwsize. &;4E4; (fwsize) is the number of queries required by the lowest level of a parse tree that has B leaf

nodes given the fwsize.

fwsize &?>B (fwsize)
&;4E4; (fwsize)

B = 100 B = 200 B = 300 B = 400

2 1 99 199 299 399
3 4 392 792 1192 1592
4 11 1067 2167 3267 4367
5 26 2496 5096 7696 10296
6 57 5415 11115 16815 22515
7 120 11280 23280 35280 47280
8 247 22974 47671 72371 97071

By default, Vulcan does not run in �xpoint mode for less computational cost. The default values
of the two parameters are set based on intuition and analysis to achieve a balance between the
e�ectiveness and execution time. Speci�cally, for flimit, we tried three di�erent values: 10, 50, and
100. The results show that when flimit equals 10, the number of queries that Vulcan makes is
considerable. Meanwhile, the execution time is in an a�ordable range. On the other hand, when
flimit equals 50 or 100, the experiment cannot �nish within a reasonable time. Therefore, we set
flimit to 10 by default.

For fwsize, we choose its default value by roughly analyzing the number of queries required by
performing Tree-Based Local Exhaustive Enumeration with di�erent values of fwsize. Speci�cally, for
each value of fwsize, we calculated the number of queries required by each position of the sliding
window and the lowest levels of the parse trees derived from programs with di�erent sizes. As
shown in Table 1, the number of queries required increases exponentially as fwsize grows, which
makes the a�ordable choices of this parameter very limited. We think setting fwsize to 2 or 3 is too
conservative. 4 or 5 seems to be the balanced choice for fwsize, and when the value of fwsize is larger
than 6, the runtime overhead becomes una�ordable. Based on the above analysis, we �nally set
fwsize to 4 as the default value mainly for e�ciency reasons.

However, users can also choose to run Vulcan in �xpoint mode with di�erent values of the
parameters to trade o� between the size of the output and execution time. To investigate the impact
of the parameters and �xpoint mode and provide some insights on how to con�gure Vulcan, we
evaluated a variant of Vulcan which uses a more aggressive setting (i.e., running in �xpoint mode
with larger flimit and fwsize) and conducted a parameter study. Both of the experiments will be
detailed in the subsequent sections.
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5 EVALUATION

To evaluate the performance of Vulcan, we conducted the following research questions.
RQ1: Can Vulcan e�ectively enable further reduction from the 1-minimal result produced by AGRs?
To answer this question, we measured the e�ectiveness of Vulcan on the benchmarks used in

Perses [Sun et al. 2018], which contains 20 real-world complex bug-triggering C programs generated
by fuzzing techniques, including CSmith [Yang et al. 2011] and EMI [Le et al. 2014], and compared
it with two state-of-the-art tools, Perses and C-Reduce.
RQ2: Can Vulcan further reduce the results output by SPRs?

To understand whether Vulcan is also useful for language-speci�c program reducers, we utilized
Vulcan to reduce C-Reduce’s results on the C program benchmarks and measure its performance.
RQ3: Can Vulcan e�ectively reduce programs in di�erent programming languages?
To demonstrate the generality of Vulcan, we measured the performance of Vulcan in two

languages other than C/C++, i.e., Rust and SMT-LIBv2. We collected 13 Rust programs by ourselves
and 93 SMT-LIBv2 programs from ddSMT2.0 [Kremer et al. 2021]. We compared the performance
of Vulcan with Perses, the state-of-the-art AGR.
RQ4: What is the e�ectiveness of each proposed auxiliary reducer?
We conducted an ablation study to investigate to what extent each proposed auxiliary reducer

contributes to the further reduction on 1-minimal result. Speci�cally, we implemented three variants
of Vulcan by enabling only one of the three auxiliary reducers and evaluated their performance
with the C benchmarks in RQ1.
RQ5: Can Vulcan output smaller results if it runs in �xpoint mode with larger flimit and fwsize?
Finally, we investigated the performance of Vulcan using a more aggressive reduction setting

than the default one. Concretely, we implemented another variant of Vulcan such that it runs
reduction in �xpoint mode with larger flimit and fwsize than the default, and we evaluate this variant
on the C program benchmarks.

All the experiments are run on an Ubuntu 20.04 server with Intel Xeon Gold 5217 CPU@3.00GHz

and 384GB RAM. Every reducer is run with a single thread in all experiments.

5.1 RQ1: Further Reduction on 1-minimal Results

To answer this research question, we utilized Vulcan, Perses and C-Reduce to reduce C programs
and compared their performance. These programs are from the benchmarks provided by Perses. In
the evaluation, we measure the performance of Vulcan using the following metrics.
(1) Size The number of tokens in the program produced by Vulcan.
(2) Queries The number of property-testing queries issued by Vulcan.
(3) Time The time spent by Vulcan in reduction.
(4) Percentage Change in Size This metric is denoted as C(%) and it measures the percentage

change in size of Vulcan’s resultw.r.t. a baseline. Speci�cally, it is calculated as |Vulcan |− |10B4;8=4 |
|10B4;8=4 |

×

100%, where |Vulcan| and |10B4;8=4 | refer to the size of the results produced by Vulcan and a
baseline, respectively.
Table 2 shows the reduction results. In general, Vulcan succeeds in producing smaller results

than Perses for every single subject. On average, the results of Vulcan contain 33.55% fewer tokens
than those of Perses. As for the execution time, Vulcan takes around 2 hours and 26 minutes to
�nish reducing on average, which is 2.45× and 1.96× of the time required by Perses and C-Reduce
respectively, and the longest execution time is restricted in 6 hours and 15 minutes. Compared with
Perses, we believe the extra computational cost required by Vulcan is acceptable considering that
the size is further reduced.
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Unsurprisingly, Vulcan does not outperform C-Reduce in terms of both size and execution time.
On average, the results of Vulcan contain 80.54% more tokens than those of C-Reduce. This is
expected since C-Reduce is speci�cally designed for reducing C/C++ programs and it has been
constantly tuned and improved for a long time since it was �rst designed [Regehr et al. 2022].
It should be noted that Vulcan is designed to help debug language processors where there is no
such a language-speci�c tool to reduce programs in the corresponding programming language.
Nevertheless, there are still two subjects, gcc-71626 and gcc-70586, in which Vulcan produces smaller
results than C-Reduce.
By analyzing the results, we found that Vulcan requires fewer property tests than C-Reduce

when the result of Perses (where auxiliary reducers start being invoked) is relatively small (e.g., gcc-
61917 ). However, when the result of Perses is large, Vulcan often requires more property tests than
C-Reduce (e.g., gcc-70127 ). We think this is because Vulcan does not have the transformations of
C-Reduce that can catch language-speci�c reduction opportunities (e.g., removing all the typedef
in C/C++ program) and eliminate a considerable number of tokens in a very short time at the
beginning.

RQ1: Vulcan can e�ectively enable further reduction on 1-minimal result produced by
Perses. On average, the results of Vulcan contains 33.55% fewer tokens than those of Perses.

Table 2. Evaluation results of Perses, C-Reduce, and Vulcan on C programs. The size of a program is measure

by the number of tokens it contains. O(#) is the size of the Original bug-triggering program. R(#) is the size of

the Reduced program. Q(#) is the number of required property test Queries. T(s) is the execution Time in

seconds. C(%) is the percentage Changes in size of Vulcan’s results w.r.t. Perses and C-Reduce.

Perses C-Reduce Vulcan C(%) w.r.t.
Bug O(#)

R(#) Q(#) T(s) R(#) Q(#) T(s) R(#) Q(#) T(s) Perses C-Reduce

clang-22382 21,068 144 2,392 851 70 13,186 1,364 108 10,363 1,521 -25.00% 54.29%
clang-22704 184,444 78 1,828 1,870 42 11,189 2,263 62 5,181 2,171 -20.51% 47.62%
clang-23309 38,647 464 4,626 3,012 118 32,167 4,455 303 62,593 9,843 -34.70% 156.78%
clang-23353 30,196 98 2,820 1,088 74 12,299 1,410 91 7,872 1,389 -7.14% 22.97%
clang-25900 78,960 239 2,527 1,672 90 16,517 2,022 104 10,382 2,605 -56.49% 15.56%
clang-26760 209,577 116 2,215 3,380 43 12,793 2,946 56 7,204 4,126 -51.72% 30.23%
clang-27137 174,538 180 5,046 15,857 50 25,049 9,078 88 14,085 18,593 -51.11% 76.00%
clang-27747 173,840 117 1,685 1,237 68 15,138 2,223 77 8,480 2,477 -34.19% 13.24%
clang-31259 48,799 406 2,435 2,523 168 26,997 5,549 276 56,473 17,364 -32.02% 64.29%
gcc-59903 57,581 316 4,247 5,628 105 48,652 7,314 197 26,095 8,330 -37.66% 87.62%
gcc-60116 75,224 443 5,335 3,839 168 39,262 6,131 247 59,359 9,768 -44.24% 47.02%
gcc-61383 32,449 272 3,476 3,941 84 23,169 4,516 209 31,705 13,900 -23.16% 148.81%
gcc-61917 85,359 150 2,941 2,344 65 23,138 3,832 103 10,028 2,963 -31.33% 58.46%
gcc-64990 148,931 240 3,460 3,047 65 23,358 5,190 204 14,823 5,061 -15.00% 213.85%
gcc-65383 43,942 153 2,031 1,547 63 14,840 2,280 84 4,918 2,150 -45.10% 33.33%
gcc-66186 47,481 328 2,756 2,642 115 18,258 5,153 227 26,615 18,767 -30.79% 97.39%
gcc-66375 65,488 440 3,141 3,869 56 21,181 8,057 227 30,792 14,918 -48.41% 305.36%
gcc-70127 154,816 301 2,772 4,590 84 21,507 7,556 230 30,502 17,309 -23.59% 173.81%
gcc-70586 212,259 159 4,458 8,684 130 35,794 8,043 106 18,326 22,434 -33.33% -18.46%
gcc-71626 6,133 51 575 57 46 7,179 417 38 1,763 104 -25.49% -17.39%

median 70,356 210 2,796 2,827 72 21,344 4,486 107 14,454 6,696 -32.68% 56.37%
mean 94,487 235 3,038 3,584 85 22,084 4,490 152 21,878 8,790 -33.55% 80.54%
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5.2 RQ2: Further Reduction on Language-Specific Tools’ Results

Table 3. Evaluation results of Vulcan and Perses on C-Reduce reduced C programs. C(%) is the percentage

Change in size w.r.t. the result of C-Reduce.

C-Reduce Perses Vulcan
Bug

R(#) R(#) Q(#) T(s) C(%) R(#) Q(#) T(s) C(%)

clang-22382 70 70 74 13 0 70 1,907 218 0
clang-22704 42 42 33 9 0 40 975 120 -4.76%
clang-23309 118 112 234 44 -5.08% 76 4,968 744 -35.59%
clang-23353 74 72 109 22 -2.70% 72 2,442 299 -2.70%
clang-25900 90 90 110 26 0 83 3,136 452 -7.78%
clang-26760 43 43 46 15 0 38 1,082 176 -11.63%
clang-27137 50 50 49 70 0 47 1,229 896 -6.00%
clang-27747 68 68 80 31 0 66 2,350 450 -2.94%
clang-31259 168 168 245 185 0 131 8,861 6,303 -22.02%
gcc-59903 105 105 122 52 0 103 3,360 646 -1.90%
gcc-60116 168 159 355 126 -5.36% 118 10,191 3,622 -29.76%
gcc-61383 84 84 145 79 0 84 2,409 2,179 0
gcc-61917 65 65 70 17 0 62 1,761 238 -4.62%
gcc-64990 65 65 58 19 0 62 1,580 306 -4.62%
gcc-65383 63 61 81 35 -3.17% 51 1,699 434 -19.05%
gcc-66186 115 115 294 114 0 112 3,153 3,374 -2.61%
gcc-66375 56 56 62 137 0 53 1,670 2,468 -5.36%
gcc-70127 84 84 98 117 0 76 2,614 1,521 -9.52%
gcc-70586 130 128 259 112 -1.54% 113 5,514 1,573 -13.08%
gcc-71626 46 46 42 3 0 38 1,054 37 -17.39%

median 72 71 90 40 0% 71 2,380 549 -5.68%
mean 85 84 116 73 -0.89% 75 3,098 1,303 -10.07%

Having demonstrated that Vulcan can e�ectively further reduce 1-minimal results produced by
AGRs, we took one step further to investigate whether Vulcan can further reduce results produced
by SPRs. Speci�cally, we used Vulcan to reduce C-Reduce’s results on the 20 bug-triggering C
programs.
The results are shown in Table 3. Overall, Vulcan further reduces C-Reduce’s results in 18 out

of 20 subjects. On average, 10.07% of the tokens are further reduced by Vulcan within around 22
minutes. Moreover, in 7 subjects, the percentage decrease in size w.r.t. C-Reduce is over 10%, In the
best case gcc-60116, 29.76% tokens are further reduced by Vulcan.
To ensure that the potential improvement brought by Vulcan is contributed by our entire

framework instead of the main reducer Perses, we also reduced C-Reduce’s results with Perses.
Table 3 shows the results. We found that Perses can only reduce 5 out of 20 subjects. In 4 out
of these 5 subjects, Vulcan’s results are much smaller than Perses’s results, and they have the
same size in the remaining one case, i.e. clang-23353. Over these 5 subjects, the average percentage
change in size of Perses’s result w.r.t. C-Reduce is only 5.36%, which is much smaller than Vulcan.
Therefore, we believe that the potential improvement brought by Vulcan is contributed by our
entire framework instead of the main reducer Perses.
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RQ2: Vulcan can further reduce C-Reduce’s results by 10.07% on C program benchmarks
on average. Therefore, we believe that it is worth trying to use Vulcan to reduce the outputs
of language-speci�c program reduction tool for a smaller result.

5.3 RQ3: Generality of Vulcan

To demonstrate the generality of Vulcan in di�erent programming languages, we evaluated Vulcan

on Rust programs and SMT-LIBv2 programs. In both experiments, we use Perses as our baseline, as
it is the state-of-the-art AGR. For Rust programs, we also add C-Reduce as a baseline. Although
C-Reduce is designed for C/C++ programs, it can also reduce the program in other languages using
its language-agnostic line-level and token-level reduction algorithms. According to the authors of
C-Reduce, C-Reduce happens to perform well in reducing Rust programs [Regehr et al. 2022]. We
also tried to use C-Reduce to reduce SMT-LIBv2 programs. However, our preliminary evaluation
shows that C-Reduce cannot e�ectively reduce most of these programs within a reasonable duration.
While both Perses and Vulcan can reduce almost all the bug-triggering programs that contain
hundreds of thousands of tokens to a program only containing hundreds of tokens in 1 hour, C-
Reduce can only remove hundreds or even tens of tokens after 2 hours in such subjects. Therefore,
C-Reduce is not included in the experiment with SMT-LIBv2 benchmarks.

Table 4. Evaluation results of Perses, C-Reduce, and Vulcan on Rust programs. C(%) is the percentageChanges

in size of Vulcan’s results w.r.t. Perses and C-Reduce.

Perses C-Reduce Vulcan C(%) w.r.t
Bug O(#)

R(#) Q(#) T(s) R(#) Q(#) T(s) R(#) Q(#) T(s) Perses C-Reduce

rust-44800 801 467 1,873 1,122 471 39,781 7,735 285 29,331 7,170 -38.97% -39.49%
rust-69039 190 114 761 523 109 7,649 734 101 17,739 5,285 -11.40% -7.34%
rust-77002 347 263 1,221 311 264 21,470 2,276 247 13,605 1,796 -6.08% -6.44%
rust-77320 173 39 99 13 39 2,581 166 39 959 66 0 0
rust-77323 81 13 38 4 13 453 28 13 194 13 0 0
rust-77910 63 34 104 13 23 1,415 101 21 985 74 -38.24% -8.70%
rust-77919 132 74 297 55 70 6,190 459 62 3,807 272 -16.22% -11.43%
rust-78005 182 102 281 20 75 5,172 344 12 708 73 -88.24% -84.00%
rust-78325 65 28 52 15 34 2,341 130 28 494 41 0 -17.65%
rust-78651 957 17 83 36 12 1,414 86 9 258 52 -47.06% -25.00%
rust-78652 263 56 182 39 49 3,261 195 49 3,107 198 -12.50% 0
rust-78655 28 26 39 4 26 1,813 98 26 471 27 0 0
rust-78720 121 72 171 32 51 6,700 523 56 2,934 267 -22.22% 9.8%

median 173 56 171 32 49 3,261 195 39 1,052 93 -12.50% -7.34%
mean 262 100 400 168 95 7,711 990 73 5,738 1,180 -21.61% -14.63%

5.3.1 Evaluation on Rust Programs. To evaluate the performance of Vulcan on Rust programs, we
built a set of benchmarks consisting of 13 real-world bug-triggering Rust programs from the issue
tracking system of Rust [Rust 2022]. We then used C-Reduce, Perses, and Vulcan to reduce the
original programs. The results are shown in Table 4.
Overall, Vulcan outperforms both Perses and C-Reduce in terms of the size of the reduced

programs. On average, the result output by Vulcan contains 21.61% and 14.63% fewer tokens than
those output by Perses and C-Reduce, respectively. This signi�cant improvement is particularly
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evident in the case of the bug-triggering program rust-78005, where the result produced by Vulcan

contains 88.24% and 84.00% fewer tokens than those produced by Perses and C-Reduce, respectively.
Additionally, it is important to note that the most valuable feature of Vulcan is its ability to further
reduce programs that cannot be su�ciently reduced by previous AGRs. If we only consider cases
where the programs still contain more than 50 tokens after being reduced by Perses, the percentage
changes in size of Vulcan’s results w.r.t. Perses and C-Reduce are 27.95% and 19.84%, respectively.
In terms of execution time, Vulcan can �nish reduction in 2 hours for all subjects, and in 10 out of
13 subjects, the reduction is �nished in less than 5 minutes.

We manually analyzed the case rust-78720 since it is the only case where C-Reduce outperforms
Vulcan in terms of size. We found that the result of C-Reduce is syntactically invalid. In this case, the
program does not have to be syntactically valid to trigger the bug. C-Reduce can reduce rust-78720
to such a result because its token-level and line-level program reducer do not care about the syntax
of the program. However, Vulcan mainly focuses on generating and performing property testing
on syntactically valid programs to improve e�ciency, Thus, it misses the small syntactically invalid
result and produces a slightly larger but syntactically valid program.
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Fig. 5. Evaluation results of Perses and Vulcan on SMT-LIBv2 benchmarks.

5.3.2 Evaluation on SMT-LIBv2 Programs. The programs we used for this experiment are from
ddSMT2.0 [Kremer et al. 2021]. We �ltered out the programs that cannot be parsed because they
cannot be handled by the baseline Perses, a tree-based program reduction tool. In total, 93 programs
are collected for our evaluation and their numbers of tokens range from 15 to 120,757 (average
6,917).
Figure 5a shows the experiment results. Each cross or dot in the �gure represents a reduction

result, where its x-coordinate is the execution time of the reduction, and the y-coordinate is the size
of the reduced program. To better visualize the di�erence between Perses’s and Vulcan’s results for
each subject, we calculated the percentage decrease in size that Vulcan achieves w.r.t. Perses for
each subject and the extra time required by Vulcan in reduction. The comparison results are shown
in Figure 5b. On average, the percentage decrease in size of Vulcan w.r.t. Perses is 31.34%. In 75 out
of 93 subjects, the output of Vulcan is smaller than that of Perses, and in 23 subjects, the size of
Vulcan’s output is smaller than half of the size of Perses’s output. In terms of execution time, in 91
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out of 93 subjects, the extra time required by Vulcan is less than half an hour, and in the other two
subjects, Vulcan can �nish within an extra hour.

As mentioned previously, Vulcan is most useful when previous AGRs cannot su�ciently reduce
the program. To investigate how Vulcan performs in this intended application scenario, we excluded
the cases where the results output by Perses contain fewer than 200 tokens, and evaluated Vulcan

with the remaining 40 cases. In these 40 cases, the output of Vulcan is consistently smaller than
that of Perses, and in 22 cases, the size of Vulcan’s output is smaller than half of the size of Perses’s
output. Moreover, on average, in the intended application scenario of Vulcan, the percentage
decrease in size is 52.01%, which further demonstrates the e�ectiveness of Vulcan.

RQ3: Vulcan can e�ectively reduce programs in di�erent programming languages. For Rust
programs, on average, Vulcan can produce results that contain 21.61% fewer and 14.63%
fewer tokens than those of Perses and C-Reduce, respectively. For SMT-LIBv2 programs,
Vulcan’s output contains 31.34% fewer tokens than Perses’s output on average. If we restrict
our analysis to cases where Perses cannot su�ciently reduce the program, the calculated
average percentage decreases in size presented above will be increased to 27.95%, 19.84%,
and 52.01%, respectively.

5.4 RQ4: E�ectiveness of Each Auxiliary Reducer

Table 5. Results of Vulcan�� , Vulcan�' and Vulcan(' reducing the 1-tree-minimal program output by Perses.

E(#) is the number of Eliminated tokens in reduction.

Perses Vulcan�� Vulcan�' Vulcan(' Vulcan
Bug

R(#) E(#) Q(#) T(s) E(#) Q(#) T(s) E(#) Q(#) T(s) E(#)

clang-22382 144 0 2,081 99 36 5,935 565 10 2,771 272 36
clang-22704 78 4 2,171 108 12 582 59 6 4,332 420 16
clang-23309 464 38 34,366 1,965 163 25,414 4,611 0 6,482 1,109 161
clang-23353 98 7 2,676 110 7 2,871 230 0 1,689 176 7
clang-25900 239 108 4,525 245 45 11,269 1,356 0 3,521 404 135
clang-26760 116 2 2,234 125 42 1,836 474 0 1,459 296 60
clang-27137 180 5 5,317 513 87 3,951 2,172 0 2,356 965 92
clang-27747 117 3 2,160 164 40 3,862 805 0 1,715 448 40
clang-31259 406 54 31,021 3,761 84 20,586 11,483 0 5,127 3,577 130
gcc-59903 316 7 9,737 564 141 12,569 2,071 126 6,692 1,394 119
gcc-60116 443 104 39,934 2,485 200 28,561 7,329 0 5,955 1,780 196
gcc-61383 272 38 19,185 2,817 35 11,660 7,479 10 4,654 4,164 63
gcc-61917 150 2 3,613 164 42 3,757 428 7 2,376 280 47
gcc-64990 240 0 3,505 193 36 7,812 1,701 0 2,947 497 36
gcc-65383 153 56 1,682 160 26 3,418 796 0 1,966 458 69
gcc-66186 328 60 9,860 1,529 48 11,637 9,063 0 4,187 3,403 101
gcc-66375 440 171 17,028 3,448 61 52,589 23,075 0 6,184 3,955 213
gcc-70127 301 25 16,428 3,592 73 12,330 9,631 0 4,085 4,464 71
gcc-70586 159 9 7,628 1,768 53 6,017 9,201 1 2,909 4,556 53
gcc-71626 51 0 643 18 10 218 10 3 699 28 13

median 210 8 8,708 3,838 44 10,874 6,186 0 6,632 3,899 66
mean 235 35 13,828 4,775 62 14,382 8,211 8 6,644 5,216 82.9
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In this research question, we evaluated the performance of each auxiliary reducer proposed by us.
Speci�cally, we created three variants of Vulcan, namely, Vulcan�� , Vulcan�' , and Vulcan(' where
each of them only enables one of the three proposed auxiliary reducers: Tree-Based Local Exhaustive
Enumeration (EE), Sub-Tree Replacement (SR), and Identi�er Replacement (IR), respectively. To focus
on the performance of each auxiliary reducer, we run these variants with the 1-minimal results
produced by Perses on the C program benchmarks. This method helps us to save property test
queries and execution time required to achieve 1-minimality.

Table 5 shows the results of all the three variants reducing the C programs that have been reduced
by Perses. In general, all three variants can reduce the size of Perses’s results in some subjects of
the C program benchmarks. Speci�cally, Vulcan�� has the shortest execution time and it succeeds
in reducing tokens in 17 out of 20 subjects. Vulcan�' succeeds in reducing tokens in all subjects,
and it reduces around 26% of the tokens in Perses’s results on average. Vulcan(' reduces tokens in
8 out of 20 subjects, which is not as good as the other two variants but still e�ective. Interestingly,
in four subjects, Vulcan�' eliminates more tokens than Vulcan. We believe this is because Vulcan
utilizes Tree-Based Local Exhaustive Enumeration before Identi�er Replacement, and the e�ect of
Tree-Based Local Exhaustive Enumeration kills some better potential reduction opportunities which
originally can be caught by Identi�er Replacement.

We also measured the reduction speed of each variant, i.e., the number of eliminated tokens per
second. On average, Vulcan�� can reduce 0.029 tokens per second, which is the fastest one among
all the three variants. The second fastest one is Vulcan�' , which can reduce 0.014 tokens per second.
Vulcan(' is the slowest, which only reduces 0.005 tokens per second. This result conforms to our
analytical result introduced in §4.4.

RQ4: All the proposed auxiliary reducers are e�ective in enabling further reduction from
1-minimal results produced by AGRs. Among them, Identi�er Replacement is the most
e�ective one, and Tree-Based Local Exhaustive Enumeration is the most e�cient one.

5.5 RQ5: Performance with a More Aggressive Reduction Se�ing

In this research question, we investigated whether Vulcan can produce a smaller result if we increase
the value of two parameters, flimit and fwsize, and run Vulcan in �xpoint mode. We implemented a
variant of Vulcan named Vulcan+ by increasing flimit from 10 to 15 and fwsize from 4 to 6, and also
making it run in �xpoint mode.

We evaluated Vulcan+ on the same C programs in RQ1. The results are shown in Table 6. Overall,
the reduced program of Vulcan+ contains 5.89% fewer tokens than that of Vulcan at the cost of
requiring around 1.8× execution time. In 14 out of 20 subjects, Vulcan+ succeeds in producing a
smaller result than Perses. Notably, in 7 subjects, the reduced program of Vulcan+ is 10% smaller
than that of Vulcan, and in the subject clang-23309, this percentage reaches 27.06%.

RQ5: On average, the output of Vulcan+ contains 5.89% fewer tokens than that of Vulcan
at the cost of taking 1.81 × the execution time of Vulcan to �nish, which demonstrates
Vulcan can produce smaller results if it is deployed with a more aggressive setting.

6 DISCUSSION

In this section, we discuss how the values of flimit and fwsize and the orders of the auxiliary reducers
a�ect the performance of Vulcan.
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Table 6. Evaluation results of Vulcan and Vulcan+ on C program benchmarks. C(%) is the size change

percentages of Vulcan+.

Perses Vulcan Vulcan+ C(%) w.r.t.
Bug

R(#) R(#) Q(#) T(s) R(#) Q(#) T(s) Perses Vulcan

clang-22382 144 108 10,363 1,521 105 36,385 2,775 -27.08% -2.78%
clang-22704 78 62 5,158 2,171 62 13,291 2,490 -20.51% 0
clang-23309 464 303 62,593 9,843 221 245,942 20,266 -52.37% -27.06%
clang-23353 98 91 7,872 1,389 81 44,377 2,958 -17.35% -10.99%
clang-25900 239 104 10,382 2,605 102 50,896 4,844 -57.32% -1.92%
clang-26760 116 56 7,204 4,126 50 38,063 5,471 -56.90% -10.71%
clang-27137 180 88 14,085 18,593 86 51,767 23,160 -52.22% -2.27%
clang-27747 117 77 8,480 2,477 73 30,163 3,925 -37.61% -5.19%
clang-31259 406 276 56,473 17,364 269 216,614 41,935 -33.74% -2.54%
gcc-59903 316 197 26,095 8,330 194 95,733 12,972 -38.61% -1.52%
gcc-60116 443 247 59,359 9,768 204 361,654 26,424 -53.95% -17.41%
gcc-61383 272 209 31,705 13,900 209 86,581 19,025 -23.16% 0
gcc-61917 150 103 10,028 2,963 101 41,453 4,631 -32.67% -1.94%
gcc-64990 240 204 14,823 5,061 204 44,490 6,781 -15.00% 0
gcc-65383 153 84 4,918 2,150 84 16,532 2,907 -45.10% 0
gcc-66186 328 227 26,615 18,767 188 90,776 32,040 -42.68% -17.18%
gcc-66375 440 227 30,792 14,918 227 124,161 33,014 -48.41% 0
gcc-70127 301 230 30,502 17,309 223 108,461 29,712 -25.91% -3.04%
gcc-70586 159 106 18,326 22,434 92 56,063 48,043 -42.14% -13.21%
gcc-71626 51 38 1,763 104 38 6,012 201 -25.49% 0

median 210 107 14,454 6,696 104 51,332 9,877 -38.11% -2.40%
mean 235 152 21,878 8,790 141 88,071 16,183 -37.41% -5.89%

6.1 Impact of the Order of the Auxiliary Reducers
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Fig. 6. Evaluation results of Vulcan using di�erent orders of auxiliary reducers on the C benchmarks.
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As aforementioned in §4.4, we deduce a relatively reasonable order by analyzing the design goal
and computational complexity of each auxiliary reducer and set this order as the default order
of Vulcan. In §5, the extensive evaluation results demonstrated the e�ectiveness of this order.
However, it is unclear how Vulcan performs with other orders of the auxiliary reducers. To better
understand how the orders of the auxiliary reducers a�ect the performance, we proposed �ve
variants: Vulcan�'−('−�� , Vulcan�'−��−(' , Vulcan('−�'−�� , Vulcan('−��−�' , and Vulcan��−('−�' .
Each of them has a di�erent order of the auxiliary reducers from Vulcan, and the subscript indicates
the order. We ran Vulcan and all these variants to reduce the 20 C programs.

As shown in Figure 6, all the variants of Vulcan have di�erent performance, but all of them signi�-
cantly outperform Perses in terms of the output’s size. In general, the variant which overall produces
smaller results also requires a longer execution time on average. For example, Vulcan�'−('−�� and
Vulcan�'−��−(' produce smaller results in general than other variants, but they also take relatively
longer execution time than other variants. Nevertheless, there are also variants outperformed by
other variants in terms of both metrics. For example, compared with Vulcan('−��−�' , both Vulcan

and Vulcan�'−('−�� produce smaller results while taking a shorter execution time on average. As
for the default order that we proposed, its performance in terms of output’s average size is compa-
rable to Vulcan�'−('−�� , the best variant on this metric. Meanwhile, the average execution time
taken by the default order is relatively short, which is only longer than those of Vulcan('−�'−��
and Vulcan��−('−�' , the two most ine�ective variants.

6.2 Impact of the Parameters
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Fig. 7. Evaluation results of Vulcan with di�erent flimit on the C benchmarks.

In the prototype of Vulcan, the two parameters flimit and fwsize are set with default values. These
values are selected based on our intuition and analysis to achieve a balance between the e�ectiveness
and execution time. However, it should be noted that these parameters can be customized by users
to trade o� between the size of the result and the execution time to suit their needs.
To provide more insights for adjusting the parameters, we conducted a parameter study to

investigate the impact of the two parameters. In the experiment, we keep one parameter with its
default value and set the other parameter with 3 di�erent values. Figure 7 shows the results of
running Vulcan on the C benchmarks with di�erent flimit. As shown in Figure 7a, Vulcan tends
to produce smaller results with a higher value of flimit, though the improvement is moderate. As
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Fig. 8. Evaluation results of Vulcan with di�erent fwsize on the C benchmarks.

for the execution time, Figure 7b shows the experiment result. In general, as flimit increases, the
required execution time noticeably increases.
The impact of fwsize is investigated in the same way. As shown in Figure 8, in general, when

fwsize increases, the size of the output decreases, and the execution time increases. However, the
overall decrease in size of the result is rather limited, especially when fwsize is greater than 3.

7 RELATED WORK

AGRs. Delta Debugging (DD) [Zeller and Hildebrandt 2002] is the �rst work that opens up
the research direction on test case reduction. It proposed two algorithms, dd and ddmin. dd can
minimize the di�erence between a failure-inducing test case and a given test case that can be
correctly handled. ddmin is a special case of dd, and it directly minimizes the failure-inducing test
case by minimizing the di�erence between the test case and an empty test case. However, ddmin
regards code as plain strings of tokens, and thus it does not perform well when the failure-inducing
test case is large and structural. To overcome this obstacle, Misherghi and Su proposed Hierarchical
Delta Debugging (HDD) [Misherghi and Su 2006], which leverages the tree structure of the test
cases to facilitate the reduction process. Speci�cally, HDD performs ddmin, the algorithm proposed
in DD, on the parse tree of the test case, from the topmost level to the bottommost level. In this way,
HDD can e�ciently handle large and highly-structured test cases. Hodován et al. also proposed
Coarse Hierarchical Delta Debugging (CHDD) to further accelerate the reduction process [Hodován
et al. 2017]. Berkeley Delta utilizes topform�at to identify nested structures and then perform
ddmin on them [McPeak et al. 2003]. Despite their e�ectiveness, none of these aforementioned
techniques preserves the syntactical validity of the test case during the reduction process. As
a result, when these tools perform program reduction, many syntactical invalid programs are
generated and tested against the property. These invalid programs can hardly pass the property
tests, and executing property tests on these programwastes considerable time. To solve this problem,
Sun et al. proposed Perses, a syntax-guided program reduction tool to facilitate the reduction process
by promising only to generate and test syntactically valid program [Sun et al. 2018]. Chisel is
another program reduction tool designed for program debloating [Heo et al. 2018]. It accelerates
the reduction by using a reinforcement learning-based approach. Moreover, ProbDD introduces
Bayesian optimization to model the probability of each element appearing in the minimal result,
and prioritizes the reduction of those with high probability [Wang et al. 2021].
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These reduction techniques aforementioned strive to reduce programs to 1-minimality. Once
a 1-minimal result is obtained, they cannot further reduce the program. By contrast, Vulcan can
continue reducing by performing �ne-granularity program transformations and provide developers
a much smaller bugging-triggering test case, thus facilitating the debugging process.
SPRs. In addition to the language-agnostic program reduction tools like HDD and Perses, some
reducers only focus on reducing speci�c languages. For example, C-Reduce is speci�cally designed
to reduce C/C++ programs [Regehr et al. 2012]. It �rst uses Clang front end to parse the program to
be reduced and then invokes a collection of plugins to reduce the program. Each plugin performs a
series of well-crafted transformations designed only for C/C++ language. J-Reduce is a reduction
tool for Java bytecode proposed by Kalhauge and Palsberg [Kalhauge and Palsberg 2019]. They
modeled the task of reducing inputs with many internal dependencies as a problem of dependency
graph reduction and proposed a general strategy to solve this problem. Their following work
further improved J-Reduce using �ner-grained modeling of dependencies [Kalhauge and Palsberg
2021]. JS Delta employs WALA static analysis [IBM 2017] to reduce JavaScript programs [JS Delta
2017]. ddSMT is a program reduction tool for the SMT-LIBv2 format speci�cally [Niemetz and
Biere 2013]. It achieves better performance on inputs in SMT-LIBv2 format by supporting handling
the language-speci�c features, such as macros, named annotations, and scopes de�ned by push
and pop commands. ddSMT2.0 is a successor of ddSMT [Kremer et al. 2021]. It improves ddSMT
by using a hybrid minimization strategy including both the ddmin-based strategy used in ddSMT
and an orthogonal hierarchical strategy. It also extends ddSMT by supporting the entire family
of SMT-LIBv2 language dialects. All these SPRs usually can work e�ectively for only one speci�c
programming language. In contrast, our framework, Vulcan, is a language-agnostic program
reduction tool and can e�ectively reduce programs in di�erent languages.

8 CONCLUSION

In this paper, we proposed Vulcan, a language-agnostic program reduction framework to further
minimize the results of AGRs by exploiting the formal syntax of the language to perform diverse
program transformations. These transformations can either create reduction opportunities for
other reduction algorithms to progress or directly delete bug-irrelevant program elements from
the results. We also proposed three simple but e�ective examples of program transformations:
Identi�er Replacement, Sub-Tree Replacement, and Tree-Based Local Exhaustive Enumeration, and
implemented a prototype of Vulcan on top of Perses with these three transformations incorporated.
By conducting extensive evaluation with multilingual benchmarks including C, Rust and SMT-

LIBv2 programs, we demonstrated the e�ectiveness and generality of Vulcan. On average, the
result of Vulcan contains 33.55%, 21.61%, and 31.34% fewer tokens than that of the state-of-the-art
AGR, Perses, on C, Rust, and SMT-LIBv2 subjects respectively. If more execution time is allocated,
the result of Vulcan can be even smaller. Moreover, Vulcan can even further reduce the results
produced by C-Reduce for C programs. We believe Vulcan can e�ectively facilitate the debugging
process of language processors.
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