
266

Building Dynamic System Call Sandbox with

Partial Order Analysis

QUAN ZHANG, CHIJIN ZHOU, YIWEN XU, ZIJING YIN, MINGZHE WANG, and ZHUO
SU, BNRist, School of Software, Tsinghua University, China
CHENGNIAN SUN, Cheriton School of Computer Science, University of Waterloo, Canada

YU JIANG∗, BNRist, School of Software, Tsinghua University, China
JIAGUANG SUN, BNRist, School of Software, Tsinghua University, China

Attack surface reduction is a security technique that secures the operating system by removing the unnecessary

code or features of a program. By restricting the system calls that programs can use, the system call sandbox

is able to reduce the exposed attack surface of the operating system and prevent attackers from damaging it

through vulnerable programs. Ideally, programs should only retain access to system calls they require for

normal execution. Many researchers focus on adopting static analysis to automatically restrict the system calls

for each program. However, these methods do not adjust the restriction policy along with program execution.

Thus, they need to permit all system calls required for program functionalities.

We observe that some system calls, especially security-sensitive ones, are used a few times in certain stages

of a program’s execution and then never used again. This motivates us to minimize the set of required system

calls dynamically. In this paper, we propose DynBox, which gradually disables access to unnecessary system

calls throughout the program’s execution. To accomplish this, we utilize partial order analysis to transform the

program into a partially ordered graph, which enables efficient identification of the necessary system calls at

any given point during program execution. Once a system call is no longer required by the program, DynBox

can restrict it immediately. To evaluate DynBox, we applied it to seven widely-used programs with an average

of 615 KLOC, including web servers and databases. With partial order analysis, DynBox restricts an average of

23.50, 16.86, and 15.89 more system calls than the state-of-the-art Chestnut, Temporal Specialization, and the

configuration-aware sandbox, C2C, respectively. For mitigating malicious exploitations, on average, DynBox

defeats 83.42% of 1726 exploitation payloads with only a 5.07% overhead.

CCS Concepts: • Security and privacy→ Trust frameworks.

Additional Key Words and Phrases: System Call Sandbox, Program Analysis, Attack Surface Reduction

ACM Reference Format:

Quan Zhang, Chijin Zhou, Yiwen Xu, Zijing Yin, Mingzhe Wang, Zhuo Su, Chengnian Sun, Yu Jiang, and Ji-

aguang Sun. 2023. Building Dynamic System Call Sandbox with Partial Order Analysis. Proc. ACM Program.

Lang. 7, OOPSLA2, Article 266 (October 2023), 28 pages. https://doi.org/10.1145/3622842

∗Yu Jiang is the corresponding author.

Authors’ addresses: Quan Zhang, zhangq20@mails.tsinghua.edu.cn; Chijin Zhou, tlock.chijin@gmail.com; Yiwen Xu,

xuyiwen14@gmail.com; Zijing Yin, Aurora@europe.com; Mingzhe Wang, wmzhere@gmail.com; Zhuo Su, suzcpp@gmail.

com, BNRist, School of Software, Tsinghua University, Beijing, China; Chengnian Sun, cnsun@uwaterloo.ca, Cheriton

School of Computer Science, University of Waterloo, Waterloo, ON, Canada; Yu Jiang, jiangyu198964@126.com, BNRist,

School of Software, Tsinghua University, Beijing, China; Jiaguang Sun, sthuse20@outlook.com, BNRist, School of Software,

Tsinghua University, , China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART266

https://doi.org/10.1145/3622842

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3622842
https://doi.org/10.1145/3622842

266:2 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

1 INTRODUCTION

As software systems become increasingly complex, it is inevitable that security vulnerabilities will
be introduced. Despite the usage of advanced testing and defense techniques [Abadi et al. 2009;
Zalewski 2016; Zhang et al. 2023a; Zhou et al. 2022], these programs may still be exposed to potential
vulnerabilities, creating a large attack surface for adversaries to exploit and further compromise the
host operating system (OS). To mitigate such exploitation attempts, security researchers have begun
restricting the capabilities available to attackers. System calls (syscalls) are one of the essential
capabilities during the exploitation as attackers need them to achieve their goals, such as socket
listening or malicious code execution. In order to reduce the OS’s attack surface, it is necessary to
restrict the available syscalls of a program by building a syscall sandbox. With a proper policy, such
a syscall sandbox can isolate the vulnerable program without interrupting its normal execution.
After restricting available syscalls for the program with a strict syscall sandbox policy, even if
attackers exploit this vulnerable program, it is much more difficult for them to cause damage to OS.
This type of sandbox is widely used to isolate vulnerable sub-components, such as the JavaScript
engine of browsers.
Many techniques are proposed to build syscall sandboxes with custom sandbox policies for

programs [Canella et al. 2021; Ghavamnia et al. 2020, 2022]. They all aim to accurately resolve the
minimal set of syscalls required by a program as the policy. To this end, many efforts have been
made to construct a more precise call graph. With the call graph, existing methods can determine
the potential reachable functions and collect all syscalls invoked in these functions as the required
syscall set. Then, existing methods manually select one or two transition points between the
program’s different execution phases and enforce syscall restriction policies at these transition
points. Most works directly set policy at the beginning of a program, permitting all syscalls that may
be used by the program. Apart from this, Temporal Specialization (Temp) [Ghavamnia et al. 2020]
attempts to enforce a tighter policy once more at the transition point of initialization completion,
so it can further restrict syscalls that are only required during the initialization phase. After
enforcing restrictions at these two transition points, the syscall sandbox policies remain fixed and
are never changed in the subsequent phases. Existing approaches with such fixed policies lack strict
constraints, because many complex programs inherently require a large number of critical syscalls,
such as execve, fork, and setuid, in different running phases with different functionalities. Thus,
existing works have to permit all critical syscalls required for the programs’ subsequent execution
and will not adjust the policy further, even though these critical syscalls are only required in certain
phases and not used thereafter. This allows attackers to utilize these critical syscalls to damage
the OS when exploiting a vulnerable program running on it. Therefore, it is crucial to identify
more transition points between a program’s different execution phases for dynamically forbidding
unnecessary syscalls, and existing works leave much to be desired.

Themain challenge that prevents existing methods from achieving dynamical syscall restriction is
that manually identifying positions where the program’s syscall requirement changes is difficult and
imprecise. First, manually identifying a transition point of any two phases is labor-consuming and
requires expert experience. Moreover, a program usually has a complex lifecycle with many phases,
making it impossible to divide all of them manually. Furthermore, through manual identification,
these transition points between the program’s execution phases cannot accurately capture the
reduction positions where the program’s required syscall set decreases. Therefore, an urgent demand
exists for a dynamic syscall sandbox that can automatically identify these reduction positions and
promptly restrict unnecessary syscalls.
Thus, we propose a syscall sandbox called DynBox that dynamically restricts unnecessary

syscalls according to the program’s requirement. When a program reaches a reduction position

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:3

where a syscall becomes no longer required for subsequent execution, DynBox enforces the syscall
restriction policy to restrict the syscall. Specifically, the problem of identifying the reduction
position is simplified into calculating the possible execution order of any two instructions. Based
on the execution order, we can know, after each instruction, which syscall invocations will never
be executed, thereby identifying the reduction position where the syscall becomes unnecessary.

To this end, the partial order analysis is proposed to resolve the execution order of instructions.
The analysis first finds candidate reduction positions to build the candidate graph according to the
control flow. Then, the candidate graph is transferred into the partially ordered graph, whose nodes
are mapped from instructions of a program, and edges are transferred from the candidate graph’s
edges. This graph guarantees that for any two nodes =0 and =1 on the graph, if there is an edge
from =0 to =1 , then the instruction mapped to =0 can only be executed before the one mapped to =1 .
Based on this graph, the analysis determines the execution order of instructions. By obtaining all
subsequent syscall invocations for an instruction �8 , we can determine the set of syscalls required
by the program for subsequent execution starting from �8 (i.e., the required syscall set). Finally,
the analysis identifies reduction positions, where the required syscall set reduces, and performs
instrumentation at these positions with syscall restriction policies to construct DynBox. During
the program’s execution, these restriction policies are gradually enforced, and the sandbox is thus
tightened. We ensure that DynBox will not interfere with the program’s normal execution.
We implement the partial order analysis based on LLVM [Lattner and Adve 2004] and adopt

the Linux Seccomp BPF [Kernel 2022] to construct DynBox. To validate the effectiveness and
scalability of DynBox, we build DynBox for seven complex applications with an average of 615
KLOC, including web servers (Httpd, Nginx), databases (Redis, Memcached, SQLite), a DNS system
(Bind), and a compression tool (Tar). All of them are widely used and prone to many critical
vulnerabilities. We collect 43 exploitable vulnerabilities for all programs and locate their possible
exploitation positions. On each position, we evaluate how many syscalls that DynBox restricts
when the program executes at this position. The results show that DynBox forbids 23.50, 16.86, and
15.89 more syscalls than three state-of-the-art syscall sandboxes, Chestnut [Canella et al. 2021],
Temp [Ghavamnia et al. 2020] and C2C [Ghavamnia et al. 2022], respectively. Furthermore, DynBox
can precisely restrict critical syscalls, such as bind, listen, and socket, at the proper positions,
even if they are required by the core functionalities of the programs. By dynamically adjusting the
sandbox policy, DynBox can block 1440 of 1726 (83.42%) malicious payloads on average. Meanwhile,
we ensure that DynBoxwill not interfere with the normal execution of programs, and it only incurs
5.07% runtime costs and 4.23% binary size expansion.
In summary, our work makes the following contributions.

• We propose DynBox, a dynamic syscall sandbox, that gradually restricts unnecessary syscalls
to continuously reduce the attack surface during the program’s execution.
• We design partial order analysis to build DynBox. The analysis can automatically identify the
reduction positions where syscalls become no longer required, and enforce syscall restriction
policies at these positions.
• We implement DynBox and evaluate its effectiveness on seven complex programs. On
average, On average,DynBox surpasses existing syscall sandboxes by restricting an additional
15.89∼23.50 syscalls, effectively mitigating 83.42% of exploitation payloads.

Our paper is organized as follows. In Section 2, we introduce the background and highlight the
main focus of this paper. Then, we present a motivation example in Section 3. The design of DynBox
is illustrated in Section 4. Next, we evaluate DynBox in Section 6 from three aspects. We discuss
the limitation of DynBox and introduce related works in Section 7 and Section 8, respectively.
Finally, we conclude the paper in Section 9.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:4 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

2 BACKGROUND

2.1 Syscall Sandbox

Syscall sandbox is an isolation technique that restricts the usable syscall of a program. Recently,
operating systems have introduced new mechanisms to set a syscall sandbox for a program, such as
Seccomp BPF for Linux and Pledge for OpenBSD [Kernel 2022; Pal 2018]. By isolating the vulnerable
program with a syscall sandbox, operating systems can effectively restrict the damage caused by
vulnerability exploitation of this program and protect itself. Here we take the Seccomp BPF as an
example to introduce the syscall sandbox.

Seccomp BPF [Kernel 2022] is a mechanism that Linux provides to build the syscall sandbox. By
loading a Berkeley Packet Filter (BPF) [McCanne and Jacobson 1993] program into the kernel, we
can set a policy for the target program. In the BPF program, we can define the policy for restricting
syscall. After loading BPF, each time the target program invokes a syscall, Linux runs the BPF
program to check whether the calling complies with the policy. If the syscall is forbidden, Linux will
send a signal to the target program and terminate its execution. Seccomp BPF is now widely used to
build the sandbox. For example, Docker uses it to restrict the privilege of a container [Merkel 2014].
Browsers use Seccomp BPF to isolate the render process since it contains many vulnerabilities and
is frequently exploited [Narayan et al. 2020; Reis et al. 2019].
To set a policy, a program needs to invoke syscalls prctl or seccomp by itself. By invoking

them multiple times, the program can augment existing syscall restriction policies with new ones.
Consequently, by appropriately instrumenting prctl or seccomp syscalls within the program’s
code, we produce a sandbox-enhanced binary for this program. When executing such binary, the
program will execute the instrumented codes at proper execution positions. In this way, it can
progressively enforce new policies to restrict the syscalls that just become unnecessary, and finally
a dynamic syscall sandbox is built for this program. However, removal of a restriction policy is
forbidden, thus making the syscall sandbox only more stringent. Hence, when restricting a syscall,
it is crucial to ascertain that the program no longer requires it.

The policy of Seccomp BPF is thread-independent and process-independent. Once a new thread
or process is spawned, it must inherit the policy of its parent. This means that a child’s policy
cannot override the policy of its parent, but can only add new restrictions. Thus, Seccomp BPF
allows us to build a dynamic sandbox for each process and thread.

2.2 Vulnerability Exploitation

Vulnerabilities are inevitable during the development of a program. Once the program is deployed
to the real world, its vulnerabilities can be utilized as entry points by the attackers to compromise
the OS [Kemerlis et al. 2012; Szekeres et al. 2013; Zhang et al. 2021; Zhou et al. 2023]. Usually,
attackers exploit a vulnerability in the program and hijack the program’s control flow to execute
malicious codes, which is also called payloads. The impact of malicious payloads is not limited
to the vulnerable program but the host OS. They may steal vital information, execute arbitrary
commands or even get the root privilege of the system.

To achieve the attack objectives, attackers must interact with OS and invoke many syscalls. For
example, execve is widely utilized for executing commands. To escalate privilege, setuid is usually
called. Additionally, attacks through the Internet need syscalls related to the network (e.g., listen,
bind). For concurrent bugs, sched_setaffinity is normally used for improving the probability
of a successful attack. On some vulnerabilities, attackers may not get the privilege, but they can
still steal information with syscalls like open and read. If we can build a syscall sandbox to isolate
the vulnerable program and restrict program’s unnecessary syscalls, we can effectively reduce the
attack surface and protect the OS [Li et al. 2017].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:5

2.3 Focus of This Paper

DynBox aims to defend the operating system against attacks using vulnerable programs as entry
points by dynamically minimizing the exposed attack surface. We assume that programs are not
malicious but contain exploitable vulnerabilities. Deployed with these vulnerable programs, the OS
exposes a wide attack surface to attackers. They can take over the program and use it as a stepping
stone to compromise the entire system.

If we can apply a suitable syscall sandbox for a program, even when attackers successfully hijack
its control flow, the accessible syscalls are still restricted by the sandbox. Thus, we can block such
attacks from taking over vulnerable programs and reduce the damage that a compromised program
can cause. Moreover, DynBox is not specific for certain kinds of vulnerabilities (e.g., memory safety
bug or logic bug.) [Nagarakatte et al. 2009], or exploitation methods (e.g., code injection, code
reuse) [Schuster et al. 2015; Shacham 2007; Younan et al. 2012], thus bringing universal protection
for operating systems.
In this paper, DynBox primarily focuses on programs whose code remains unchanged. It is

because DynBox requires analyzing their potential control flow. In addition, we need to preprocess
the dynamic libraries of a program. Therefore, currently, programs with dynamically loaded
libraries [Project 2023] or self-modifying code are not supported. In addition, DynBox relies on two
static analysis tools that are essential components of our trusted computation base (TCB), enabling
the resolution of indirect calls and analysis of dynamic library binaries.

It is important to note that the syscall sandbox should not interrupt the normal execution of the
program. Therefore, a syscall can only be restricted when it is deemed unnecessary. If an attacker
exploits a vulnerability by utilizing limited syscalls at the exploitation position where these syscalls
are still required for the program’s subsequent execution, DynBox may not be able to provide
protection in such cases.

Fig. 1. The variety of required syscall set during the execution of Nginx. The syscalls within the ellipses
are required for the program’s execution at the corresponding positions. The “Function Call” are functions
invoked in different phases. The vulnerability CVE-2016-0746 is located at ngx_resolve_name_locked.

3 MOTIVATING EXAMPLE

In this section, we illustrate the motivation of our work by analyzing a vulnerability in Nginx.
CVE-2016-0746 [MITRE 2016] is a use-after-free (UAF) vulnerability in Nginx, which is one of the
most critical types of vulnerability and is widely used for remote code execution. As the white boxes
show in Figure 1, the vulnerability is located at the function ngx_resolve_name_locked, which is
called several times during execution. The program has distinct required syscall sets at different
positions where the function is called. Specifically, during initialization in 2○, Nginx starts and calls
ngx_resolve_name_locked for the first time. At this position, Nginx has not spawned the worker
process, and thus the syscalls execve and setuid are required. After creating the worker process
in 5○, ngx_resolve_name_locked is called again. Now, execve is not needed for the subsequent
execution and is excluded from the required syscall set. However, the initialization of the child

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:6 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

process does not finish at this position, and setuid is still necessary for the subsequent execution.
Finally, the worker process starts to handle requests from users after finishing all the initialization
in 6○. In this phase, Nginx repeatedly calls the ngx_resolve_name_locked to process the requests,
and neither execve nor setuid is required. Notably, Figure 1 only describes the lifecycle of Nginx,
and different programs have different execution phases that need to be analyzed individually.

Attackers can exploit the UAF vulnerability in the function ngx_resolve_name_locked to com-
promise the system. To defend against it, many researchers have designed customized syscall
sandboxes for Nginx. To achieve effective protection, where to enforce new sandbox policies is
extremely important. Most existing works [Canella et al. 2021; DeMarinis et al. 2020; Quach et al.
2018] set the policy after Nginx initially starts in 1○, so they have to permit the syscalls execve and
setuid to Nginx. However, since these syscalls are widely used by attackers to execute malicious
code, existing sandboxes cannot effectively isolate vulnerable applications like Nginx.

Nginx handles requests in the 6○, so attackers are most likely to exploit the vulnerability at that
time. If we can dynamically adjust the sandbox along the execution of Nginx, we can forbid the
usage of execve and setuid at the sixth phase. In that case, attackers will be severely hindered
from causing damage to the system. Thus, building a dynamic sandbox to restrict syscalls at proper
positions can significantly reduce the attack surface for operating systems.

Node Connection

Possibe Transition
Instrution Extration

Critical Syscall Sniffing

Building of
Partially Ordered Graph

Building of
Dynamic Syscall Sandbox

Node Mapping

Building of
Candidate Graph

Edge Transfering

Transition Position Resolve

Required Syscall Resolve

Insturment

Program
main
...
...

Candidate
Graph

Partially Ordered
Graph

Program
main
...
... DynBox

Fig. 2. Overview of the partial order analysis. First, the analysis extracts candidate set-reduce instructions
and connects them to the candidate graph. Then, the candidate graph is transferred to the partially ordered
graph. Finally, based on the partially ordered graph, the analysis resolves required syscalls, finds reduction
positions, and dynamically enforces the sandbox policy to construct DynBox.

4 DESIGN

In this section, we illustrate the design of DynBox. To construct DynBox, we should find the
reduction positions where the required syscall set reduces and instrument the program to build a
sandbox-enhanced binary. For the sake of simplification, we first transfer the problem of finding
reduction positions into resolving the execution order of instruction, so that we can know the
subsequent syscall invocations after each instruction. To meet this end, we propose partial order
analysis, which involves three steps depicted in Figure 2.

• In the first step, the analysis extracts all candidate set-reduce instructionsk . After these instruc-
tions’ execution, the required syscall set may reduce. Next, these instructions are connected as
nodes to build candidate graph �� (k, B) based on the program’s control flow.
• In the second step, nodesk of �� , i.e., candidate set-reduce instructions, are mapped to nodes of
the partially ordered graph %� (#, �), and �� ’s edges (are also transferred to edges � of %� .
Meanwhile, critical syscall sniffing is applied during %� construction to improve the analysis
precision. In this way, %� is ensured to be partially ordered and can be used to resolve the
instructions’ execution order.
• In the third step, the analysis employs %� to determine the set of syscalls needed for the
program’s execution after each instruction is executed (namely, the required syscall set). By
identifyingwhere the required syscall set reduces, the analysis finally finds appropriate reduction
positions and performs instrumentation at these positions to construct DynBox.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:7

After instrumentation, we obtain an enhanced binary that possesses the capability to dynamically
adjust the syscall policy throughout its execution, thereby restricting unnecessary syscalls. We
prove that the analysis produces no false positives, meaning that DynBox does not restrict any
required syscall and thus will not interfere with the normal execution of programs.

4.1 Problem Formulation

We define a program % ’s instruction at address 8 as �8 . For a specific input, a running program can
be formulated as a trace g = (�8 , � 9 , ..., �=). g [:] is the k-th executed instruction of g . Considering
all possible inputs, the set of all possible traces constitutes a trace set) . For a multithreading or
multiprocessing program, one g represents the execution flow of one of the threads or processes.
To determine whether we can reduce a syscall B2 after a certain instruction �8 ’s execution, for

any trace g that contains �8 , we should ensure that B2 will not be invoked after �8 . In other words,
we should find all possible instructions executed after �8 on any trace g ∈) , and make sure they are
not invocation instructions of B2 . Thus, we need the execution order of �8 and other instructions. In
conclusion, our goal can be converted to a problem of resolving the execution order of any two
instructions. To describe the execution order, the successor relation ≽ is first introduced as follows.

Definition 4.1. (Relation ≽ of Instructions) The instruction � 9 ≽ �8 holds if and only if there

exists at least one g among all traces) that satisfies g [0] = �8 , g [1] = � 9 , 1 ≥ 0.

Instruction � 9 is denoted as the successor of �8 . Notably, �8 ≽ �8 . With the execution order, the
required syscall set of instruction �8 can be further calculated by finding �8 ’s all successor instructions
that invoke syscalls. The formal definition of the required syscall set q is depicted in Definition 4.2.
Firstly, I need to explain that B~B (�8) returns the syscall id only if the instruction �8 invokes a syscall.
Otherwise, it returns nothing.

Definition 4.2. (Required Syscall Set q (%, �8)) Given an instruction �8 ∈ % , we can determine

the required syscall set q (%, �8) for the program % such that for any g ∈) , if and only if there exists an
instruction � 9 satisfying � 9 ≽ �8 and B~B (� 9) = B2 , then B2 ∈ q (%, �8).

The required syscall set q (%, �8) is a minimal set including all syscalls that the program may
invoke when it executes instruction �8 and �8 ’s subsequent instructions among all traces) . Syscalls
in q (%, �8) should be permitted to guarantee that the program can normally execute after �8 .

if(flag)

a++;

else;

b++;

execve();

return

I1. if

execve

I3. a++

returnentry

√

×
I2. b++

Fig. 3. An example of a reduction position. A (�1, �3) is a reduction position of restricting execve, but A (�1, �2)
is not a reduction position in this example.

It is known that the required syscall set monotonically reduces during programs’ execution. The
position where the required syscall set reduces is defined as reduction position A (�8 , � 9), with its set
denoted as R.

Definition 4.3. (Reduction Position Set R) If A (�8 , � 9) ∈ R is a reduction position, there should

exist g ∈) that satisfies �8 = g [0], � 9 = g [0 + 1], and the required syscall set q (%, � 9) ⊊ q (%, �8).

The reduction position A (�8 , � 9) is a pair of two adjacently executed instructions, indicating that
the required syscall set of program reduces when the program runs from �8 to � 9 . Take the program

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:8 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

in Figure 3 as an example. When it executes from “if” to “a++”, execve should be removed from
the required syscall set of the program. However, from “if” to “b++”, execve is still necessary for
the program, and the required syscall set does not change. Thus, only pair A (�1, �3), i.e., the edge
from node �1 to node �3, can be identified as a reduction position.

In Definition 4.1, we utilize the relation ≽ to represent the execution order between instructions,
based on which we can resolve the required syscall set and reduction positions according to
Definition 4.2 and Definition 4.3 respectively. Therefore, the most crucial part of building DynBox

is to determine the successor relation ≽ of instructions. To resolve the ≽ relation, we aim to transfer
the program to the partially ordered graph, where the ≽ relation of instructions can be easily
determined. The detailed analysis steps are introduced in the following sections.

4.2 Candidate Graph Building

To identify reduction positions, we first build the candidate graph �� (k, (). The nodes k of ��
are instructions whose execution may lead to the reduction of the required syscall set, and they
are indicated as candidate set-reduce instructions. The nodes should be either syscall invocation
instructions or jump instructions. Then, edges (are added according to the control flow of the
program. Each edge B (�8 , � 9) ∈ (represents a candidate reduction position of program % . Such ��
construction is the first step of the partial order analysis to find real reduction positions. It is proved
that our analysis based on �� considers all possible execution traces of a program (Section 4.2.3).
This is because �� completely represents the control flow of the program, and each program’s
trace g ∈) can be represented as a traverse path on �� .

(a) Source Code

int main(){

}

I1
I2
I3

I4

I5

 log("Start up.");
 if (requirePriv)
 getPriv();
 else{
 while (hasFile){

 chmod(...);

void log(String str){

}

I10

I11

 printf(...);

 return 0;

I6

void getPriv(){

}

log("Get privilege.");
return;I9

I7

I8

 setuid(...);

}}
return 0;

(b) Candidate Set-Reduce
Instruction

I6: return_1

 I1: call_log_1

 I3: call_getPriv

I7: call_setuid

I8: call_log_2

I9: return_2

I10: call printf

I11: return_3

write
futex

...
setuid

I5: call_chmod

 I4: while

chmod

 I2: if

Entry

ge
tP

ri
v

co
de

lo
g

co
de

m
ai

n
co

de

Syscall Invocation InsJump Ins

Diagram Key

Candidate
Graph

(c) Candidate Graph

Fig. 4. An example for the candidate graph. From the source code, the partial order analysis first extracts
candidate set-reduce instructions, which consist of jump instructions in orange boxes and syscall invocation

instructions in blue boxes. Then, the candidate graph is built according to the control flow of the program. The
syscalls in callouts are utilized by the corresponding interfaces of dynamic libraries. For be�er visualization,
the figure is drawn based on statements rather than instructions.

4.2.1 Nodes of Candidate Graph. The nodes of �� are all candidate set-reduce instructionsk , after
whose execution, a syscall may become unnecessary. Formally, ∀A (�8 , � 9) ∈ R, �8 ∈ k . In this section,
we find allk from the program as the nodes of�� . Specifically, only in two situations, a syscall can
become unnecessary. First, the program runs into a branch in which the program can never reach
the invocation instructions of this syscall. Second, this syscall is just invoked for the last time.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:9

Jump Instruction. The first situation only happens when the program changes its control flow
with jump instructions. As shown in Figure 4, all statements in orange boxes will be compiled as
jump instructions. One part of them are conditional and unconditional jumps, like the “if” and
“while” statements in Figure 4. Another part of them are jumps caused by call and return of internal
functions, such as call and return of function getPriv and log in Figure 4. Considering the first
situation, the analysis collects all these jump instructions, including br, switch, ret, and call

targeting internal functions, and adds them to nodesk .

Syscall Invocation Instruction. The second situationmay occurwhen a syscall invocation instruction
is executed. Thus, candidate set-reduce instructionsk also contain syscall invocation instructions. In
most cases, they are call instructions targeting interfaces of dynamic libraries, like statements of
invoking glibc’s interfaces chmod, setuid, and printf in blue boxes of Figure 4. This is because
programs do not directly invoke syscalls, but utilize high-level interfaces defined in dynamic
libraries (glibc, libpthread, etc.). For example, developers usually prefer using printf in glibc
instead of the write syscall when outputting to stdout. However, even if a program may have used
write for the last time during the calling of printf, it is not possible to instrument glibc to restrict
write. The reason is that glibc is utilized by many other programs as well, and the instrumentation
in glibc may interrupt their execution. Therefore, we identify the call instructions that invoke
interfaces of dynamic libraries as syscall invocation instructions and add them intok .
Moreover, a dynamic library interface may involve multiple syscalls, like printf that utilizes

several syscalls including futex and write. Hence, a call to a dynamic library interface should
be regarded as a node that invokes multiple syscalls, as the callout of printf in Figure 4 shows.
To obtain the set of syscalls used by each dynamic library interface, we need to preprocess each
dynamic library. To handle it efficiently, referencing Claudio et al.’s work [Canella et al. 2021], we
utilize angr [Shoshitaishvili et al. 2016] to analyze the binaries of dynamic libraries. Specifically,
with angr, a call graph is constructed for a dynamic library based on its “.so” file. Then, we set each
interface as an entry point for traversing the call graph. During this traversal, the analysis collects
all the syscalls that are possibly invoked by each interface. Meanwhile, if one dynamic library relies
on another one, we will recursively analyze the required library preferentially. Finally, a mapping
from dynamic libraries’ interfaces to their required syscalls is established. After determining the
syscalls used by syscall invocation instructions that invoke dynamic libraries interfaces, we collect
them to be �� ’s nodes. In a few cases, developers may use syscall function from “unistd.h” or
write assemble code to invoke syscalls, both of which are properly handled in our analysis.

In the end, by identifying all jump instructions and syscall invocation instructions, our analysis
extracts all candidate set-reduce instructionsk as the nodes of �� . Fromk , we could further find
the real reduction positions.

4.2.2 Edges of Candidate Graph. After collecting all candidate set-reduce instructionsk , the partial
order analysis adds the edges between them according to the control flow of the program to build
�� (k, (). Thus,�� is a subgraph of a control flow graph only withk as nodes. Moreover, based on
Definition 4.3, each edge B (�8 , � 9) of�� represents a candidate reduction position that can become a
real reduction position if the program’s required syscall set changes during the execution from �8 to
� 9 . Next, we separately introduce how to connect edges for two different types of instructions ink .

Jump Instruction. Jump instructions alter the program’s control flow according to different
conditions, so there should exist edges from them to their jump targets. First, for jump instructions

except call and ret, the analysis adds edges from them to all their possible targets. Second, if
jump instruction �8 is a call instruction targeting internal functions, an edge will be connected
from it to the target callee function 58 ’s entry. Meanwhile, each ret instruction in 58 should have

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:10 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

an edge pointing to �: ∈ k . Here �: is the first candidate set-reduce instruction that the program
executes after returning from 58 . For example, in Figure 4, the function main invokes the function
getPriv, so there is an edge from “�3: call_getPriv” in the function main to the callee function
getPriv’s first instruction “�7: call_setuid”. Meanwhile, an edge is also connected from “�9:
return_2” in getPriv to “�6: return_1” in main, which is executed right after returning from
getPriv. Sometimes, �8 may be an indirect call, for which we utilize the existing well-performed
method, SVF [Sui and Xue 2016], to resolve �8 ’s all possible callees. In addition, for some commonly
used dynamic library interfaces with callbacks, like phread_create in pthread and malloc_hook

in glibc, we properly handle them by resolving function pointers to identify the possible callback
functions. And edges indicating such control flow are added to �� .

Syscall Invocation Instruction. Different from the call instructions targeting the program’s
internal functions, call instructions targeting dynamic library interfaces are regarded as syscall
invocation instructions. As illustrated in Section 4.2.1, for a syscall invocation instruction �8 that
invokes an external interface 54 , instead of diving into the implementation of 54 , the analysis views
the entire execution of 54 as a single node containing the syscalls required by 54 . For example,
“�10. call_printf” along with the callout describes the calling of printf as one node invoking
syscalls like write and futex. Accordingly, the “�10. call_printf” is connected to “�11. return_3”.
Likewise, for a syscall invocation instructions �8 , the analysis adds an edge from �8 to its next candidate
set-reduce instructions according to the control flow.

4.2.3 Soundness of �� . In this section, we prove that our analysis based on �� is sound and
considers a program’s all possible execution traces, because�� is built based on the control flow of
the program, and we can map each possible trace to a traverse path on�� , as shown in Theorem 4.4.
For better illustration, we utilize the mapping Ψ(�8) to associate the instruction �8 with its closest
candidate set-reduce instruction. Ψ(�8) = �8 when �8 ∈ k .

Theorem 4.4. (Soundness of Candidate Graph) For a trace g = (�8 , � 9 , ..., �=) of the program % ,

we could find a corresponding traverse path (Ψ(�8),Ψ(� 9), ...,Ψ(�=)) on �� built from % .

According to Section 4.2.1,k contains all jump instructions of a program, so there is no jump
instruction between Ψ(�8) and �8 , which means Ψ(�8) should map �8 to exactly one candidate set-
reduce instruction. Then, for any two adjacent instructions �8 = g [0] and � 9 = g [0 + 1], they are
either mapped to the same instruction ink , or they are mapped to two instructions connected by
edge B (Ψ(�8),Ψ(� 9)) of �� . Thus, there exists a traverse path (Ψ(�8),Ψ(� 9), ...,Ψ(�=)) on �� for the
trace g = (�8 , � 9 , ..., �=). In conclusion, based on �� , the following steps of our analysis can cover all
possible execution traces of a program and will not omit any reduction position.

4.3 Partially Ordered Graph Construction

In this section, we transfer �� to the partially ordered graph %� (#, �) to resolve the execution
order of instructions. As some illusory traces cause precision degradation, we first adopt critical
syscall sniffing to improve the analysis precision during the %� ’s construction. Then, the analysis
maps candidate set-reduce instructionsk of �� to the nodes # of %� , and transfers edges (of ��
to edges � of %� . We further define the ≽ relation based on the reachability of two nodes on %� . If
there is a path on %� from =0 to =1 , then =1 ≽ =0 . By design, the nodes in %� are partially ordered
under the ≽ relation, assuring that any two nodes either have one determined the ≽ relation, or
they have no relation. Moreover, it is demonstrated in Theorem 4.7 that the ≽ relation reflects the
execution order of instructions. Thus, =1 ≽ =0 indicates that each instruction mapped to node =0
can only be executed before each instruction mapped to =1 once both instructions are executed
during a single run of the program. Finally, the execution order between instructions can be resolved

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:11

based on the mapping between candidate set-reduce instructions and nodes of %� . As shown in
Theorem 4.6, the construction of %� ensures that the ≽ relation between every two instructions
is not omitted. Therefore, the analysis will not omit any required syscalls after any instructions,
based on which the syscall restriction will not interrupt the program’s normal execution.

The ≽ relation between two instructions �8 and � 9 has three cases. First, �8 and � 9 are the successors
of each other, where the required syscall set of two instructions are the same. This is typically the
case for instructions in a loop or recursion. When a syscall is invoked within a loop or recursion, it
will be continuously required until the program exits the loop. As a result, there are no reduction
positions among these instructions. Second, if either �8 ≽ � 9 or � 9 ≽ �8 , there may exist a reduction
position between these instructions. Third, �8 and � 9 have no relation, which usually indicates that
two instructions are in two exclusive branches, like branches after “if” in line 3 of source code
in Figure 4. Hence, no reduction position can be found between �8 and � 9 . In conclusion, to locate
reduction positions, the partially ordered graph is built to identify which pairs of instructions have
the relation in the second case, i.e., exactly one ≽ relation holds between two instructions.

Table 1. ID and name of critical syscalls. They are displayed in three categories according to their functionality.

Network Operation Permission Control Command Execution

ID Name ID Name ID Name ID Name ID Name ID Name

42 connect 49 bind 10 setuid 106 mprotect 57 fork 322 execveat_getscheduler
43 accept 50 listen 90 setgid 113 chmod 59 execve 435 clone
44 sendto 53 socket 91 setreuid 114 fchmod 101 ptrace
45 recvfrom 288 accept4 105 setregid

4.3.1 Critical Syscall Sniffing. We introduce critical syscall sniffing to mitigate the precision
degradation caused by illusory traces. Figure 4 displays an example of illusory trace, which is
(�1, �2, �3, �7, �8, �10, �11, �2, �3, �7, �8, �9, �6). As shown by the underlined instructions, it is possible for

“�7” to be executed after “�8”, indicating that instruction “�7: call_setuid” is the successor of “�8:
call_log_2”. Therefore, the pair A (�7, �8) is not a reduction position where we can restrict setuid.
According to the trace, setuid should be restricted at A (�8, �9). However, according to the source
code, setuid is only invoked once and should be restricted at reduction position A (�7, �8). Thus,
these illusory traces compromise the precision of analysis, causing delays in restricting critical
syscalls. This is because the partial order analysis is context-insensitive and cannot distinguish the
caller when analyzing in the function log.
The basic idea of critical syscall sniffing is to improve the analysis precision of critical syscalls

by sacrificing the analysis precision on other syscalls. This strategy is designed based on two
observations. First, after analyzing extensive malicious payloads, we find some critical syscalls
are extremely important to both attackers and operating systems. As shown in Table 1, critical
syscalls are usually related to the network IO, permission control, and command execution, on
which a tight restriction can significantly limit the ability of attackers. As for other syscalls, such
as read and write, they are responsible for basic functionalities that typically have limited impact
if exploited. Meantime, these syscalls tend to be required throughout the program’s entire lifecycle
and rarely become unnecessary. Second, many functions defined for general and basic operations
(such as writing logs and pushing tasks into a queue) are frequently used, resulting in extensive
illusory traces. Meanwhile, these functions only need insensitive syscalls such as read, write

and mmap. It is reasonable to concentrate more on the critical syscalls and cluster functions only
using insensitive syscalls to improve the analysis precision.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:12 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

Candidate
Graph

[n1]: call_log_1

[n3]: call_getPriv

[n6]: return_1

[n7]: call_setuid

[n8]: call_log_2

[n9]: return_2

log:
call_printf
return_3

write
futex
…

Partially
Ordered Graph

Required Syscall Set

[n2]: if

[n4]: while
call_chmod

chmod

setuid

Reduction PositionEntry

[n6]: {}
[n9]: {}

[nlog]: { }write futex

[n8]: { }write futex

[n7]: { }write futex setuid

[n3]: { }write futex setuid

[n4]: { }chmod

[n2]: { }chmodsetuid write futex

[n1]: { }chmodsetuid write futex

 I3: call_getPriv I2: if

 I4: while I2: if

 I6: return_1 I4: while

 I8: call_log_2 I7: call_setuid

 I9: return_2 I8: call_log_2

Fig. 5. Examples of partially ordered graph construction and DynBox Enhancement. First, the candidate
graph in Figure 4 is transferred to the partially ordered graph. Then, based on the graph, the required syscall
set and reduction positions are resolved. The syscalls in yellow callouts are critical ones. The dark-blue box is
the cluster node of the function log. The required syscall sets for nodes are listed in reverse topological order.
Reduction positions are pairs of instructions from Figure 4.

We utilize the mapping 8B�=�;DBC4A (�8) to determine whether �8 on �� should be clustered into
a cluster node on %� . If �8 belongs to a function that invokes no critical syscalls, then �8 and all
instructions from the same function of �8 are clustered into a cluster node. Meanwhile, since we
do not aim to analyze the required syscalls of instructions clustered to a cluster node, edges from
cluster node to others are ignored. As a result, illusory traces are removed during critical syscall
sniffing. Specifically, during the execution of a function, if it does not invoke any critical syscall, it
will be clustered. Moreover, if there is a recursion during which no critical syscall is invoked either,
all functions in the recursion will be clustered to a node. For example, the function log in Figure 4
is clustered to a dark-blue cluster node =;>6 in the partially ordered graph of Figure 5, and node =;>6
in Figure 5 has no outgoing edges. By doing so, the analysis will not timely restrict syscalls in the
function log, so the restriction of syscalls write and futex are delayed until the program returns
from the function log. However, as the illusory traces related to instructions of the function log

are removed, critical syscalls like setuid can be restricted timely.

4.3.2 NodeMapping and Edge Transferring. To construct %� (#, �), candidate set-reduce instructions
k in �� (k, () are mapped to nodes # of %� according to the reachability of instructions on �� . If
two instructions are reachable to each other on �� , they will be mapped to the same node on %� .
In terms of instructions clustered by critical syscall sniffing, they will be regarded as a cluster node
on %� . The edges � on PG ensure that nodes # of %� are partially ordered under the ≽ relation
defined in Definition 4.5.

First, based on the reachability of instructions on �� , we map instructions from �� to nodes of
%� through mapping ` (��, �8), which is presented in Equation 1.

` (��, �8) =

=5 , 8B�=�;DBC4A (�8).

=8 , � 9, � 9
��
−→ �8 ∧ �8

��
−→ � 9 .

` (��, � 9), ∃ 9, � 9
��
−→ �8 ∧ �8

��
−→ � 9 .

(1)

For each instruction �8 ∈ k , we first determine whether it should be mapped into a cluster node
on %� based on mapping 8B�=�;DBC4A (�8). According to the critical syscall sniffing strategy in
Section 4.3.1, if �8 belongs to a function 5 invoking no critical syscalls, then 8B�=�;DBC4A (�8) = CAD4

and �8 will be mapped to a cluster node =5 along with all instructions in 5 . Subsequently, we verify
if there exists an instruction � 9 such that both �8 and � 9 are reachable from each other on �� . If � 9

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:13

exists, � 9 and �8 will be mapped to the same node in %� , otherwise, a new node =8 is generated for

�8 . Here, �8
��
−→ � 9 indicates that there is a path on �� from �8 to � 9 .

After creating nodes of DynBox, we transfer all edges (of �� (k, () to edges � of %� (#, �).
In detail, for an edge B (�8 , � 9) ∈ (, if 8B�=�;DBC4A (�8) = 5 0;B4 , and �8 and � 9 are separately mapped
to distinct nodes =0 and =1 on %� , we transfer B (�8 , � 9) from �� to edge 4 (=0, =1) on %� . When
8B�=�;DBC4A (�8) = CAD4 , then B (�8 , � 9) will be ignored during edge transferring. It implies that partial
order analysis disregards the edges from cluster nodes to other nodes, because the analysis is not
intended to precisely identify reduction positions in these clustered functions. Note that the edge
targeting a cluster node is preserved, as the edge 4 (=8, =;>6) in Figure 5 shows.

Here we illustrate the complexity of %� construction with node mapping and edge transferring.
Themost consuming part of the construction is to determine reachability betweenk on�� . Through
caching intermediate results appropriately, the complexity of resolving all inter-connected nodes is
O(< + =), where = is the size of k and< is the number of �� ’s edges. Taking into account that
establishing edges of %� requires traversing all edges on�� , the overall complexity for constructing
the program graph is O(< + =).
Based on the aforementioned node mapping and edge transferring, we can construct %� , on

which the execution order of the program’s instructions can be easily resolved. To this end, we
first define the ≽ relation between %� ’s nodes, as Definition 4.5 depicts.

Definition 4.5. (Relation ≽ on %� ’s Nodes) For =0 and =1 on %� , the relation =1 ≽ =0 holds if

and only if there is a traverse path from =0 to =1 on %� .

Intuitively, the ≽ relation is established based on the reachability between %� ’s nodes. A traverse
path on %� from =0 to =1 implies =1 ≽ =0 . For example, in Figure 5, %� has a path that from node
=2 to node =7, indicating =7 ≽ =2.

Under the ≽ relation, %� has two important properties that facilitate the resolution of instructions’
execution order. First, as demonstrated in Section 4.3.3, the ≽ relation of %� ’s nodes can directly
represent the execution order of two instructions. To be specific, =1 ≽ =0 indicates that the
instructions mapped to =0 can be executed before instructions mapped to =1 . Then, %� promises
that instructions mapped to =0 will never be executed after instructions mapped to =1 . It is because
%� ’s nodes are partially ordered under the ≽ relation, which means that for two different nodes, if
=1 ≽ =0 holds, then =0 % =1 . For instance, we have =7 ≽ =2 in Figure 5. Thus, the “if” statement in
node =2 can be executed before the setuid’s invocation in node =7, and “if” statement will never
be executed after “call_setuid”. The above two properties enable quick calculation of instruction
execution order, allowing for the resolution of the required syscall set to be streamlined.

4.3.3 Soundness and Partial Order Property of PG. Here we prove two properties of %� . First, as
illustrated in Theorem 4.6, the ≽ relation can be used to over-approximate the execution order of
instructions, which means the execution order between any two instructions can be resolved on %� .
Thus, the required syscall set resolved based on %� will not omit any syscalls. Second, Theorem 4.7
shows that %� is partially ordered under relation ≽, which facilitates subsequent analysis.

Theorem 4.6. (Soundness of %�) For any two instructions �8 , � 9 ∈ k , � 9 ≽ �8 , and 8B�=�;DBC4A (�8) =
5 0;B4 , if =0 = ` (��, �8), =1 = ` (��, � 9) and =0 ≠ =1 , then we have =1 ≽ =0 . Otherwise, �8 and � 9 are

mapped to the same node.

Theorem 4.6 demonstrates that %� preserves the execution order of any two instructions except
ones that belong to a clustered function, which is proved in the following. According to the
Definition 4.1 and Theorem 4.4, for instructions �8 , � 9 ∈ k, � 9 ≽ �8 , there exists traverse paths on ��
from �8 to � 9 . Assuming that no instruction between �8 and � 9 is clustered on these traverse paths, for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:14 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

any two adjacent instructions between �8 and � 9 , they should either be mapped to the same node on
%� , or an edge B ∈ (between them will be transferred to an edge 4 ∈ � on %� based on Equation 1
and edge transferring algorithm. Thus, there exists a corresponding traverse path from =0 to =1
on %� . In addition, on traverse paths of �� from �8 to � 9 , some instructions between �8 and � 9 may
be clustered. According to the construction of %� , a corresponding traverse path can be found on
%� by ignoring clustered instructions. In conclusion, for any two instructions � 9 ≽ �8 , we can find
a traverse path from =0 = ` (��, �8) to =1 = ` (��, � 9) on %� . If =0 ≠ =1 , then =1 ≽ =0 . Thus, %�
preserves all ≽ relations between the program’s instructions, ensuring that the subsequent analysis
will not omit any required syscalls.

Theorem 4.7. (Partially Ordered Property of %�) %� ’s nodes # form a partially ordered set

with respect to the relation ≽.

In order for Theorem 4.7 to hold, (#, ≽) must satisfy reflexivity, transitivity, and antisymmetry.
First, according to Definition 4.5, for =0 ∈ # , we have =0 ≽ =0 , so reflexivity holds. Second, we
prove that %� holds transitivity. Assuming that =1 ≽ =0 and =2 ≽ =1 , we can obtain two traverse
paths on �� from �8 to � 9 and � 9 to �: , where =0 = ` (��, �8), =1 = ` (��, � 9), and =2 = ` (��, �:).
Thus, there is a path from �8 to �: on �� , which implies that =2 ≽ =0 by Theorem 4.6. Third, we
provide proof of antisymmetry. When =0 ≽ =1 and =1 ≽ =0 , according to Section 4.3.2, �8 and
� 9 should be reachable to each other on �� where =0 = ` (��, �8), =1 = ` (��, � 9), so =0 = =1 . In
conclusion, with the antisymmetry, reflexivity, and transitivity, (#, ≽) is a non-strict partially
ordered set. Thus, if %� ’s two distinct nodes =1 ≽ =0 , we can infer that =0 % =1 , which means for
any two instructions �8 , � 9 ∈ k , =0 = ` (��, �8) and =1 = ` (��, � 9), we have � 9 ≽ �8 and �8 % � 9 .

4.4 Dynamic Syscall Sandbox Enhancement

Based on the partially ordered graph %� , we can get the required syscall set after each instruction
and find reduction positions. (1). The partial order analysis resolves the required syscall set after
instructions �8 , which is termed as q (%, �8) in Definition 4.2. First, we define the required syscall set
for %� ’s node =0 , denoted as q (%�,=0) (Definition 4.8). Since the ≽ relation on %� ’s nodes preserves
the execution order of instructions, in Section 4.4.4, we prove that q (%�,=0) can be utilized to over-
approximate q (%, �8) when �8 is mapped to =0 . To calculate the q (%�,=0), the analysis establishes a
topological order for %� ’s nodes with the partial order property of %� . By processing these nodes
in reverse topological order, we can efficiently calculate q (%�,=0) by reusing the pre-computed
results of =0’s successor nodes. (2). The analysis checks the required syscall set of every two
adjacent instructions, and marks the positions where the syscall set reduces as reduction positions.
(3). We enforce dynamically-adjusted syscall sandbox policy with instrumentations at the reduction
positions to build DynBox for the program.

4.4.1 Required Syscall Set Resolution. First, we introduce the required syscall set of a %� ’s node
=0 , which is denoted as q (%�,=0) in Definition 4.8.

Definition 4.8. (Required Syscall Set of %� ’s Node q (%�,=0)) If there exists an instruction �8
that invokes syscall B2 , and �8 is mapped to the node =0 or =0’s successor node =1 , then we can conclude

that B2 ∈ q (%�,=0).

Intuitively, q (%�,=0) contains syscalls that are invoked by each instruction �8 mapped to =0 and
all required syscalls set for =0’s subsequent nodes, as shown in Equation 2.

q (%�,=0) =

(
∪

=1≽=0
q (%�,=1)

)
∪

(
∪

` (��,�8)==0
B~B (�8)

)
(2)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:15

Algorithm 1: Required Syscall Set Resolution.

Input :%� : Partially Ordered Graph of Program % .
Output :q (%�, #) : Required Syscall Set For Nodes of %� .

1 @D4 ← Queue();

2 for =0 in %� do

3 if =0 .numberOfOutgoingEdges = 0 then

4 @D4 .push(=0);

5 while not @D4 .empty() do

6 =0 ← @D4 .front();

7 @D4 .pop();

8 for =G in =0 .getDirectPredecessors() do

9 =G .=D<14A$ 5$DC6>8=6�364B ← =G .=D<14A$ 5$DC6>8=6�364B − 1;

10 if =G .numberOfOutgoingEdges = 0 then

11 @D4 .push(=G);

12 q (%�,=0) ← ∅;

13 for =1 in =0 .getDirectSuccessors() do

14 q (%�,=0) ← q (%�,=0) ∪ q (%�,=1);

15 for �8 in =0 .getInstructions() do

16 q (%�,=0) ← q (%�,=0) ∪ B~B (�8);

We utilize q (%�,=0) to over-approximate q (%, �8) when �8 is mapped to =0 . Formally, for an instruc-
tion �8 ∈ k mapped to =0 , we have q (%, �8) ⊆ q (%�,=0). As demonstrated in Theorem 4.9, this
approximation is sound, and no required syscall is omitted. This is because all successor instructions
of �8 are mapped to =0 or =0’s successor nodes during the construction of %� . Thus, q (%�,=0) must
contain all syscalls invoked behind �8 ’s execution. To compute q (%�,=0), we propose the Algo-
rithm 1 which processes nodes in reverse topological order. Relying on the partial order property
of %� , the topological order can be easily built. It is promised that the required syscall sets for the
=0’s successors have been resolved and can be reused when calculating q (%�,=0).

In detail, Algorithm 1 needs the partially ordered graph %� as input and calculates the required
syscall set q (%�, #) for nodes # of %� . The algorithm utilizes a queue to perform topological
sorting and guarantee that all nodes are processed in a reverse topological order. In lines 1-4, the
algorithm first pushes the nodes that have no outgoing edges into the queue. On %� of Figure 5,
nodes =;>6 and =6 are first pushed into the queue. For =0 at the head of the queue, from line 6 to 10,
the algorithm finds each of its predecessors =G and decreases the counter of =G ’s outgoing edge.
If the counter becomes zero after decrementing, =G will be added to the end of the queue. Then,
for each =0’s direct successor =1 , the algorithm merges =1 ’s required syscall set q (%�,=1) into
q (%�,=0), as shown in line 13. Since =1 is sorted behind =0 in topological order, q (%�,=1) has
been solved when calculating q (%�,=0). For example, in Figure 5, when processing node =2, nodes
=3 and =4 have been processed. Next, as shown in lines 14-15, by including syscalls invoked by
instructions mapped to =0 , q (%�,=0) is resolved. After processing each node in the queue until
it is empty, we obtain the required syscall set for each node. Finally, the required syscall set after
each instruction can be obtained by finding the node that the instruction is mapped to.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:16 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

Algorithm 2: Reduction Position Solving.

Input :�� , %� : Candidate Graph and Partially Ordered Graph of Program % .
Output :R : Reduction Positions.

1 for B in �� .edges do

2 �8 ← B .from, � 9 ← B .to;

3 =0 ← ` (��, �8), =1 ← ` (��, � 9);

4 if q (%�,=1) ⊊ q (%�,=0) then
5 R.add(A (�8 , � 9));

4.4.2 Reduction Position Solving. The analysis solves the reduction positions where the required
syscall set reduces with Algorithm 2. The algorithm needs �� and %� as inputs and outputs
reduction positions R. In detail, as shown in line 1, the algorithm traverses each�� ’s edge B , which
is a candidate reduction position. Then, in lines 2-3, for edge B (�8 , � 9), the algorithm determines that
instruction �8 and � 9 are respectively mapped to nodes =0 and =1 on %� . Subsequently, from line 4
to 5, we use the required syscall sets for node =0 and =1 to over-approximate those of instruction
�8 and 8 9 correspondingly. If q (%�,=1) is strictly smaller than q (%�,=0), then A (�8 , � 9) should be a
reduction position. For example, in Figure 4, for two nodes “�4: while” and “�6: return_1” connected
by an edge, they are respectively mapped to nodes =4 and =6 on %� of Figure 5. Then, we find
the required syscall set of =6 is strictly smaller than that of =4, due to the absence of chmod. Thus,
A (�4, �6) is the reduction position for restriction chmod. After solving reduction positions, we can
dynamically adjust the sandbox policy at these positions to build DynBox.

4.4.3 Policy Enforcement. At reduction positions, the partial order analysis enforces new poli-
cies to restrict unnecessary syscall to build DynBox. Specifically, at each reduction position, we
instrument a call instruction that invokes a function addPolicy, which we encapsulate in a dy-
namic library and link to the enhanced program. This function enforces the policy of Seccomp
BPF using libseccomp [Libseccomp 2023]. For example, as Figure 5 shows, between instruction
“�2: if” and “�3: call_getPriv”, the required syscall set varies, so we instrument a call targeting
addPolicy to enforce the policy of restricting chmod. Finally, when the enhanced program executes
to these reduction positions, it calls addPolicy and adds new policies to the BPF program to restrict
unnecessary syscalls.

During the instrumentation, we need to handle three situations for a reduction position A (�8 , � 9).
(1). If �8 is a syscall invocation, like A (�7, �8) in Figure 5, we can directly conduct instrumentation
after �8 , so the program will enforce the policy when executing from �8 to � 9 . For instance, between
node “�7: call_setuid” and “�8: call_log_2”, setuid is restricted after its last usage. (2). �8 may be
a jump instruction except call and return, like A (�2, �4) in Figure 5. In this situation, the analysis
inserts a new basic block 11 between node “�2: if” and “�4: while”, and redirect the jump (�2, �4)
into jumps (�2, 11) and (11, �4). On 11, the analysis enforces the sandbox policy. It is because that
node “�2: if” has two jump targets, and “�4: while” also has two predecessors, as shown in Figure 4.
By adding 11, we can ensure that the policy will only be enforced when the program runs from
statements “if” to “while”. (3). �8 can be a function call or ret, which may also have multiple
targets due to indirect calls. Assuming only when �8 invokes function 5 , the syscall B2 should be
restricted. For precise restriction of B2 , we instrument the program to enforce different policies
according to the different call targets of �8 . Specifically, we make instrumentation before the call
instruction �8 to verify whether the target function is 5 . If so, we apply the syscall restriction for B2 .
As for ret, we instrument before ret and check where 5 should return to.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:17

4.4.4 Soundness of DynBox. To construct DynBox, we utilize the required syscall set for %� ’s
nodes to over-approximate the required syscall set after instructions. As Theorem 4.9 demonstrated,
this over-approximation is sound and will not omit required syscalls, so DynBox will not interfere
with the program’s normal execution.

Theorem 4.9. (Soundness of Required Syscall Set q (%, �8)) For �8 ∈ k , if ` (��, �8) = =0 and

8B�=�;DBC4A (�8) = 5 0;B4 , then q (%, �8) ⊆ q (%�,=0).

If the syscall B2 ∈ q (%, �8), with Definition 4.2, we can find an instruction � 9 satisfying � 9 ≽

�8 , B~B (� 9) = B2 . According to Theorem 4.6, � 9 ≽ �8 indicates that =1 ≽ =0 or =0 = =1 where
=0 = ` (��, �8), =1 = ` (��, � 9). Then, by Definition 4.8, the required syscall set q (%�,=0) must
contain B2 . Thus, the over-approximation is sound as any syscalls belonging to q (%, �8) are included
in q (%�,=0). With a sound required syscall set, we ensure that the policy enforcement at each
reduction position will not restrict potentially required syscalls, and thus DynBox will not interfere
with the program’s normal execution.

5 IMPLEMENTATION

In the implementation, DynBox is developed using the LLVM framework [Lattner and Adve 2004]
and incorporates Seccomp BPF [McCanne and Jacobson 1993]. We compile a program using clang
with Link-Time Optimization (LTO) enabled [LLVM 2022]. This allows us to obtain an intermediate
representation (IR) file of the entire program, which assists us in conducting inter-procedural
analysis. During the partial order analysis, we identify suitable reduction positions and carry
out instrumentation. During the instrumentation, the analysis incorporates a callback function
called addPolicy, which is implemented within a dynamic library. We develop the dynamic library
based on libseccomp [Libseccomp 2023], which can automatically generate the BPF program
according to the specified policies and then load them into the Linux kernel. Finally, we compile
the instrumented IR file into a sandbox-enhanced binary file and link it with the dynamic library.
During the execution of the enhanced binary, when it reaches a reduction position, it will invoke the
callback function addPolicy, utilizing libseccomp to enforce a new syscall policy into Seccomp
BPF, thereby restricting unnecessary syscalls.

6 EVALUATION

The experiments aim to answer the following research questions.

• RQ1. How effective is DynBox in reducing the attack surface and protecting the operating
system from malicious payloads?
• RQ2. Which syscalls are restricted by DynBox, and what is the impact of these syscalls in
vulnerability exploitation?
• RQ3. What are the size expansion, analysis time, and runtime overhead of DynBox?

Applications. Seven complex applications are used as testbeds in our evaluation, including
web servers (Httpd, Nginx), databases (Redis, Memcached, SQLite), a DNS system (Bind), and
a compression tool (Tar). All of them are widely used and have complex architectures with an
average codebase of 615 KLOC. They are chosen for two reasons. First, we choose different types
of applications to validate DynBox’s effectiveness. Second, these applications are also used as
evaluation testbeds in previous works [Canella et al. 2021; Ghavamnia et al. 2020, 2022]. Considering
the over-approximation characteristic of the partial order analysis, we ensure that DynBox will
not interrupt the applications’ normal execution. All isolated applications can pass the projects’
test cases and run in a stable manner during stress tests.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:18 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

Effectiveness Evaluation. First, we assess the number of permitted syscalls in effectiveness
evaluation. As DynBox dynamically adjusts the syscall sandbox policy, it is necessary to evalu-
ate DynBox at different positions during an application’s execution. Therefore, we collect a set
of vulnerabilities for each application and locate their potential exploitation positions. At each
exploitation position of a vulnerability, we calculate the currently permitted syscalls, and then get
an average number of permitted syscalls for an application among all exploitation positions. The
vulnerabilities used in our evaluation are gathered from the Common Vulnerabilities and Exposures
(CVE) library [MITRE 2022] and projects’ mailing lists. We collect 43 critical vulnerabilities, which
are recently discovered and exploitable. Meanwhile, we collect possible exploitation positions of
vulnerabilities to evaluate DynBox at these positions.

Second, we collect a set of malicious payloads and evaluate DynBox’s effectiveness in resisting
malicious payloads. In this experiment, we adopt the setting of previous works [Canella et al. 2021;
Ghavamnia et al. 2020], which compares the permitted syscalls with those required by a malicious
payload. If any of the syscalls required by the payload are restricted, the payload can be blocked.
Subsequently, for each exploitation position of the application, we can calculate a defense rate on
all payloads with respect to the permitted syscalls at this position. Finally, an average defense rate
for the application across all its vulnerability exploitation positions is computed to evaluate the
overall effectiveness of DynBox on the application. For a fair comparison, our evaluation adopts
the same setting of malicious payloads as that of Temp [Ghavamnia et al. 2020]. In detail, we first
obtain 567 payloads from Metasploit [Rapid7 2022] and Shell-storm [Storm 2022], and then analyze
the syscalls used by each payload. Moreover, as potential evasion attempts using alternative syscalls
with the same functionalities to bypass syscall sandbox [Ghavamnia et al. 2020], like substituting
open with openat, we also exhaustively enumerated all possible variants of each payload to test
DynBox’s performance against such bypass intents. Finally, we have a total of 1726 malicious
payloads for effectiveness evaluation.

Overhead Evaluation. For overhead assessment, we utilize the Phoronix test suite [Suite 2023]
as the evaluation framework. The performance stress test is conducted on an Ubuntu 20.04 with
i7-10700K and 48GiB memory. By assigning an extensive workload to each application in a fixed
period, we can measure the average throughput. For each application, we implement warm-up
testing several times for a stable state and get the average value of five rounds to avoid randomness.

6.1 Evaluation of Effectiveness

This section presents the evaluation of DynBox’s effectiveness. We assess the defense rate of
DynBox when it resists the exploitation payloads of vulnerable applications. Meanwhile, the
number of permitted syscalls is estimated for detailed analysis. We compare DynBox with three
advanced methods, Chestnut [Canella et al. 2021], Temporal Specialization (Temp) [Ghavamnia
et al. 2020], and C2C [Ghavamnia et al. 2022].

According to the observation from Temp [Ghavamnia et al. 2020], the lifecycle of an application
can be manually divided into the initialization and serving phases. Since some syscalls are only used
during initialization, Temp enforces the policy again after initialization to restrict these unnecessary
syscalls. To compare with it, we evaluate the defense effectiveness on the serving phase and the
whole lifecycle of applications separately. Normally, different vulnerabilities of an application are
exploited at different exploitation positions, on which DynBox may permit different syscalls. To
assess the effectiveness of DynBox, we calculate the average results across all exploitation positions
within each application. Therefore, DynBox’s permitted syscalls shown in Table 2 are decimal. As
Temp also permits different syscalls in two phases, its whole lifecycle defense rate and permitted
syscalls are also average values across all exploitation positions of each application.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:19

Table 2. The results of effectiveness evaluation. The “Rate” indicates the defense rate ofmalicious payloads, and
the “Count” presents the average number of permi�ed syscalls. The results of the serving phase are calculated
a�er the initialization of applications, and the “Whole Lifecycle” column shows the results throughout the
complete execution of the application. The permi�ed syscalls of DynBox are decimal values because they are
average values of permi�ed syscalls across different exploitation positions within an application.

Applications
Whole Lifecycle Defense Result Serving Phase Defense Result

Chestnut Temp DynBox Chestnut Temp DynBox

Rate Count Rate Count Rate Count Rate Count Rate Count Rate Count

Nginx 53.48% 104.00 60.28% 102.76 78.62% 76.52 53.48% 104.00 72.36% 97.00 82.87% 70.00

Httpd 64.02% 99.00 78.84% 84.29 83.20% 64.57 64.02% 99.00 84.94% 79.00 88.59% 60.20

Redis 67.67% 86.00 75.72% 82.00 83.59% 63.92 67.67% 86.00 75.72% 82.00 83.59% 63.92

Sqlite 89.98% 74.00 89.98% 74.00 90.96% 71.25 89.98% 74.00 89.98% 74.00 90.96% 71.25

Memcached 75.03% 89.00 76.07% 85.45 85.32% 58.00 75.03% 89.00 76.42% 84.00 86.15% 54.80

Bind 77.58% 97.00 77.69% 85.00 81.56% 65.00 77.58% 97.00 77.69% 85.00 81.56% 65.00

Tar 76.07% 108.00 77.58% 97.00 80.61% 93.24 76.07% 108.00 77.58% 97.00 80.61% 93.24

Average 71.98% 93.86 76.59% 87.21 83.42% 70.36 71.98% 93.86 79.24% 85.43 84.90% 68.34

Comparison with Chestnut. The comparison result is shown in Table 2. As Chestnut only
reduces the attack surface before an application starts, we mainly compare it on the whole life-
cycle result, on which DynBox restricts 23.50 more syscalls and outperforms Chestnut by 15.88%
in terms of defense rate. This result demonstrates that a fixed sandbox policy achieves limited
defense performance. This is because many complex applications need critical syscalls like execve.
Without dynamically adjusting the sandbox policy, Chestnut needs to permit these syscalls in the
applications’ entire lifecycle, leading to a loose sandbox policy.
Comparison with Temporal Specialization. Temp [Ghavamnia et al. 2020] mitigates the

problem by restricting syscalls once more at a manually selected transition point of the initialization
and serving phases in an application. As shown in Table 2, Temp has achieved encouraging results
with 76.59% and 79.24% defense rates on the whole lifecycle and serving phase correspondingly.
However, by dynamically adjusting the policy at automatically identified reduction positions,
DynBox averagely achieves 8.90% and 7.15% higher defense rates respectively. This is because
Temp needs to manually specify a function as the entry of the serving phase, but such manual
intervention is tricky due to the following reasons. First, some applications like Sqlite do not have
an obvious entry function. Thus, Temp can only set the policy at the beginning of the Sqlite and
achieve the same rate as that of Chestnut.

Second, finding correct transition points is hard. For example, on Apache Httpd, Temp chooses
the function child_main, the entry of the child process, as the beginning of the serving phase.
In fact, Httpd has a master process, which remains alive and can be accessed by attackers, so
its transition point of finishing initialization is located before the invocation of child_main. As
CVE-2021-41773 [MITRE 2021] demonstrated, attackers can call execve in the master process
outside the function child_main. Thus, on Httpd, Nginx, and Memcached, Temp cannot cover all
vulnerabilities with an improper selection of transition points, leading to a lower whole lifecycle
result than that of the serving phase.

Third, programs usually have a more complex lifecycle with several phases. On Redis and Bind,
Temp finds proper transition points of initialization and serving phases, at which setting a policy
can cover all vulnerabilities we collect. However, in this situation, DynBox inhibits 18.08 and 20.00
more syscalls respectively. The reason is that Temp’s sandbox policy remains fixed after the serving
phase starts, whereas DynBox can automatically find more reduction positions and build a more
stringent sandbox for applications with complex lifecycles, providing better protection for OS.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:20 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

Table 3. Comparison between C2C and DynBox on applications with different configurations.

Application Httpd Httpd Nginx Redis Memcached Tar Tar Tar
Average

Configuration WordPress Mediawiki Zend Server default Ubuntu Default -czvf -xzvf -test-label

Permitted
Syscalls

C2C 97.00 95.00 108.00 82.00 83.00 84.00 94.00 73.00 89.50
DynBox 60.20 60.20 70.00 63.92 54.80 93.24 93.24 93.24 73.61

Defense
Rate

C2C 74.62% 77.52% 70.51% 81.87% 76.59% 79.37% 77.58% 86.91% 78.12%
DynBox 88.59% 88.59% 82.87% 83.59% 86.15% 80.61% 80.61% 80.61% 83.95%

Comparison with C2C.We also compare our work with the C2C [Ghavamnia et al. 2022], a
configuration-aware syscall filter generation method. As C2C’s defense result is highly related to
the configuration of the application, we compare DynBox with it separately, and the results are
illustrated in Table 3. The application we used is the same as those adopted in C2C. By removing
the call edges that will not be activated under a specific configuration on call graphs, C2C can
effectively restrict syscalls that are not needed by applications in specific modes. However, DynBox
achieves better defense performance than C2C on all applications except for Tar with arguments
-test-label. Since C2C still sets fixed policy after the program initializing rather than adjusting the
policy according to the control flow, DynBox can reduce more attack surface on most applications.
C2C and DynBox make efforts to build tighter policy from two orthogonal aspects. C2C con-

centrates on resolving some conditional jump that is related to its configuration but does not
automatically adjust the sandbox policy during execution. Thus, DynBox can be complementary to
C2C. We build a configuration-aware dynamic sandbox to enhance the current version of C2C, and
conduct a preliminary experiment on Tar. The result shows C2C gets a 4.93% higher defense rate
when augmented with DynBox. It indicates that C2C and DynBox can complement each other to
reduce more attack surfaces during program execution.

6.2 Syscall Analysis

In this section, we focus on the restrictions of critical syscalls to estimate their impact on vulner-
ability exploitation. Since Temp achieves the best performance in existing methods, we mainly
compare DynBox with it in this section.
Critical Syscalls. We first show how DynBox restricts critical syscalls in Table 4. We select

13 critical syscalls in three types from Table 1, which are widely used by malicious payloads and
critical to system functionalities. To demonstrate the security impact of abusing these syscalls, we
also show the percentage of payloads using the corresponding syscall.
Specifically, more than 25% of payloads require execve to execute a malicious command. Both

Temp and DynBox handle execve well and restrict it in almost all applications, except for Redis
and Tar. These two applications require the execve during their main workflow, so Temp cannot
block this syscall. However, DynBox can block it after applications use it for the last time and
mitigate the vulnerability exploitation. We can see similar effectiveness on clone and fork.

As for the privilege control, though not many payloads abuse these syscalls, DynBox still tightly
restricts the setuid, chmod, and setgid for prevention. On some syscalls like chmod, Temp totally
inhibits it on Redis, while DynBox permits them on a few parts of exploitation positions of Redis.
We explore the reason and find that chmod is actually required by Redis and should be permitted
in certain execution phases. Therefore, Redis fails the test cases due to false-positive restrictions
imposed by Temp. On the contrary, DynBox will not raise such false alarms and only restricts the
syscall when it is determined to be unnecessary.

Another dangerous syscall set is related to the network. In most circumstances, attackers need to
conduct remote attacks, thus requiring many network operations. More than half of the payloads

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:21

Table 4. Results of critical syscall analysis. The “Cmd” rows contain syscalls related to the command execution.
The “Payloads” column shows the proportion of payloads including the corresponding syscall. The number
under each application indicates the restriction level of the corresponding syscall at all vulnerabilities exploita-
tion positions of the application. “1.00” indicates that syscall is forbidden on all vulnerability exploitation
positions of an application, and “0.00” means none.

Syscall
App

Payloads
Nginx Httpd Redis Sqlite Memcached Bind Tar

Temp Dyn Temp Dyn Temp Dyn Temp Dyn Temp Dyn Temp Dyn Temp Dyn

C
m
d clone 10.43% 0.36 1.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

execve 27.81% 0.36 0.76 0.71 0.71 0.00 0.38 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.03
fork 5.62% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P
ri
v
il
ed
g
e chmod 4.17% 0.00 0.00 1.00 0.86 1.00 0.38 0.00 0.00 1.00 1.00 1.00 0.60 1.00 0.00

mprotect 11.82% 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
setuid 3.48% 0.00 0.52 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.03
setgid 0.93% 0.00 0.52 0.71 0.71 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.60 0.00 0.03

N
et
w
o
rk

accept 12.46% 0.00 0.00 1.00 0.43 0.00 0.38 1.00 1.00 0.00 0.45 0.00 0.40 1.00 1.00
bind 25.96% 0.00 0.00 0.71 0.86 0.00 0.38 1.00 1.00 0.00 0.45 0.00 0.00 1.00 1.00
listen 24.74% 0.00 0.64 0.71 0.86 1.00 0.38 1.00 1.00 0.00 0.45 0.00 0.40 1.00 1.00
sendto 13.04% 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.45 0.00 0.00 1.00 1.00

recvfrom 14.66% 0.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 0.00 0.45 0.00 1.00 1.00 1.00
socket 52.84% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.45 0.00 0.00 0.00 0.00

invoke socket, and the syscall bind is utilized by more than a quarter of payloads. Meanwhile,
many applications heavily rely on network operations to achieve their basic functionality. Thus,
it is hard to restrict them with fixed policies. By adjusting the policy along with the execution of
an application, we can restrict syscalls according to its requirement dynamically and reduce the
corresponding attack surface timely. For example, on Sqlite and Memcached, DynBox can even
restrict socket, which effectively restricts the ability of attackers when exploiting.

In conclusion, by dynamically adjusting the sandbox policy with partial order analysis, DynBox
can better restrict critical syscalls after their last usage and reduce exposed attack surfaces timely.
Payload Analysis. In addition to the critical syscall analysis, we also investigate the mitigation

results of different types of payloads. According to their attack goal, the payloads can be categorized
into four types. Specifically, among all payloads, 334 of them are extremely dangerous and want
to escalate privilege through syscalls like setuid and chmod. 436 of them can be used to execute
arbitrary commands via syscalls including execve and fork. 583 payloads intend to communicate
with attackers through the network, requiring syscalls like socket, connect, and bind. 373 payloads
only perform some basic system operations like accessing files. We calculate the average defense
rates of all 7 applications in different categories, which are presented in Figure 6.

In all categories,DynBox has the best performance compared to the state-of-the-art tools. Among
them, the most dangerous ones are the payloads of command execution and privilege escalation.
To escalate privilege, attackers need vital syscalls like setuid, which are well-restricted by both
tools. As for the command execution, since some applications like Redis and Tar need execve for
their core functionalities, approaches like Temp have to permit this critical syscall. In contrast,
by automatically identifying the reduction position for restricting execve, DynBox achieves an
8.04% higher defense rate than Temp on the category of command execution. As for the network
operation, most of these applications’ core functionalities heavily rely on the network, making it
hard to totally restrict syscalls like socket and connect. However, DynBox improves by 13.83% in
this category compared to Temp, indicating that dynamically restricting unnecessary syscalls can
effectively reduce the attack surface of the operating system and limit the ability of attackers. In the
category of basic operation, the performance of Temp is relatively limited, since payloads in this

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:22 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

Privilege Escalation
Command Execution

Network Operation
Basic Operation

0

20

40

60

80

100

A
ve
ra
ge

D
ef
en
se

R
at
e
(

92
.1
6

82
.9
8

72
.5
6

58
.1
5

92
.5
8

89
.6
5

82
.5
9

69
.1
4

Temp
DynBox

Fig. 6. Average defense rate of Temp and Dyn-

Box on 7 applications against malicious payloads
from 4 different categories.

Fig. 7. The variation in the number of permi�ed
syscalls during the execution of Nginx. Each line
represents one process.

category usually require some basic operations with syscalls like open. Although extremely critical
syscalls like execve are not abused in these payloads, attackers can still cause serious consequences,
such as trojan injection or information theft. Thus, these syscalls need to be carefully handled, and
DynBox mitigates 18.90% more payloads compared with Temp.

With the detailed analysis of syscalls and payloads, it is demonstrated that critical syscalls play
a crucial role in vulnerability exploitation. Meanwhile, DynBox can effectively restrict critical
syscalls with dynamical adjustment, and thus resists more malicious payloads.

6.3 Overhead of DynBox

We measure the overhead of DynBox from three aspects, runtime overhead, binary size expansion,
and the analysis time. The results are shown in Table 5.

Table 5. The overhead of DynBox. “Binary Expansion” shows the increase in the size of the applications’
executables. The “Analysis Time” row shows the seconds needed for the partial order analysis of applications.

Nginx Httpd Redis Sqlite Memcached Bind Tar

Runtime Overhead (%) 1.83% 0.14% 17.44% 0.75% 5.15% 5.22% 4.96%
Binary Expansion (%) 5.53% 4.31% 0.72% 5.07% 1.72% 2.44% 9.83%
Analysis Time (s) 5.27 3.31 3.67 6.92 1.00 11.52 1.87
Binary Size (MiB) 1.22 1.78 1.18 2.11 0.34 3.96 1.16

The runtime overhead was evaluated with a stress testing benchmark named Phoronix [Suite
2023]. During the stress testing, Phoronix sent extensive workloads to applications, keeping the
CPU saturated. On average, DynBox leads to 5.07% more execution time, which is similar to
other works [Canella et al. 2021; Ghavamnia et al. 2022]. Such runtime overhead comes from two
parts. The first part relates to the instrumentation used for enforcing new policies. Based on our
experiment, it takes 0.03ms to add a policy for one syscall on average, which accounts for only a
small proportion of the overall overhead. The major overhead is due to the privilege checks, since
OS has to run BPF programs on each syscall. Depending on the design and implementation of
applications, the overhead varies in our experiment. The runtime overhead of DynBox ranges from
0.14% to 5.22% except for Redis. Redis needs to handle extensive requests in concurrency under
Phoronix’s stress test, thus invoking a large number of syscalls to handle I/O accesses. As a result,
it invokes 19,303 syscalls per second, resulting in a 17.44% runtime overhead. In contrast, DynBox

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:23

only introduces 1.83% runtime overhead on Nginx, since it only makes 7,248 syscalls per second. In
addition, we evaluate the runtime overhead of Temp and Chestnut, which result in average runtime
delays of 5.04% and 4.91% respectively. Given that DynBox introduces 5.07% runtime overhead,
which is similar to that of Temp and Chestnut, adjusting the policy multiple times does not incur
heavy additional overhead. Therefore, it is reasonable to build DynBox for a stricter restriction.

Table 5 also shows the size of the executable file after instrumentation. Among seven applications,
the binary files are slightly increased by 4.23% on average. Such little overhead demonstrates
DynBox’s high practicability in the real world.
The column “Analysis Time” in Table 5 exhibits the time consumption of the analysis. Over-

all, DynBox efficiently builds the sandbox within around 10 seconds. Theoretically, the overall
complexity of the partial order analysis is O(< + =), where = is the total number of program
instructions, and< represents the jumps on the control flow. During �� construction, the analysis
traverses all instructions and jumps for once. Then, %� is produced with in O(< + =), as discussed
in Section 4.3.2. Finally, DynBox is built with one traversal of %� . Thus, the overall complexity of
analysis is O(< + =). The experiments also demonstrate that the analysis time is proportional to
the binary size. For example, Bind consumes a relatively longer analysis time than others, since it
has the largest binary size as presented in Table 5.

In conclusion, DynBox efficiently isolates complex vulnerable programs and mitigates potential
exploitation impact on OS with negligible runtime overhead and binary size expansion.

6.4 Real-World Case Study

In this section, we present how DynBox adjusts the sandbox policy along with the execution of
Nginx. The syscall requirement changes during Nginx’s lifecycle are presented in Figure 7.
Initially, DynBox restricted 247 syscalls and set an initial sandbox policy with 100 permitted

syscalls. Soon, at 3.6ms, DynBox restricted two more syscalls, including sched_getaffinity,
which is widely used to exploit concurrent vulnerabilities. Then, the launcher process spawned a
master process and exited. This operation can make Nginx a daemon process in the system. Then,
the master process started with the sandbox policy inherited from the launcher process. Soon,
DynBox restricted two more unnecessary syscalls, and Nginx began spawning worker processes.

We only present syscall changes for one of the worker processes spawned by the master, since all
the other workers behave similarly. Once a worker process started, many crucial syscalls required
by the master process became unnecessary. Therefore, at 5.8ms, syscall execve was restricted.
Then, after the initialization of the worker process at 6.0ms, syscalls like setuid were further
confined. After 6.0ms, both the worker and master ran in a stable state for handling requests. As the
master needs to manage worker processes, it requires syscalls like execve and setuid. At about
4.7 minutes, we stopped Nginx, which entered the exiting phase. During this phase, DynBox still
gradually restricted unnecessary syscalls until Nginx exited.

In this case, we can observe that programs tend to have complex lifecycles, requiring extensive
efforts and expert knowledge to identify different execution phases manually. Therefore, DynBox
is urgently needed to automatically and precisely identify reduction positions and dynamically
restrict unnecessary syscalls during the program’s execution.

7 DISCUSSION

Tradeoff of Critical Syscall Sniffing. In node mapping, we utilize the critical syscall sniffing
strategy to remove illusory traces. It may delay the restriction of some uncritical syscalls and
degrade the defense rate. However, as Figure 8 shows, it can improve the overall analysis precision.
In the experiment, we try to disable the critical syscall sniffing strategy while building DynBox, as
the blue and green bars in Figure 8 show. Without the strategy, the partial order analysis cannot

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:24 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

create a robust sandbox for applications. On average, 19.02% more syscalls are permitted to the
applications, which causes a 7.12% drop in the average defense rate. Therefore, critical syscall
sniffing can eliminate many illusory traces and improve the overall precision of sandbox policy,
helping DynBox resist attacks with the highest defense rate among existing methods.

Nginx
Httpd

Redis
SQLite

Mem Bind Tar
20

40

60

80

100

120

A
ve
ra
ge

D
ef
en
se

R
at
e
(%

)

4.28
19.18 7.28

0.98
10.46

3.99 3.64

No Sniffing

Sniffing

(a) Average Defense Rate

Nginx
Httpd

Redis
SQLite

Mem Bind Tar
20

40

60

80

100

120

A
ve
ra
g
e
P
er
m
it
te
d
C
al
ls

1.00

23.43
20.08

2.75

38.00
28.00

8.03

No Sniffing

Sniffing

(b) Average Permi�ed Syscalls

Fig. 8. The defense rate and permi�ed syscalls of DynBox without and with critical syscall sniffing strategy.
The number on each of the two bars is the difference between them.

Imprecision of Third-Party Static Analyzers. Although the entire analysis has been proven to
be sound theoretically, we utilized two third-party static analyzers - SVF [Sui and Xue 2016] for
indirect call resolving and angr [Shoshitaishvili et al. 2016] for dynamic library analysis. These two
analyzers are highly effective and convenient but may be imprecise in corner cases, potentially
compromising the soundness of the analysis and resulting in false positives in syscall restriction.
Nevertheless, we conduct extensive experiments to ensure that DynBox will not interrupt applica-
tions’ normal execution. In experiments, applications augmented with DynBox pass the unit tests
in their repositories and execute stable under the stress tests. Therefore, these two methods will
not compromise the over-approximation property of the partial order analysis.
Limitations. Partial order analysis, being an inter-procedural analysis, necessitates the construc-
tion of the entire program’s intermediate representation (IR) through link-time optimization (LTO)
of LLVM [LLVM 2022]. Though LTO may not work optimally on all programs, it is worth noting
that many complex applications, such as Chrome and Firefox, have started providing support for
LTO in recent years. This support enables DynBox to scale effectively to a wide range of complex
programs. Furthermore, some applications may load new dynamic libraries during execution, which
is not supported by DynBox currently. We plan to investigate suitable methods to handle such
scenarios in future work. In addition, DynBox may not support programs with self-modifying code
as it is hard to analyze the possible control flow of such programs. Nonetheless, the majority of
programs do not possess this feature.

8 RELATED WORK

Attack Surface Reduction. To protect the operating system, lots of researchers make efforts to
reduce its attack surface by removing unnecessary features or code of programs. Early works
focus on removing the unnecessary codes from processes’ address space so as to prevent attackers
from using high-privilege code in functions or libraries that are not needed [Agadakos et al. 2019;
Mulliner and Neugschwandtner 2015]. After such removal, attackers’ exploitation payloads may
fail to execute, and some unknown vulnerabilities can be eliminated. Apart from libraries and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

Building Dynamic System Call Sandbox With Partial Order Analysis 266:25

code, researchers also reduce attack surfaces by limiting the accessible resources of a program.
Many researchers concentrate on intra-process memory isolation [Bensoussan et al. 1972; Park
et al. 2019]. They usually restrict memory access from vulnerable and malicious dynamic libraries
with the assistance of hardware mechanisms. Hu et al, [Hu et al. 2018] attempt to lower privilege
during the program’s execution with temporal reasoning, so that it is difficult for attackers to obtain
high-privilege access (e.g., root authority). The above studies reduce attack surfaces from different
aspects and can mitigate different attacks. They are orthogonal to DynBox as it reduces attack
surfaces by restricting unnecessary syscalls.
Syscall Sandbox. Some early works concentrating on intrusion detection usually use syscall
sequences as patterns. They first learn from the benign pattern and then check the syscall sequence
pattern [Goldberg et al. 1996] or validate arguments [Jachner and Agarwal 1984; Wagner and Dean
2001] to mitigate attacks. These methods aim to separate the benign and abnormal patterns, which
usually suffer from false positives, while the syscall sandbox wants to establish isolation without
interrupting the programs’ normal execution. In addition to intrusion detection, a few studies also
made exploration in syscall sandbox building. Goldberg et al.[Goldberg et al. 1996] are the first
to mitigate vulnerability exploitation by restricting the programs’ usable syscalls. Then, many
following works [Jain and Sekar 2000; Provos 2003; Rajagopalan et al. 2005] are proposed. However,
these researchers mainly focus on designing a dependable and efficient isolation mechanism to
ensure the integrity of policy rather than generating a suitable policy.

Recently, researchers have started to leverage static analysis to construct a tighter sandbox policy.
Zeng et al. [Zeng et al. 2013] utilize binary analysis to build the call graph, on which they collect the
reachable functions and get the required syscalls. Sysfilter [DeMarinis et al. 2020] further improves
the precision of the analysis. As these mechanisms rely on binary-level analysis, which suffers from
severe precision degradation [Canella et al. 2021], we do not use them as the comparison baseline
in evaluation. Recent works have started to analyze the source code, such as Chestnut [Canella et al.
2021], which builds a call graph from the source code to collect the required syscalls. By taking
program configuration into consideration, C2C [Ghavamnia et al. 2022] can better finetune the
sandbox policy. Temporal Specialization (Temp) [Ghavamnia et al. 2020] notices that the execution
of programs can be manually divided into initialization and server phases. After the initialization,
some syscalls become unnecessary, so Temp enforces the sandbox policy once more to restrict
them. Abhaya [Pailoor et al. 2020] leverages abstract interpretation to compute possible syscall
arguments and restrict abnormal invocations. We plan to incorporate it in our work to further
restrict syscall arguments during dynamic restriction in future work. All these methods only enforce
the policy at the early running stage of the program’s lifecycle. After that, the sandbox policy
remains fixed during the program’s subsequent execution. However, many programs need critical
syscalls to achieve their functionality in certain execution phases, and therefore existing methods
cannot restrict these syscalls. In contrast, using partial order analysis, DynBox automatically
identifies reduction positions for restricting unnecessary syscalls throughout the entire lifecycle of
the program, producing a dynamic syscall sandbox policy that offers higher security.

9 CONCLUSION

In this paper, we propose DynBox, which can dynamically reduce the attack surface via restricting
syscalls along the program’s execution. Different from existing methods which set the sandbox
policy only at the beginning of the program, we notice that the required syscall set of a program
monotonically reduces during the program’s entire lifecycle. Thus, we design DynBox to automati-
cally adjust the sandbox policy and only permit minimal necessary syscall set on each instruction.
Specifically, we propose the partial order analysis to estimate the execution order of any two
instructions. With determined orders, the required syscall set and the reduction positions can

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

266:26 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

be determined. By tightening the syscall sandbox policy at these reduction positions, DynBox is
customized to sandbox a program. We demonstrate the effectiveness of DynBox by evaluating it
with exploitable vulnerabilities and payloads. On average, by restricting 23.50, 16.86, and 15.89
more syscalls, DynBox resists 15.88%, 8.90%, and 7.46% more malicious payloads compared with
three state-of-the-art tools. In summary, DynBox can isolate the vulnerable program effectively
from affecting the operating system with a dynamically adjusted sandbox policy.

DATA-AVAILABILITY STATEMENT

The artifact that is utilized to produce the experimental results presented in Section 6, along with
the prototype that supports Section 4. It can be accessed on Zenodo [Zhang et al. 2023b] and
GitHub [Zhang 2023].

ACKNOWLEDGMENTS

This research is sponsored in part by the National Key Research and Development Project (No.
2022YFB3104000, No2021QY0604) and NSFC Program (No. 62022046, 92167101, U1911401, 62021002,
U20A6003).

REFERENCES

Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow integrity principles, implementations, and

applications. ACM Transactions on Information and System Security (TISSEC) 13, 1 (2009), 1–40.

Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Georgios Portokalidis. 2019. Nibbler: debloating

binary shared libraries. In Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San

Juan, PR, USA, December 09-13, 2019, David Balenson (Ed.). ACM, 70–83. https://doi.org/10.1145/3359789.3359823

A. Bensoussan, C. T. Clingen, and Robert C. Daley. 1972. The Multics Virtual Memory: Concepts and Design. Commun.

ACM 15, 5 (1972), 308–318. https://doi.org/10.1145/355602.361306

Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. 2021. Automating Seccomp Filter Generation for Linux

Applications. In CCSW@CCS ’21: Proceedings of the 2021 on Cloud Computing Security Workshop, Virtual Event, Republic

of Korea, 15 November 2021, Yinqian Zhang and Marten van Dijk (Eds.). ACM, 139–151. https://doi.org/10.1145/3474123.

3486762

Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P. Kemerlis. 2020. Sysfilter: Automated

system call filtering for commodity software. RAID 2020 Proceedings - 23rd International Symposium on Research in

Attacks, Intrusions and Defenses (2020), 459–474.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, andMichalis Polychronakis. 2020. Temporal System Call Specialization

for Attack Surface Reduction. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun

and Franziska Roesner (Eds.). USENIX Association, 1749–1766. https://www.usenix.org/conference/usenixsecurity20/

presentation/ghavamnia

Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis. 2022. C2C: Fine-grained Configuration-driven System Call

Filtering. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los

Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 1243–1257.

https://doi.org/10.1145/3548606.3559366

Ian Goldberg, David A. Wagner, Randi Thomas, and Eric A. Brewer. 1996. A Secure Environment for Untrusted Helper

Applications. In Proceedings of the 6th USENIX Security Symposium, San Jose, CA, USA, July 22-25, 1996. USENIX Asso-

ciation. https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-

applications

Xiaoyu Hu, Jie Zhou, Spyridoula Gravani, and John Criswell. 2018. Transforming Code to Drop Dead Privileges. In 2018 IEEE

Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018. IEEE Computer Society,

45–52. https://doi.org/10.1109/SecDev.2018.00014

Jacek Jachner and Vinod K. Agarwal. 1984. Data Flow Anomaly Detection. IEEE Transactions on Software Engineering SE-10,

4 (1984), 432–437. https://doi.org/10.1109/TSE.1984.5010256

K. Jain and R. Sekar. 2000. User-Level Infrastructure for System Call Interposition: A Platform for Intrusion Detection

and Confinement. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2000, San Diego,

California, USA. The Internet Society. https://www.ndss-symposium.org/ndss2000/user-level-infrastructure-system-

call-interposition-platform-intrusion-detection-and-confinement/

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1145/355602.361306
https://doi.org/10.1145/3474123.3486762
https://doi.org/10.1145/3474123.3486762
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://doi.org/10.1145/3548606.3559366
https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-applications
https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-applications
https://doi.org/10.1109/SecDev.2018.00014
https://doi.org/10.1109/TSE.1984.5010256
https://www.ndss-symposium.org/ndss2000/user-level-infrastructure-system-call-interposition-platform-intrusion-detection-and-confinement/
https://www.ndss-symposium.org/ndss2000/user-level-infrastructure-system-call-interposition-platform-intrusion-detection-and-confinement/

Building Dynamic System Call Sandbox With Partial Order Analysis 266:27

Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012. kGuard: Lightweight Kernel Protection against

Return-to-User Attacks. In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012,

Tadayoshi Kohno (Ed.). USENIX Association, 459–474. https://www.usenix.org/conference/usenixsecurity12/technical-

sessions/presentation/kemerlis

Linux Kernel. 2022. Seccomp BPF. https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

San Jose, CA, USA, 75–88. https://doi.org/10.1109/CGO.2004.1281665

Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos. 2017. Lock-in-Pop: Securing Privileged Operating

System Kernels by Keeping on the Beaten Path. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017,

Santa Clara, CA, USA, July 12-14, 2017, Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 1–13. https:

//www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen

Libseccomp. 2023. libseccomp. https://github.com/seccomp/libseccomp

LLVM. 2022. Link Time Optimization. https://llvm.org/docs/LinkTimeOptimization.html.

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Architecture for User-level Packet Capture. In

Proceedings of the Usenix Winter 1993 Technical Conference, San Diego, California, USA, January 1993. USENIX Association,

259–270. https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-

level-packet

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent development and deployment. Linux journal 2014,

239 (2014), 2.

MITRE. 2016. CVE-2016-0746. https://nvd.nist.gov/vuln/detail/CVE-2016-0746

MITRE. 2021. CVE-2021-41773. https://nvd.nist.gov/vuln/detail/CVE-2021-41773

MITRE. 2022. CVE. https://www.cve.org/.

Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with Runtime Code Stripping and Image Freezing.

(2015). http://www.mulliner.org/security/codefreeze/1

Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2009. SoftBound: highly compatible and

complete spatial memory safety for c. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM,

245–258. https://doi.org/10.1145/1542476.1542504

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian

Stefan. 2020. Retrofitting Fine Grain Isolation in the Firefox Renderer. In 29th USENIX Security Symposium, USENIX

Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 699–716. https:

//www.usenix.org/conference/usenixsecurity20/presentation/narayan

Shankara Pailoor, XinyuWang, Hovav Shacham, and Isil Dillig. 2020. Automated policy synthesis for system call sandboxing.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020). https://doi.org/10.1145/3428203

Neeraj Pal. 2018. Pledge: OpenBSD’s defensive approach to OS Security. https://medium.com/@_neerajpal/pledge-

openbsds-defensive-approach-for-os-security-86629ef779ce

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019. libmpk: Software Abstraction for Intel Memory

Protection Keys (Intel MPK). In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July

10-12, 2019. USENIX Association, 241–254. https://www.usenix.org/conference/atc19/presentation/park-soyeon

The Linux Documentation Project. 2023. Dynamic Loaded (DL) Libraries. https://tldp.org/HOWTO/Program-Library-

HOWTO/dl-libraries.html

Niels Provos. 2003. Improving Host Security with System Call Policies. In Proceedings of the 12th USENIX Security Symposium,

Washington, D.C., USA, August 4-8, 2003. USENIX Association. https://www.usenix.org/conference/12th-usenix-security-

symposium/improving-host-security-system-call-policies

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through Piece-Wise Compilation and Loading. In

27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 869–886. https://www.

usenix.org/conference/usenixsecurity18/presentation/quach

Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and Richard D. Schlichting. 2005. Authenticated System Calls. In

2005 International Conference on Dependable Systems and Networks (DSN 2005), 28 June - 1 July 2005, Yokohama, Japan,

Proceedings. IEEE Computer Society, 358–367. https://doi.org/10.1109/DSN.2005.23

Rapid7. 2022. Metasploit. https://www.metasploit.com/.

Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site Isolation: Process Separation for Web Sites within

the Browser. In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,

Nadia Heninger and Patrick Traynor (Eds.). USENIX Association, 1661–1678. https://www.usenix.org/conference/

usenixsecurity19/presentation/reis

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. 2015.

Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://doi.org/10.1109/CGO.2004.1281665
https://www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen
https://www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen
https://github.com/seccomp/libseccomp
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://nvd.nist.gov/vuln/detail/CVE-2016-0746
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
http://www.mulliner.org/security/codefreeze/1
https://doi.org/10.1145/1542476.1542504
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://doi.org/10.1145/3428203
https://medium.com/@_neerajpal/pledge-openbsds-defensive-approach-for-os-security-86629ef779ce
https://medium.com/@_neerajpal/pledge-openbsds-defensive-approach-for-os-security-86629ef779ce
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html
https://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html
https://www.usenix.org/conference/12th-usenix-security-symposium/improving-host-security-system-call-policies
https://www.usenix.org/conference/12th-usenix-security-symposium/improving-host-security-system-call-policies
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1109/DSN.2005.23
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

266:28 Q Zhang, C Zhou, Y Xu, Z Yin, M Wang, Z Su, C Sun, Y Jiang, and J Sun.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society,

745–762. https://doi.org/10.1109/SP.2015.51

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86).

In Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia,

USA, October 28-31, 2007, Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson (Eds.). ACM, 552–561.

https://doi.org/10.1145/1315245.1315313

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji

Feng, Christophe Hauser, Christopher Krügel, and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive

Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016.

IEEE Computer Society, 138–157. https://doi.org/10.1109/SP.2016.17

Shell Storm. 2022. Shell-storm. http://www.shell-storm.org/.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis in LLVM. In Proceedings of the 25th

International Conference on Compiler Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,

New York, NY, USA, 265–266. https://doi.org/10.1145/2892208.2892235

Phoronix Test Suite. 2023. Phoronix Test Suite. https://github.com/phoronix-test-suite/phoronix-test-suite.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In 2013 IEEE Symposium on

Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society, 48–62. https://doi.org/10.1109/

SP.2013.13

D. Wagner and R. Dean. 2001. Intrusion detection via static analysis. In Proceedings 2001 IEEE Symposium on Security and

Privacy. S&P 2001. 156–168. https://doi.org/10.1109/SECPRI.2001.924296

Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime countermeasures for code injection attacks against C and

C++ programs. ACM Comput. Surv. 44, 3 (2012), 17:1–17:28. https://doi.org/10.1145/2187671.2187679

Michał Zalewski. 2016. American Fuzzy Lop Whitepaper. https://lcamtuf.coredump.cx/afl/technical_details.txt

Qiang Zeng, Zhi Xin, Dinghao Wu, Peng Liu, and Bing Mao. 2013. Tailored Application-specific System Call Tables.

Quan Zhang. 2023. DynBox. https://github.com/ZQ-Struggle/DynBox.git

Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang. 2021. AdvDoor: adversarial backdoor

attack of deep learning system. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian Cadar and Xiangyu Zhang (Eds.). ACM, 127–138. https:

//doi.org/10.1145/3460319.3464809

Quan Zhang, Yongqiang Tian, Yifeng Ding, Shanshan Li, Chengnian Sun, Yu Jiang, and Jiaguang Sun. 2023a. CoopHance:

Cooperative Enhancement for Robustness of Deep Learning Systems. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser

(Eds.). ACM, 753–765. https://doi.org/10.1145/3597926.3598093

Quan Zhang, Chijin Zhou, Yiwen xu, Zijing Yin, Mingzhe Wang, Zhuo Su, Chengnian Sun, Yu Jiang, and Jiaguang Sun. 2023b.

Building Dynamic System Call Sandbox With Partial Order Analysis. Zenodo. https://doi.org/10.5281/zenodo.8328524

Chijin Zhou, Lihua Guo, Yiwei Hou, Zhenya Ma, Quan Zhang, Mingzhe Wang, Zhe Liu, and Yu Jiang. 2023. Limits of I/O

Based Ransomware Detection: An Imitation Based Attack. In 44th IEEE Symposium on Security and Privacy, SP 2023, San

Francisco, CA, USA, May 21-25, 2023. IEEE, 2584–2601. https://doi.org/10.1109/SP46215.2023.10179372

Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang. 2022. Minerva:

browser API fuzzing with dynamic mod-ref analysis. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November

14-18, 2022. ACM, 1135–1147. https://doi.org/10.1145/3540250.3549107

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 266. Publication date: October 2023.

https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SECPRI.2001.924296
https://doi.org/10.1145/2187671.2187679
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/ZQ-Struggle/DynBox.git
https://doi.org/10.1145/3460319.3464809
https://doi.org/10.1145/3460319.3464809
https://doi.org/10.1145/3597926.3598093
https://doi.org/10.5281/zenodo.8328524
https://doi.org/10.1109/SP46215.2023.10179372
https://doi.org/10.1145/3540250.3549107

	Abstract
	1 Introduction
	2 Background
	2.1 Syscall Sandbox
	2.2 Vulnerability Exploitation
	2.3 Focus of This Paper

	3 Motivating Example
	4 Design
	4.1 Problem Formulation
	4.2 Candidate Graph Building
	4.3 Partially Ordered Graph Construction
	4.4 Dynamic Syscall Sandbox Enhancement

	5 Implementation
	6 Evaluation
	6.1 Evaluation of Effectiveness
	6.2 Syscall Analysis
	6.3 Overhead of DynBox
	6.4 Real-World Case Study

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

