
Coverage-Directed Differential Testing of JVM Implementations

Yuting Chen
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
chenyt@cs.sjtu.edu.cn

Ting Su
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, China
tsuletgo@gmail.com

Chengnian Sun Zhendong Su
Department of Computer Science

University of California, Davis, USA
{cnsun, su}@cs.ucdavis.edu

Jianjun Zhao
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
Department of Advanced Information Technology

Kyushu University, Japan
zhao-jj@cs.sjtu.edu.cn

Abstract
Java virtual machine (JVM) is a core technology, whose
reliability is critical. Testing JVM implementations requires
painstaking effort in designing test classfiles (*.class)
along with their test oracles. An alternative is to employ
binary fuzzing to differentially test JVMs by blindly mutating
seeding classfiles and then executing the resulting mutants on
different JVM binaries for revealing inconsistent behaviors.
However, this blind approach is not cost effective in practice
because most of the mutants are invalid and redundant.

This paper tackles this challenge by introducing classfuzz,
a coverage-directed fuzzing approach that focuses on repre-
sentative classfiles for differential testing of JVMs’ startup
processes. Our core insight is to (1) mutate seeding classfiles
using a set of predefined mutation operators (mutators) and
employ Markov Chain Monte Carlo (MCMC) sampling to
guide mutator selection, and (2) execute the mutants on a ref-
erence JVM implementation and use coverage uniqueness as
a discipline for accepting representative ones. The accepted
classfiles are used as inputs to differentially test different
JVM implementations and find defects.

We have implemented classfuzz and conducted an exten-
sive evaluation of it against existing fuzz testing algorithms.

Our evaluation results show that classfuzz can enhance the
ratio of discrepancy-triggering classfiles from 1.7% to 11.9%.
We have also reported 62 JVM discrepancies, along with the
test classfiles, to JVM developers. Many of our reported is-
sues have already been confirmed as JVM defects, and some
even match recent clarifications and changes to the Java SE 8
edition of the JVM specification.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—Testing tools (e.g., data
generators, coverage testing); D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and ob-
jects; D.3.4 [Programming Languages]: Processors—Code
generation

General Terms Algorithms, Reliability, Languages

Keywords Differential testing, fuzz testing, Java virtual
machine, MCMC sampling

1. Introduction
Java Virtual Machine (JVM) is a mature Java technology. A
JVM is responsible for loading, linking, and executing Java
classfiles (*.class) in the same way on any platform [29].
Various JVMs (i.e., JVM implementations), such as Oracle’s
HotSpot [3], IBM’s J9 [4], Jikes RVM [5], Azul’s Zulu [6],
and GNU’s GIJ [2], are available and still evolving. They
adopt different implementation techniques (such as just-in-
time compilation, ahead-of-time compilation, and interpre-
tation) and adapt to different operating systems and CPU
architectures. To ensure their compatibility, they must consis-
tently implement a single JVM specification [25].

The reality is that no two JVMs are exactly alike, and they
can behave discrepantly when encountering corner cases or
invalid classfiles: a Java class can run on some JVMs but not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
c© 2016 ACM. 978-1-4503-4261-2/16/06...$15.00

http://dx.doi.org/10.1145/2908080.2908095

85

on the others, applications can be vulnerable when running
on some JVMs, or JVMs themselves can crash at runtime. For
instance, Lucene, a text search engine, runs amok of bugs on
JVMs from different vendors: it fails on any HotSpot release
with the G1 garbage collector; readVInt() returns wrong
results when Lucene runs on HotSpot for Java 6 or 7u1; and
FST.pack() may produce corrupted indices when Lucene
runs on J9 because of a miscompiled loop, etc.1

These JVM discrepancies are mainly created under two
circumstances. First, JVM implementations can contain de-
fects. Thus they can behave differently from each other be-
cause developers may not make the same mistake(s) when
developing their respective JVMs. Here we view any pro-
gramming bug (e.g., null pointer) in a JVM implementation
or any conformance violation of the implementation to the
JVM specification as a JVM defect. In particular, JVM has a
590-page specification [25] which is comprehensive, but can
still be vague and ambiguous. The specification also leaves
certain behavior undefined: “if some constraint (a ‘must’ or

‘must not’) . . . is not satisfied at run time, the behavior of the
Java Virtual Machine is undefined” (see §6.1 in the JVM
specification). A JVM implementation can also be complex.
For example, HotSpot has 250K+ lines of code. Thus it is
difficult to have a JVM implementation that strictly conforms
to the JVM specification.

Second, there exist compatibility issues among JVM im-
plementations (see Ch. 13 of the Java Language Specifica-
tion [17]). There also exist mismatches among Java appli-
cations, JVM implementations, Java runtime environments
(JREs), and platforms. For example, the Java Native Interface
(JNI) allows Java code to invoke, or be invoked by, native
applications and libraries written in C, C++, and assembly,
while it has been reported that in several cases, HotSpot con-
tinues running, while J9 crashes [20, 35].

We now formalize JVM discrepancies and defects to facil-
iate the presentation of our work. We denote a JVM execution
as r = jvm(e, c, i), where jvm is a JVM implementation, e
the execution-related environment (including JRE libraries
jvm depends on and loaded classes and resources), c and i,
respectively, a class running on jvm and the input, and r the
observable behavior (i.e., output or errors) reported by jvm.

Definition 1 (JVM Discrepancy). Given r1 = jvm1(e1, c, i)
and r2 = jvm2(e2, c, i), a JVM discrepancy occurs when r1
and r2 are observably different, denoted r1 � r2, i.e., r1 and
r2 have diverging output or errors.

A discrepancy can be easily observed if, given the same
class, two JVMs behave differently, e.g., one states that the
class can run normally, while the other issues an error. When
rejecting a classfile, JVMs can give different errors, whose
(in)equivalence may require a careful analysis. In our study,
we perform a fine-grained analysis of the execution results
(details in Section 2.3).

1 https://wiki.apache.org/lucene-java/JavaBugs

Definition 2 (JVM Defect). We call a JVM discrepancy (i.e.,
given r1 = jvm1(e1, c, i) and r2 = jvm2(e2, c, i), r1 � r2)
a JVM defect when jvm1 and jvm2 operate w.r.t. the same
environment (i.e., e1 = e2).

Differential testing [18, 27] can be a promising approach
to revealing defects in JVMs by comparing multiple systems.
It operates by running each test classfile on the JVMs, and
any detected discrepancies (e.g., one classfile can successfully
run on one JVM, but not on the others) may indicate defects
in JVM implementations. However, differential JVM testing
faces two key challenges:

Challenge 1: Classfiles need to be specifically constructed
for differential JVM testing. Since a classfile can encompass
intricate syntactic and semantic constraints, testing engineers
have to spend painstaking effort in designing the tests along
with their test oracles [24]. Although real-world applications
(e.g., Lucene) can be used for testing JVMs, they are insuffi-
cient for testing all aspects of JVMs. Real-world applications
also introduce difficulties in reproducing, reporting, diagnos-
ing and troubleshooting JVM defects due to their complicated
dependencies among applications, JVMs, and JREs [38].

An alternative is to employ binary fuzzing to differentially
test JVMs by blindly mutating seed classfiles and running the
mutants on different JVM binaries. This approach allows a
large number of test classfiles to be produced, including many
invalid and unexpected ones. However, it is easy to lead to an
enormous number of redundant tests, as most of the mutants
trigger a small number of JVM discrepancies.

Challenge 2: JVM discrepancies are frequent, but mostly
only concern compatibility issues, rather than actual de-
fects. We have conducted a preliminary study by running
classfiles in JRE7 libraries on five JVMs, including HotSpot
releases for Java 7/8/9, J9 for IBM’s SDK8, and GIJ 5.1.0.
The results show that 1.7% (364 out of 21736) of the
classfiles can reveal JVM discrepancies.2 For example,
the class sun.beans.editors.EnumEditor can trig-
ger a VerifyError on HotSpot for Java 8 because its
superclass com.sun.beans.editors.EnumEditor
is declared “final”, thus non-subclassable in JRE8; 37
classfiles can trigger verification errors (“stack shape
inconsistent”) when running on J9 because HotSpot
and J9 adopt different stack frames;3 the JRE7 library class-
files can also trigger many NoClassDefFoundErrors
and MissingResourceExceptions when running on
HotSpot releases for Java 8/9, J9, and GIJ, as some classes
and resources cannot be loaded by these JVMs at runtime.

These aforementioned discrepancies are mostly related
to compatibility problems, rather than JVM defects; they
can be eliminated by enforcing JVMs against the specific

2 http://stap.sjtu.edu.cn/˜chenyt/DTJVM/
testingresults.htm
3 http://javarevisited.blogspot.com/2013/01/
difference-between-sun-oracle-jvm-ibm.html

86

https://wiki.apache.org/lucene-java/JavaBugs
http://stap.sjtu.edu.cn/~chenyt/DTJVM/testingresults.htm
http://stap.sjtu.edu.cn/~chenyt/DTJVM/testingresults.htm
http://javarevisited.blogspot.com/2013/01/difference-between-sun-oracle-jvm-ibm.html
http://javarevisited.blogspot.com/2013/01/difference-between-sun-oracle-jvm-ibm.html

environments (through either upgrading/degrading the JRE
libraries or resetting the CLASSPATH environment variables
for the JVMs), rather than fixing the JVMs themselves.

To address these challenges, we propose classfuzz, a
coverage-directed fuzzing approach that focuses on construct-
ing representative classfiles for differential testing of JVMs’
startup processes. A JVM startup process involves the steps
of loading, linking, initializing, and invoking classes (Sec-
tion 2.1 explains it in detail). By representative, we mean
that the constructed test classfiles are likely to be different
and unique for differential testing, e.g., they take different
control-flow paths, enforce new (or new combinations of)
checking policies, or lead to new JVM errors/exceptions. For
this purpose, we execute the test classfiles on a reference JVM
implementation and use coverage uniqueness as a discipline
for accepting representative ones.

The essential idea of classfuzz is to iteratively mutate
seeding classfiles and only accept the representative mutants.
The accepted classfiles are used as inputs to differentially
test JVMs and find defects. In particular, we define 129
mutators (mutation operators) and employ Markov Chain
Monte Carlo (MCMC) sampling to guide mutator selection.
MCMC sampling is a class of algorithms for sampling from
a probability distribution by constructing a Markov chain that
converges to the desired distribution [13, 28]. It provides a
general solution to many intractable problems without exact
algorithms [33].

This paper makes the following main contributions:

1. Representativeness of tests. We cast the difficult problem
of finding representative tests as a coverage uniqueness
problem. This allows us to select those tests confirmed to
be representative by running them on a reference JVM.
This high-level view is general and applicable in other
settings with large-scale software systems and random
test inputs.

2. Coverage-directed classfile mutation. Classfuzz provides
a practical solution to constructing representative test
classfiles. As Figure 2 shows, classfuzz (1) mutates the
seeding classfiles and creates as many mutants as possi-
ble, including many corner cases, (2) runs the mutants
on a reference JVM implementation and uses coverage
uniqueness to select representative ones, and (3) leverages
MCMC sampling to guide mutator selection dynamically
as certain mutators are more effective in creating repre-
sentative classfiles.

3. Implementation and evaluation. We have implemented
classfuzz and evaluated it extensively against existing
fuzz testing algorithms. Our results show that classfuzz
can enhance the ratio of discrepancy-triggering classfiles
from 1.7% to 11.9%. We have also reported a number
of JVM discrepancies, along with the test classfiles, to
JVM developers. These discrepancies are mostly defect-
indicative or corresponding to the respective checking
and verification policies taken by the JVMs, and many

�������

�	
��	
�	������

�	
��	

�	������

�	
��	

�	������

�
���

����

���
����������

���������������

!"���
�

�����

��
�

���
���

#�����
��
���������

������
�	�$�����
�	�

#�������������
���

���
��
���

�	
��	

�	������
�� %&� '''

(��������

)�
��
�

)�
�
�

Figure 1: An overview of the classfuzz approach.

of our reported issues have already been confirmed as
JVM defects. Some discrepancies even match recent
clarifications and changes to the Java SE 8 edition of the
JVM specification. We believe that classfuzz is practical
and effective in detecting JVM defects and improving the
robustness of JVM implementations.

The rest of this paper is structured as follows. Section 2
presents the technical details of classfuzz. Section 3 describes
our extensive evaluation of classfuzz. Section 4 surveys
related work, and Section 5 concludes.

2. Approach
This section discusses the necessary background on JVM
testing, and introduces our coverage-directed approach to
exploiting representative test classfiles.

2.1 Background: Class Format and JVM Startup
A classfile is structurally organized, containing the com-
piled code for a Java class or interface. It is composed
of a magic number (‘0xCAFEBABE’), an MD5 checksum
value, a constant pool table, and several executable
bytecode segments. Figure 2 shows a simplified classfile
M1436188543.class. The major and the minor versions
indicate with which platform the classfile is compatible. For
example, the major version 51 denotes that the class is com-
patible with the J2SE 7 platform. The constant pool stores
the necessary symbolic information. The class body con-
tains a static initialization method <clinit> (i.e., public
abstract {};) and another main method with a code
segment. The flags are used to represent the attributes of the
class (and its methods and fields) and their access permis-
sions. For example, both methods have the ACC PUBLIC
flag, indicating that the methods can be accessed from out-
side its package; <clinit> has the ACC ABSTRACT flag,
indicating that the method is abstract and must not be instan-

87

Table 1: A JVM startup process and types of errors/exceptions that can be thrown

Phase Possible errors and exceptions
Creation&Loading: class loader tries to find a classfile, say
MyClass

ClassCircularityError, ClassFormatError, NoClassDefFoundError,
etc.

Linking: JVM links MyClass, and performs verification, prepara-
tion, and (optionally) resolution

VerifyError, IncompatibleClassChangeError (AbstractMethod-
Error/IllegalAccessError/InstantiationError/NoSuchFieldError
/NoSuchMethodError), UnsatisfiedLinkError, etc.

Initializing: JVM executes any class variable initializers, static
initializers of MyClass and the other linked classes

NoClassDefFoundError, ExceptionInInitializerError, etc.

Invoking&Execution: JVM invokes the main method of MyClass.
Notice that executing the JVM instructions constituting the main
method may cause linking (and consequently creating) additional
classes and interfaces, as well as invoking additional methods

Main method is not found, runtime errors/exceptions, user-defined
errors/exceptions, etc.

1 ...
2 MD5 checksum 8

fb69050bbcb9a83ddd90ae393368c5e
3 ...
4 class M1436188543
5 minor version: 0
6 major version: 51
7 flags: ACC_SUPER
8 Constant pool:
9 ...

10 #7 = Utf8 <clinit>
11 #8 = Utf8 ()V
12 #9 = Class #19 // java/lang/System
13 #10 = Utf8 Code
14 #11 = Utf8 main
15 ...
16 {
17 public abstract {};
18 flags: ACC_PUBLIC, ACC_ABSTRACT
19 public static void main(java.lang.String[]);
20 flags: ACC_PUBLIC, ACC_STATIC
21 Code:
22 stack=2, locals=1, args_size=1
23 0: getstatic #12 // Field java/lang/System.

out:Ljava/io/PrintStream;
24 3: ldc #4 // String Completed!
25 5: invokevirtual #21 // Method java/io/

PrintStream.println:(Ljava/lang/String
;)V

26 8: return}

Figure 2: An example of a decompiled classfile. The
<clinit> method is incorrectly defined and can trigger a
JVM discrepancy: HotSpot can invoke the class normally,
while J9 reports a format error “no Code attribute
specified...method=<clinit>()V, pc=0”.
This example corresponds to some recent changes to the
JVM specification (see Section 3.3).

tiated; the main method is typically static and thus has the
ACC STATIC flag, etc.. The code segment is composed of
the opcode specifying the operations to be performed.

A JVM starts up by loading a class and invoking its main
method [17]. As Table 1 shows, a JVM startup process in-
volves the steps of loading, linking, initializing, and invoking
class(es). At any step, the JVM may throw built-in errors
and/or exceptions when any constraints are violated. For

example, when running on J9, M1436188543.class trig-
gers a format error that <clinit> lacks a code attribute.

2.2 Coverage-Directed Classfile Mutation
Classfuzz exploits representative classfiles to differentially
test JVMs. As Algorithm 1 shows, classfuzz selects an initial
corpus of seeds and iteratively mutates them (Section 2.2.1).
Let each classfile be executed on a reference JVM. Any mu-
tant, if accepted as a test for differential testing, must take a
unique execution path when running on the reference JVM,
i.e., any two tests within the test suite should take different
execution paths (Section 2.2.3). New, representative classfiles
are further taken as seeds (lines 5 and 14 in Algorithm 1)
because as we will show in Section 3.2, it is easier to cre-
ate representative classfiles through mutating representative
seeds than mutating non-representative ones.

2.2.1 Mutating Classfiles
Classfuzz can generate a new classfile by randomly selecting
a seed and mutating it. We utilize Soot [39] to mutate
the seeds because it is a state-of-the-art Java analysis and
transformation framework and provides rich APIs for parsing,
transforming, and rewriting classfiles. We also define 129
mutators, allowing the seeds to be mutated via rewriting their
syntactic structures and intermediate representations; illegal
constructs can happen to be introduced into test classfiles,
which will further raise JVM discrepancies if they are handled
by JVMs differently.4

Table 2 shows some typical mutators. 123 out of the 129
mutators are designed for mutating classfiles at the syntactic
level. Classfuzz reads a classfile as a SootClass (i.e., the
internal structure of the classfile), and then uses a mutator to
rewrite it (e.g., modify its modifiers, change its superclass,
add an interface, rename a field or method, or delete an
exception thrown). The resulting SootClass is then dumped
to a new classfile.

4 A complete list of the 129 mutators can be found at http://stap.
sjtu.edu.cn/˜chenyt/DTJVM/classfuzz.htm#_Mutator.

88

http://stap.sjtu.edu.cn/~chenyt/DTJVM/classfuzz.htm#_Mutator
http://stap.sjtu.edu.cn/~chenyt/DTJVM/classfuzz.htm#_Mutator

Table 2: Typical mutators.

What to Typical mutators Example (Jimple code before mutation
mutate → Jimple code after mutation)

Class
Reset its attributes (e.g., modifiers, name, package
name, superclass), etc.

class M1437185190 extends java.lang.Object

→ private class M1437185190 extends java.lang.Thread

Interface
Insert one or more class-implementing interfaces,
delete one or more interfaces, etc.

class M1437185190 extends java.lang.Object

→ class M1437185190 extends java.lang.Object

implements java.security.PrivilegedAction

Field
Insert one or more class fields, delete one or more
fields, choose a field and set its attribute(s) (e.g.,
name, modifiers), etc.

...protected final java.util.Map MAP; ...
→ ...protected final java.util.Map MAP;

public java.lang.Object MAP; ...

Method
Insert one or more class methods, delete one or
more methods, choose a method and set its at-
tribute(s) (e.g., name, modifiers, return type), etc.

public void <init>(){...}
→ public static void <init>(){...}

Exception
Select a method and insert one or more exceptions
thrown, delete one or more exceptions thrown, etc.

public static void main(java.lang.String[]){
→ public static void main(java.lang.String[])

throws sun.java2d.pisces.PiscesRenderingEngine$2 {

Parameter
Select a method and insert one or more parameters,
delete one or more parameters, etc.

public static void main(java.lang.String[])

→ public static void main(java.lang.Object,

java.lang.String[])

Local
variable

Select a method and insert one or more local vari-
ables, delete one or more local variables, choose
a local variable and set its attribute(s) (e.g., type,
name, modifiers), etc.

public static void main(java.lang.String[])
{int $i0; ...}
→ public static void main(java.lang.String[])

{ java.lang.String $i0; ...}

Jimple
file

Insert one or more program statements, delete one
or more program statements, etc.

r0:=parameter0: java.lang.String[];
r1:=<java.lang.System: java.io.PrintStream out>;
virtualinvoke $r1.<java.io.PrintStream:void
println(java.lang.String)>("Executed");
→ r0:=parameter0: java.lang.String[];

virtualinvoke $r1.<java.io.PrintStream:void

println(java.lang.String)>("Executed");

r1:=<java.lang.System: java.io.PrintStream out>;

Six mutators are designed for mutating classfiles through
rewriting their Jimple files (i.e., the intermediate representa-
tions of the classes [7, 39]). Given a classfile, classfuzz trans-
forms it to a Jimple file. It then inserts, deletes, or replaces
one or more lines of the Jimple file, which may stochasti-
cally change the control flow and/or the syntactic structure of
the class. After mutation, classfuzz transforms the mutated
Jimple file to another classfile.

To facilitate further JVM testing and result analysis, we
supplement each classfile mutant with a simple mainmethod
that simply prints a message that the class can be normally
loaded and the mainmethod be normally executed on a JVM.
Thus when running on a JVM, a mutated classfile can either
be normally invoked or trigger an error/exception when the
JVM fails in loading and invoking this mutant.

2.2.2 Mutator Selection
The 129 mutators are not equally effective. In our study, class-
fuzz rarely creates representative classfiles when using certain
mutators. This observation underlies our design to selectively
apply mutators for generating representative classfiles.

Proposition: The more representative classfiles have
been created by a mutator, the more likely the mutator
should be selected for further mutations.

Classfuzz adopts the Metropolis-Hastings algorithm [13,
28] for guiding mutator selection. The Metropolis-Hastings
algorithm is an MCMC method for obtaining random samples
from a probability distribution. It works by generating a
sequence of samples whose distribution closely approximates
the desired distribution. Samples are produced iteratively,
where the acceptance of the next sample (say s2) depends
only on the current one (say s1). In our setting, samples
correspond to mutators to be selected.

Let the geometric distribution be the desired distribution
that meets the proposition. A geometric distribution is the
probability distribution of the number X of Bernoulli trials
needed to obtain one success: If the probability of success
on each trial is p, the probability that the kth trial is the first
success is given by

Pr(X = k) = (1− p)k−1 p

for k = 1, 2, 3, Here we have

89

Algorithm 1 Coverage-directed algorithm to generate
representative test classfiles
Input: Seeds: a corpus of seeding classfiles; mutators: an

array of mutators [mu1, . . . ,mu129]; TimeBudget: the
time budget

Output: TestClasses: a set of test classfiles; GenClasses:
a set storing all of the generated classfiles

1: TestClasses← Seeds
2: GenClasses← ∅
3: mu1 ← Random.choice(mutators)
4: repeat
5: cli ← Random.choice(TestClasses)
6: k1 ← mutators.index(mu1)
7: repeat
8: mu2 ← Random.choice(mutators)
9: k2 ← mutators.index(mu2)

10: until (Random.random() >= (1− p)k2−k1)
11: cl′i ← mutate(mu2, cli)
12: GenClasses← GenClasses ∪ {cl′i}
13: if cl′i is representative w.r.t. TestClasses then
14: TestClasses← TestClasses ∪ {cl′i}
15: update the success rate of mu2

16: mutators ← sort(mutators) /*sort mutators in
descending order of their success rates*/

17: mu1 ← mu2

18: until the time budget is used up
19: TestClasses← TestClasses \ Seeds
20: return TestClasses, GenClasses

Pr(X = 1) = p.

We associate with each mutator, mu, a success rate

succ(mu) =
#representative classfiles created by mu

#times that mu has been selected

which computes how frequently mu has been observed to
create representative classfiles. The mutators can then be
sorted in mutators, an array storing mutators in descending
order of their success rates: the first mutator in mutators has
the highest success rate, while the last the lowest.

The MCMC process allows the sampled mutators to meet
the geometric distribution such that the mutators with high
success rates are more easily selected than those with low
success rates. The Metropolis-Hasting algorithm (i.e., lines
6-10 in Algorithm 1) selects mutators at random, and accepts
or rejects the mutators by a Metropolis choice

A(mu1 → mu2) = min

(
1,

Pr(mu2)

Pr(mu1)

g(mu2 → mu1)

g(mu1 → mu2)

)
where g(mu1 → mu2) is the proposal distribution describing
the conditional probability of proposing a new sample mu2

given mu1.

Since these mutators are selected at random, the proposal
distribution in our setting is symmetric. The acceptance
probability is thus reduced to

A(mu1 → mu2) = min(1,
Pr(mu2)

Pr(mu1)
)

= min(1, (1− p)k2−k1)

where k1 and k2 are the indices of mu1 and mu2 in
mutators, respectively. The importance of A(mu1 → mu2)
is: if mu2 has a higher success rate than mu1, mu2 is always
accepted; otherwise the proposal is selected with a certain
probability (1− p)k2−k1 . Furthermore, the bigger k2 − k1 is,
the less the acceptance probability is. Notice that at each itera-
tion the success rates need to be re-calculated and mutators
be re-sorted (lines 15-16 in Algorithm 1).

Parameter estimation Let ε be a very small deviation (e.g.,
0.001). We estimate the parameter p by requiring it to satisfy
three conditions:

1 ≥
129∑
k=1

Pr(X = k) ≥ 0.95;

p >
1

129
;

ε < (1− p)129−1p.

The first condition guarantees that the accumulative prob-
ability approaches 1. The second condition ensures that the
probability for selecting the first mutator (with the highest
success rate) must be larger than 1

129 . The third condition
ensures that the mutator with the lowest success rate still has
some chance to be selected. Thus the initial value of p needs
to be in the range (0.022, 0.025). In our study, we let p be
3

129 (≈ 0.023).

2.2.3 Accepting Representative Classfiles
In order to evaluate the mutated tests, Tsankov, Dashti, and
Basin have defined semi-valid coverage, a coverage criterion
which computes how many semi-valid inputs (i.e., inputs that
satisfy all correctness constraints but one) are used during
a testing session [37]. However, the semi-valid coverage
criterion does not fit our setting as it becomes impossible to
derive all the constraints from the informal JVM specification;
neither does there exist any solution to creating semi-valid
classfiles for JVM testing.

Classfuzz adopts a simple strategy by executing the mu-
tated classfiles on a reference JVM RefJVM (e.g., HotSpot)
and only accepting the representative ones as tests (for fur-
ther differential testing uses). In particular, we use coverage
uniqueness as a discipline to accept or reject classfiles.

Let TestClasses be a set of classfiles and cl (cl /∈
TestClasses) a candidate classfile. Let trcl be an execu-
tion tracefile recording which code statements and branches
of RefJVM are hit by cl when it runs on RefJVM . The

90

Table 3: JVMs used in differential testing.

JVM Java version Description Release
implementation supported date

HotSpot for Java 9 [3] 1.9.0-internal Open-source reference implementation of the JVM specification, Java SE 9 Edition Late 2016
HotSpot for Java 8 [3] 1.8.0 Open-source reference implementation of the JVM specification, Java SE 8 Edition March 2014
HotSpot for Java 7 [3] 1.7.0 Open-source reference implementation of the JVM specification, Java SE 7 Edition July 2011
J9 for IBM SDK8 [4] 1.8.0 IBM’s fully compatible JVM with the libraries of Oracle’s Java SE 8 platform February 2015

GIJ 5.1.0 [2] 1.5.0 The GNU Interpreter for Java (GIJ), a Java bytecode interpreter April 2015

classfile cl is representative w.r.t. TestClasses if its tracefile
is different from those of the classfiles within TestClasses .

We can further alleviate the problem of tracefile com-
parison by directly comparing their coverage statistics. Let
trcl.stmt and trcl.br be the statement and branch coverages
of cl, respectively. We define the next three criteria that allow
the coverage uniqueness to be conveniently checked:

1. [st]: @t ∈ TestClasses(trcl.stmt = trt.stmt);
2. [stbr]: @t ∈ TestClasses(trcl.stmt = trt.stmt ∧

trcl.br = trt.br);
3. [tr]: @t ∈ TestClasses(trcl.stmt = trt.stmt = (trcl ⊕

trt).stmt ∧ trcl.br = trt.br = (trcl ⊕ trt).br).

[st] requires cl to be different from the classfiles in
TestClasses in terms of its statement coverage, and [stbr] in
terms of both of its statement and its branch coverage metrics.
[tr] requires the tracefile of cl to be statically different from
that of any classfile in TestClasses (the execution order of
program statements and branches and their frequencies are
omitted). Here ⊕ is an operator for merging two tracefiles;
the formula trcl.stmt = trt.stmt = (trcl ⊕ trt).stmt de-
notes that cl and t cover the same set of program statements
of RefJVM ; trcl.br = trt.br = (trcl ⊕ trt).br denotes that
the two classfiles cover the same set of branches. Compared
with the cost of using [stbr], [tr] incurs extra cost of merging
tracefiles.

2.3 Differential Testing of JVMs
In our work, we execute the classfiles on five state-of-the-art
JVM implementations shown in Table 3, and compare the
execution results for revealing inconsistent behaviors.

All of the JVMs can be started up by executing the com-
mand: java classname. Let each test result be simpli-
fied, by checking whether the main method can be normally
invoked or during which phase an error/exception is thrown,
to (0) “normally invoked”, (1) “rejected during the loading
phase”, (2) “rejected during the linking phase”, (3) “rejected
during the initialization phase”, or (4) “rejected at runtime”.
The five test outputs w.r.t. a classfile can then be encoded
into a sequence of bits, and a discrepancy appears when the
sequence is not of the same bits (e.g., all zeros and all ones).
Figure 3 illustrates an encoded sequence indicating that a
classfile is normally invoked by the three HotSpot releases,
but rejected by J9 and GIJ in different phases. Notice that the

����������������������������

����������������				

����

��������

����������������������������

����������������				

����

����

����������������������������

����������������				

����

��������
				���� ��������				

���������������������������� � � � � �

Figure 3: An encoded sequence of test outputs. Theoretically,
there are 55 possibilities.

simplification can raise both false positives and negatives in
practice because the JVMs may report different errors when
one classfile contains multiple illegal constructs, while it is
possible that these errors are thrown during the same phase.

Meanwhile, when a discrepancy appears, there do not
exist any models or automated means for identifying the root
cause of the discrepancy, although many general purposed
test case reducers (e.g., AST-Based reducer and the modular
reducer [31] for CSmith [41]) do exist for pruning the large
irrelevant portions from test inputs. For our purpose, the
hierarchical delta debugging algorithm [30] is adapted to
reduce a discrepancy-triggering classfile in two steps:

Step 1. Given a classfile cl which triggers a discrepancy (say
o), delete one of its methods, statements, fields from its
Jimple code and re-generate the classfile (say cl′);

Step 2. Retest cl′ on the five JVMs. If o retains, we assign
cl′ to cl; otherwise cl′ is discarded.

An engineer can repeat this process until a sufficiently
simple classfile that can still trigger o is obtained. With a sim-
plified classfile and the corresponding test outputs, it becomes
relatively easy to determine which class component(s) and/or
attribute(s) lead to that discrepancy. It also becomes easy to
determine whether the discrepancy is caused by compatibility
problems or by JVM defects.

3. Evaluation
We have implemented classfuzz and conducted an extensive
evaluation of it against existing fuzz testing algorithms. Our
evaluation results show that 11% of the representative class-
files can trigger JVM discrepancies, and MCMC sampling
helps produce an additional 43% of representative classfiles.
We have also reported 62 JVM discrepancies, along with the
test classfiles, to JVM developers. These discrepancies are
mostly defect-indicative, or corresponding to the respective
checking and verification policies taken by the JVMs. Some

91

discrepancies even match recent clarifications and changes to
the Java SE 8 edition of the JVM specification. The rest of
this section presents our detailed results and analysis.

3.1 Setup
Our empirical evaluation is designed to answer the following
research questions:

• Classfiles: How many test classfiles can be generated by
classfuzz within a limited time period?
• Effectiveness: How effective are the test classfiles in a

classfuzz-generated test suite?
• Defects: Can the test classfiles find any JVM defects?

3.1.1 Preparation
Our classfile mutation and differential testing were conducted
on a 64-bit Ubuntu 14.04 LTS desktop (with an Intel Core
i7-4770 CPU and 16GB RAM). As Figure 2 shows, we chose
HotSpot for Java 9 as a reference JVM because (1) as a
forthcoming JVM implementation, this release is supposed
to provide the richest functionalities among all of the existing
JVM implementations, and (2) this release is open-sourced
and allows code coverage to be conveniently collected (using
the --enable-native-coverage flag). We used the
mature, widely adopted coverage tool GCOV + LCOV to
collect coverage statistics. Since the reference implementa-
tion has 260K lines of code (LOCs), it takes 30+ minutes
to collect coverage statistics for each run. Thus we chose
/hotspot/src/share/vm/classfile/, a package
containing the shared files used in a JVM startup process,
for coverage analysis. The package contains 11, 977 LOCs
and 9, 197 program branches. The cost for coverage analysis
is reduced to about 90 seconds per run.

As for testing, our test classfiles were executed on the five
JVMs shown in Table 3. All the JVMs except HotSpot for
Java 9 are widely used in practice.

We randomly selected 1, 216 classfiles from the JRE7
libraries as the seeds. We did not use all of JRE7’s classfiles
because, given a limited time period, a smaller number of
seeds can be more sufficiently mutated.

Furthermore, we assigned each mutant a major version
51 because a version 51 class is compatible with J2SE7 and
thus can be mutated by Soot and recognized by all of the five
JVMs. Notice that a JVM may use different algorithms for
verifying classfiles of different versions. Thus, it is possible
that HotSpot accepts some dubious/illegal constructs in a
version 46 class but rejects them if they appear in a version
51 class. How to create classfiles with different versions for
revealing JVM defects is beyond the scope of this paper.

3.1.2 Evaluated Methodology
Classfuzz can utilize one of the three uniqueness criteria
(i.e., [st], [stbr], and [tr]). In order to investigate which
criterion is well matched with the approach in practice, we let
classfuzz adopt these criteria, respectively. Correspondingly,

the algorithms are marked as classfuzz[st], classfuzz[stbr],
and classfuzz[tr].

No open-source fuzz testing tool can be directly com-
pared with classfuzz. AFL fuzzer is a security-oriented fuzzer
that employs compile-time instrumentation and genetic algo-
rithms to discover test inputs for triggering new internal states
in the targeted binary [1]. However, test classfiles cannot be
successfully generated by AFL fuzzer due to many simple
constraints, e.g., any mutation of a classfile will make the file
violate its checksum value, the seeding classfiles are too large
to change, etc.. Thereafter, we evaluated classfuzz against
three other algorithms that we designed for comparison to
demonstrate classfuzz’s capability:

• Randfuzz: It mutates the seeding classfiles at random;
• Greedyfuzz: It is a greedy mutation algorithm. Greedyfuzz

measures the accumulative coverage of the test suite, and
accepts a mutant only when it leads to increased code
coverage; and
• Uniquefuzz: Similar to classfuzz, uniquefuzz accepts a

mutant only when it is unique w.r.t. the test suite. It differs
from classfuzz in that it selects the mutators randomly.
In the evaluation, uniquefuzz only takes [stbr] as its
uniqueness criterion.

All algorithms but randfuzz are coverage-directed to ac-
cept/reject mutants, requiring code coverage to be computed
at each iteration. Each algorithm takes the initial set of seeds,
but follows its respective strategy to mutate the seeds and mu-
tants. All algorithms employ the 129 mutators in Section 2.2.1
for classfile mutations. To facilitate discussion, we mark the
sets of seeds, classfiles generated, and classfiles selected for
JVM testing as Seeds, GenClasses, and TestClasses, re-
spectively, and use GenClassesX and TestClassesX to
denote the two sets produced by algorithm X .

3.1.3 Metrics
We recorded several metrics during the evaluation. We ran
each algorithm for three days, and then reported the number
of iterations (#Iterations) and the size of GenClasses and
TestClasses. To account for randomness in the algorithms,
we executed each algorithm five times, but only chose one
test suite (i.e., TestClasses) with the largest size among the
five resulting test suites and the corresponding GenClasses.

We computed the success rate of an algorithm X as

succ(X) =
|TestClassesX |
#Iterations

× 100%

which shows the capability of the algorithm in generating test
classfiles. We also reported the time spent on generating each
classfile.

We evaluated the effectiveness of a test suite through
counting the discrepancies it has revealed when running
on the five JVMs. Thus we ran each set of classfiles (say

92

Classes) on the targeted JVMs and computed its difference
rate as

diff =
|Discrepancies|
|Classes|

× 100%

where Discrepancies only includes the classfiles that can
trigger JVM discrepancies. diff can be used to estimate the
inconsistencies among the JVMs: since each representative
classfile corresponds to a unique test scenario, the higher
diff is, the more inconsistent the five JVMs are in processing
classfiles.

With the encoded test results, we evaluated the effective-
ness of each test suite in revealing various discrepancies. Let
two discrepancies be classified into one category when they
have the same encoded outputs. We counted the number of
distinct discrepancies (|Distinct Discrepancies|) revealed
by each test suite. The more distinct discrepancies are found
by a test suite, the more types of discrepancies are supposed
to be revealed by the suite.

We investigated each class in TestClassesclassfuzz[stbr]
manually, and reported to JVM developers some discrepan-
cies that are more likely caused by JVM defects.

3.2 Results on Classfile Generation
Table 4 shows the sizes of the test suites. From the results,
we observe:

• Finding 1: Randfuzz generates 20 times as many class-
files as those generated by any other coverage-directed
algorithm; classfuzz[stbr] generates the most number of
representative classfiles and achieves the highest success
rate among all the coverage-directed algorithms.

The sizes of the test suites can vary. In three days, randfuzz
generated 29,523 non-representative classfiles (on average
6.8 classes per minute). Meanwhile, as a human engineer
may spend minutes or hours on analyzing one classfile and
the test outputs, randfuzz simply shifts the cost of classfile
generation to manual result analysis. In contrast, all the
directed algorithms produce classfiles more slowly. In three
days, they generate 1, 432 ∼ 1, 543 classfiles (on average
0.35 classes per minute), as time is needed to (1) collect
coverage statistics at runtime; and (2) check each candidate
classfile’s uniqueness w.r.t. the test suite. Classfuzz[tr] also
incurs extra cost in merging tracefiles. Notice that the cost of
mutator selection is quite low and can be omitted in practice.

The success rates of the algorithms range from 5.1% to
63.7%. Classfiles are not generated during some iterations
because (1) some seeds are invalid and thus cannot be used
as inputs for mutation, or (2) some SootClasses or Jimple
files after rewritten are invalid (e.g., the constant pool may be
incomplete) and their classfiles cannot be further processed
by Soot. Directed algorithms (i.e., classfuzz, greedyfuzz, and
uniquefuzz) also discard 41.7 ∼ 93.2% of the generated
classfiles due to their non-uniqueness.

Classfuzz[stbr] and classfuzz[tr] produce more repre-
sentative tests than classfuzz[st]. One reason is that the

two algorithms accept coverage-unique classfiles in a two-
dimensional space (i.e., stmt and br), but classfuzz[st] in one-
dimensional space. For instance, let two classfiles achieve
the code coverage of 4, 938/2, 604 and 4, 938/2, 655, re-
spectively. Classfuzz[st] takes one classfile as a test, while
classfuzz[stbr] takes both. Instead, greedyfuzz takes 98 out
of 1, 432 classfiles as the representative tests, making differ-
ential testing inadequate.

Theoretically, [tr] is stronger than [stbr] because tracefiles
having the same coverage statistics can still be different.
However, in our evaluation, the two criteria are similarly
effective in accepting representative classfiles. Specially, the
774 classfiles in TestClassesclassfuzz[tr] correspond to 758
unique coverage statistics; only 16 classfiles have the same
coverage statistics as the others, but have different tracefiles.
We compared the outputs of the 16 classfiles with those of the
other classfiles, and observed that for two classfiles having the
same coverage statistics, HotSpot for Java 9 always returns
the same output.

We randomly selected 1, 500 classfiles from TestCla-
ssesrandfuzz . They correspond to only 237 unique cover-
age statistics. Comparatively, GenClassesclassfuzz[stbr] and
GenClassesuniquefuzz correspond to 898 and 628 unique
coverage statistics, respectively. It justifies our assumption
in Section 2.2, i.e., it can be easier to create representative
classfiles by mutating representative seeds than mutating non-
representative ones.

• Finding 2: classfuzz can utilize the prior knowledge to
select mutators.

We summarized the mutators selected for generating
TestClassesclassfuzz[stbr]. Figure 4a shows the mutators
sorted in descending order of their success rates, and Fig-
ure 4b shows their frequencies. Although mutator selection
does not strictly meet the geometric distribution because the
iterations are insufficient, it clearly agrees with the proposi-
tion in Section 2.2.1: the higher the success rate of a mutator,
the more frequently the mutator is selected. For example,
among all of the mutators, renaming one method has been se-
lected for the most number of times (49), and it also achieves
a high success rate (75%). In comparison, as Figure 4c shows,
uniquefuzz selects the mutators without any guidance, even
though some of them rarely create representative classfiles;
the frequencies of the mutators vary only because some mu-
tators hardly create classfiles.

Table 5 shows the top ten mutators and their frequencies.
These mutators are easy to create a rich set of classfile mu-
tants because they are likely to rewrite program constructs
(e.g., methods, initializers, exceptions) that need to be metic-
ulously processed. Some mutators (e.g., those for rewriting
the parameter list of a method) are less effective in creating
coverage-unique classfiles, because (1) the resulting Soot-
Classes or Jimple files violate some transforming constraints
in SOOT and thus cannot be dumped to classfiles, or (2) some

93

Table 4: Results on classfile generation.

Classfuzz Uniquefuzz Greedyfuzz Randfuzz
[stbr] [st] [tr]

#iterations 2130 2108 1971 1898 1911 46318
|GenClasses| 1539 1543 1450 1436 1432 29523
|TestClasses| 898 494 774 628 98 29523
succ 42.2% 23.4% 39.3% 33.1% 5.1% 63.7%
Average time for each generated class (sec.) 168.4 168.0 178.8 180.5 181.0 8.78
Average time for each test class (sec.) 288.6 524.7 334.9 412.7 2644.9 8.78

�

���

���

���

���

���

���

��	

��

���

�

��������

���������

�

(a) Success rates of mutators for generating
TestClassesclassfuzz[stbr].

�

�����

����

�����

����

�����

����

��������

���������

�

(b) Frequencies of mutators for generating
TestClassesclassfuzz[stbr].

�

�����

����

�����

����

�����

����

��������

���������

�

(c) Frequencies of mutators for generating
TestClassesuniquefuzz .

Figure 4: Correlation between the success rates of mutators and their selection frequencies. In either figure, the x-axis denotes a
sequence of mutators. For comparison reason, these mutators are sorted in descending order of their success rates for generating
TestClassesclassfuzz[stbr].

Table 5: Top ten mutators.

What to mutate Mutator Succ rate Frequency
Method Select a class and replace all of its methods with those of another class 0.913 0.022
Exception Select a method and add a list of exceptions thrown 0.780 0.019
Class Select a class and set a specified class as its superclass 0.773 0.021
Method Select a method and rename it 0.745 0.024
Field Select a class and replace all of its fields with those of another class 0.723 0.022
Method Select a method and change its return type 0.714 0.016
Exception Select a method and add one exception thrown 0.692 0.012
Class Select a class and set its superclass as a class randomly selected from a class list 0.667 0.013
Local variable Select a local variable and change its type 0.659 0.021
Method Select a method and delete it 0.607 0.013

program constructs (or properties) can be simply processed,
making the same code be covered for processing the class
constructs (or properties) before and after rewritten.

MCMC sampling provides extra benefits in generating
representative classfiles. By comparing the test suites of
classfuzz[stbr] and uniquefuzz, we can estimate that MCMC
sampling helps produce an additional 43%(= 898−628

628) of
representative classfiles within three days.

3.3 Results on Differential JVM Testing
Table 6 summarizes the test results of executing the seeds
and the mutated classfiles on the five JVMs. By observing
the results, we have two additional findings.

• Finding 3: classfuzz can enhance the ratio of discrepancy-
triggering classfiles from 1.7% to 11.9%.

JVM discrepancies can be exaggerated by the classfile
mutants: only 364 out of the 21, 736 JRE7 classfiles can trig-
ger JVM discrepancies, while 107 out of the 898 mutants
in TestClassesclassfuzz[stbr] can. The results suggest that
(1) the tested JVM implementations are compatible for most
of the classfiles, while still differ in processing some cor-
ner cases; and (2) fuzz testing is a promising approach to
exposing JVM discrepancies.

Table 7 presents a detailed summary of using the 898 class-
file mutants in TestClassesclassfuzz[stbr] to differentially
test the JVMs: 127, 127, 125, 123, and 145 classfiles are

94

Table 6: Results on testing of JVMs. Since the results for randfuzz are identical under both cases, we do not repeat them (and
labeled as “- ”).

JRE7 seeding Classfuzz Uniquefuzz Greedyfuzz Randfuzz
classes classfiles [stbr] [st] [tr]

|GenClasses| 21736 1216 1539 1543 1450 1436 1432
all invoked 77 17 197 199 226 203 195
all rejected at the same stage 21295 1162 1100 1104 984 1063 980 −
|Discrepancies| 364 37 242 240 240 170 257
|Distinct Discrepancies| 16 9 17 14 13 10 15
diff 1.7% 3.0% 15.7% 15.6% 16.5% 11.8% 17.9%

|TestClasses| 898 494 774 628 98 29523
all invoked 121 62 122 109 11 3914
all rejected at the same stage 670 374 564 462 72 20072
|Discrepancies| − − 107 58 88 57 15 5537
|Distinct Discrepancies| 17 11 12 9 7 14
diff 11.9% 11.7% 11.4% 9.1% 15.3% 18.8%

Table 7: Results on testing of JVMs using the 898 classfile mutants in TestClassesclassfuzz[stbr].

HotSpot for Java 7 HotSpot for Java 8 HotSpot for Java 9 J9 GIJ
Normally invoked 127 127 125 123 145
Rejected during the creation/loading phase 51 51 51 57 34
Rejected during the linking phase 719 719 718 707 714
Rejected during the initialization phase 1 1 4 1 2
Rejected at runtime 0 0 0 0 3

runnable on three HotSpot releases, J9, and GIJ, respectively.
J9 rejects the most number of classfiles, while GIJ rejects the
least. From the results, we notice that, among the JVMs, GIJ
is the most lenient and accepts many more invalid classfiles.

• Finding 4: TestClassesclassfuzz[stbr] can reveal the
most number of distinct discrepancies among all of the
test suites.

Table 6 shows that TestClassesclassfuzz[stbr] reveals
more distinct discrepancies than the other test suites. The set
of distinct discrepancies revealed by TestClassesclassfuzz[stbr]
can also contain those revealed by the other test suites but
Seeds. It indicates that TestClassesclassfuzz[stbr] is effec-
tive in revealing a variety of JVM discrepancies. Instead,
randfuzz can produce a significant number of classfiles which
trigger 5, 537 JVM discrepancies, while these discrepancies
can be reduced to only 14 distinct ones.

GenClasses and TestClasses of classfuzz[stbr] can re-
veal the same number of distinct discrepancies, while the
other algorithms cannot. Therefore, from the perspective
of distinct discrepancies, TestClassesclassfuzz[stbr] can be-
come a replacement of GenClassesclassfuzz[stbr] for differ-
entially testing the five JVMs.

Discrepancy analysis JVM discrepancies have not been
much studied before. Indeed, they have rarely been reported
to JVM developers and were not well-known. We have in-
vestigated several bug tracking systems, mailing lists, and

forums for Java and JVMs, and selected the most active ones:
one bug tracker for Java and two mailing lists for HotSpot.5

We searched the mailing lists for messages between January,
2013 and December, 2015, and did not find any whose sub-
jects concern JVM discrepancies. We searched the bug tracker
for bugs related to GIJ and J9. Only five bugs were retrieved,
which were not reported explicitly as JVM discrepancies. It
is interesting to note that many changes proposed in these
mailing lists and bug trackers may be leveraged to discover
JVM discrepancies, which we plan to explore in future work.

Our test classfiles clearly indicate the presences of
JVM discrepancies. We manually analyzed the classfiles
in TestClassesclassfuzz[stbr] and their test outputs, and
collected 62 JVM discrepancies along with the simplified
classfiles. To the best of our knowledge, these discrepancies
were previously unknown: 28 of the 62 discrepancies indicate
that defects exist in one or more JVM implementations; 30
discrepancies are caused because JVMs take different veri-
fication/checking strategies or hold different accessibilities
to resources and libraries; the remaining four correspond to
compatibility issues.6 Some of our reported issues are listed

5 The bug tracker is http://bugs.java.com/, and the two mail-
ing lists are http://mail.openjdk.java.net/mailman/
listinfo/hotspot-dev and http://mail.openjdk.java.
net/mailman/listinfo/hotspot-runtime-dev.
6 The collection can be found at http://stap.sjtu.edu.cn/

˜chenyt/DTJVM/classfuzz.htm.

95

http://bugs.java.com/
http://mail.openjdk.java.net/mailman/listinfo/hotspot-dev
http://mail.openjdk.java.net/mailman/listinfo/hotspot-dev
http://mail.openjdk.java.net/mailman/listinfo/hotspot-runtime-dev
http://mail.openjdk.java.net/mailman/listinfo/hotspot-runtime-dev
http://stap.sjtu.edu.cn/~chenyt/DTJVM/classfuzz.htm
http://stap.sjtu.edu.cn/~chenyt/DTJVM/classfuzz.htm

below. We also explain how classfiles are mutated to discover
these problems.

Problem 1: The clause “other methods named <clinit>
in a class file are of no consequence” in the JVM specifica-
tion has caused an unreasonable amount of confusion.

The program in Figure 2 reveals a behavior discrepancy be-
tween HotSpot and J9. In particular, public abstract
<clinit> can be created either by renaming one abstract
method as <clinit> or by adding an ACC ABSTRACT flag
to the method <clinit> and then deleting its opcode. Since
the method <clinit> does not have the ACC STATIC flag,
HotSpot treats it as an ordinary method instead of an initial-
ization method, while J9 throws a ClassFormatError.

Our reported issue has been confirmed as a defect in the
JVM specification and a bug in J9.7 It also matches a recent
specification clarification.8 The specification committee will
make a revision, in Section 2.9 of the JVM specification,
where a class/interface initialization method will be more
strictly defined: “A method is a class or interface initialization
method if all of the following are true: (1) It has the special
name <clinit>; (2) It takes no arguments; (3) It is void;
(4) In a class file whose version number is 51.0 or above,
the method has its ACC STATIC flag set. Other methods
named <clinit> in a class file are not class or interface
initialization methods”.

A JVM following SE 9 must apply the new definition
for all classfile versions. The corresponding Technology
Compatibility Kit (JCK) tests are under development.9

Problem 2: JVMs take their own classfile verification and
type checking polices.

Discrepancies can be caused due to the different classfile
verification and type-checking polices taken by the JVMs.
Methods may become illegal if the statements inside are
deleted or new statements are added, and classes with such
methods may expose JVMs’ discrepancies in format checking
and classfile verification. Some discrepancies are unfamiliar
to even JVM developers. For example, IBM’s VM, J9, is
less strict than HotSpot because J9 only verifies a method
when it is invoked, while HotSpot verifies all methods before
execution.10 This fact is not well-known.

GIJ can report a verification error for a method in which
initialized and uninitialized types are merged, but HotSpot
cannot.11

HotSpot misses catching some incompatible type cast-
ings. For example, the class M1433982529 is mutated

7 http://mail.openjdk.java.net/pipermail/
jls-jvms-spec-comments/2015-July/000013.html
8 https://bugs.openjdk.java.net/browse/JDK-8130682
9 https://bugs.openjdk.java.net/browse/JDK-8135208
10 http://mail.openjdk.java.net/pipermail/
hotspot-runtime-dev/2016-January/017439.html.
11 http://mail.openjdk.java.net/pipermail/
hotspot-runtime-dev/2015-June/015253.html.

by setting the type of the only parameter of the method
internalTransform from java.util.Map to java.
lang.String. GIJ throws a verification error for the
class because it is unsafe to perform a type casting between
java.lang.String and java.util.Map, while Hot-
Spot does not report any error for this. The same is-
sue occurs in some other type castings, e.g., between
java.lang.Boolean and java.util.Enumeration.

1 //The Jimple code of M1433982529
2 public class M1433982529 extends java.lang.

Object{
3 protected void internalTransform(java.lang.

String) {
4 java.util.Map r0;
5 r0 := @parameter0: java.util.Map;
6 staticinvoke <java.lang.Object: boolean

getBoolean(java.util.Map)>(r0);
7 return;
8 }}

Problem 3: JVMs are not compatible to access some
classes.

The tested JVMs do not follow the same strategy for
accessing certain classes. For example, consider the source
code shown below for the class sun.java2d.pisces.
PiscesRenderingEngine. The class PiscesRen-
deringEngine$2 is generated for initializing NormMode.
We add a thrown exception of type PiscesRendering-
Engine$2 to the mainmethod of the class M1437121261.
HotSpot reports a java.lang.IllegalAccessError
for the class M1437121261, while J9 and GIJ do not.12

1 //The source code of sun.java2d.pisces.
PiscesRenderingEngine

2 public class PiscesRenderingEngine extends
RenderingEngine {

3 ...
4 private static enum NormMode {OFF, ON_NO_AA

, ON_WITH_AA};
5 ...
6 }
7 //The Jimple code of M1437121261
8 public class M1437121261 {
9 public static void main (String[] r0)

10 throws sun.java2d.pisces.
PiscesRenderingEngine$2{

11 ...
12 }}

Problem 4: GIJ behaves significantly differently from
HotSpot and J9.

GIJ 5.1.0 conforms to Java 1.5.0, although it can process
the version 51 classes. Thus it behaves significantly differ-
ently from the other JVMs conforming to Java 1.7.0, 1.8.0,
or 1.9.0-internal, while many discrepancies are obvious JVM
defects. Some of the differences are:
12 One explanation is that the class starts with sun.* is not ac-
cessible anymore in JDK 9 (with modules), while counterexamples
still exist (see http://mail.openjdk.java.net/pipermail/
hotspot-runtime-dev/2016-January/017676.html).

96

http://mail.openjdk.java.net/pipermail/jls-jvms-spec-comments/2015-July/000013.html
http://mail.openjdk.java.net/pipermail/jls-jvms-spec-comments/2015-July/000013.html
https://bugs.openjdk.java.net/browse/JDK-8130682
https://bugs.openjdk.java.net/browse/JDK-8135208
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-January/017439.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-January/017439.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2015-June/015253.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2015-June/015253.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-January/017676.html)
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-January/017676.html)

• When processing an interface extending a class such as
java.lang.Exception, either HotSpot or J9 will
throw a ClassFormatError because the superclass of
an interface must be java.lang.Object, but GIJ fails
in catching this kind of illegal inheritance structures. An
interface for triggering this discrepancy can be obtained
by changing its superclass.
• All of the JVMs but GIJ require that an interface method

must be public and abstract, and an interface field must
be public, static, and final. An interface for this can be
obtained by changing the modifiers of one of its methods
or fields.
• GIJ can execute an interface having a main method

(i.e., public static main(String[])), while
the other JVMs cannot. Such an interface can be created
by inserting a main method into a seeding interface.
• The following method signature public abstract
void <init> (int, int, int, boolean);
is rejected by all JVMs, except GIJ. Hotspot and J9 reject
it because <init> should not be static, final, synchro-
nized, native or abstract. Similarly, a method signature
such as public java.lang.Thread <init>()
is allowed by GIJ, but forbidden by HotSpot and J9 be-
cause <init> should not return any result. The classfile
mutants for this are created by changing the modifiers or
return type of <init>.
• GIJ accepts a class with duplicate fields, while the others

do not. A classfile mutant for this can be created by
inserting one or more class fields that exist in the seed.

4. Related Work
We discuss four strands of related work: (1) directed random
testing, (2) mutation-based fuzz testing, (3) JVM testing, and
(4) MCMC sampling for testing.

Directed random testing Godefroid, Klarlund, and Sen
have introduced DART, a directed random testing approach
of intertwined concrete and symbolic execution [15]. DART
performs random testing of a program under test, analyzes
how the program behaves under random testing, and then au-
tomatically generates new test inputs to direct the execution
along alternative program paths. Godefroid, Levin, and Mol-
nar have presented another idea of whitebox fuzz testing [16].
The approach records the execution traces of a program and
generates constraints capturing how the program uses its
inputs. The generated constraints are used to produce new
inputs directing the program to follow different control paths.

Despite following the same general idea of searching
for different control paths, classfuzz differs from DART
and whitebox fuzz testing in that it directs test generation
via coverage, rather than symbolic execution and constraint
solving. Thus, it is simpler and more generally applicable,
while it would be interesting future work to investigate
effective combinations of the techniques.

Chen et al. have measured the similarities among test in-
puts and formulated the problem of selecting diverse, interest-
ing test inputs from a large set of random, failure-triggering
test cases as a fuzzer taming problem [12]. However, taming
a fuzzer relies on the quality of the initial test set. The simi-
larities among test classfiles are also not strongly correlated
to their strengths in exposing JVM discrepancies. In compari-
son, classfuzz advocates the idea of generating high-quality
test inputs, rather than selecting test inputs.

Mutation-based fuzz testing Fuzz testing is a general ap-
proach to generating test inputs for testing complicated soft-
ware systems. However, as explained in the evaluation section,
no open-source fuzz testing tool can be directly compared
with classfuzz, because no test classfiles can be directly gen-
erated by the state-of-the-art fuzz testing tools.

Domain-specific fuzzers are available for generating test
inputs for testing large-scale systems. KEmuFuzzer is a
methodology for testing system VMs (such as BOCHS,
QEMU, VirtualBox and VMware) on the basis of protocol-
specific fuzzing and differential analysis consisting in forcing
the VMs to execute specially crafted snippets of code and in
comparing their behavior [26].

Fuzz testing has also been employed to find issues re-
lated to system calls [14, 40], security protocols [11, 36],
language compilers [22] and interpreters [19, 32]. LangFuzz
provides a general framework for mutating seeding programs
and testing [19]: Test programs are generated by replacing
code fragments of a seeding program with those stem from
programs which are known to have caused invalid behaviors.
Classfuzz differs in that it (1) generates much more “rep-
resentative”classfiles for differential JVM testing, and (2)
selectively applies mutators.

Le et al. have presented the Equivalence Modulo Inputs
(EMI) approach to validating compilers, where the EMI vari-
ants of a program can be generated by profiling the pro-
gram’s executions and stochastically pruning its unexecuted
code [22]. EMI may be adapted to produce executable test
programs (which is interesting to explore for finding JVM
execution discrepancies), but it cannot produce diverse class-
files to test JVM’s startup (i.e., initialization/linking/loading).

Domain-specific fuzz testing has also been adapted to
application VMs. Sirer and Bershad have advocated an early
idea of generating a test classfile by putting a single one-
byte value change at a random offset in a base classfile [34].
Kyle et al. randomly mutate Dex bytecode in order to reveal
defects in Android VMs [21]. These fuzz testing techniques
are similar to randfuzz designed in our evaluation part, while
the evaluation results have clearly demonstrated that the
directed approaches are more effective in revealing JVM
discrepancies than the non-directed ones.

JVM testing JVMs need to be tested before their release.
Oracle provides an extensive test suite, i.e., the Java Compat-
ibility Kit (JCK), to certify compatible implementations of

97

the Java platform.13 However, JCK is not aimed at exploiting
defects in any released, compatible JVMs.

Sirer and Bershad have proposed lava, a domain specific
language for producing a code generator. Running the code-
generator on a seeding classfile can produce a number of
classfiles [34]. Yoshikawa, Shimura, and Ozawa have de-
signed a generator which generates a classfile by producing
its control flow, and then filling the bytecodes into control
flow edges [42]. Since a classfile can encompass complicated
syntactical and semantical constraints, a generator usually
produces simple classfiles. In constrast, classfuzz iteratively
mutates seeding classfiles, allowing structurally complicated
classfiles to be generated.

Formal models have been developed for JVM testing.
Calvagna, Fornaia, and Tramontana model a JVM as a finite
state machine for deriving test classfiles [8, 9]. They also
define a formal model for the Java Card bytecode syntactical
and semantic rules from which test programs can be derived
for testing the security of the bytecode verifier [10]. Instead,
classfuzz does not rely on any formal model for JVM testing,
as it incurs much effort in deriving a precise model from the
informal JVM specification.

MCMC sampling for testing Zhou, Okamura, and Dohi
have proposed an MCMC Random Testing (MCMCRT) ap-
proach which utilizes the prior knowledge and the informa-
tion on preceding test outcomes for estimating parameters for
software testing [43]. However, MCMCRT mainly generates
numerical test inputs instead of structured ones.

Le et al. have applied MCMC sampling to EMI [22] to
explore the search space for finding deep compiler bugs [23],
where the program distances are calculated and the MCMC
sampler more often draws the test programs with larger
program distances. Chen and Su have presented mucert,
an approach that employs MCMC sampling to diversify a
set of seeding certificates for testing SSL/TLS implementa-
tions [11]. Compared with mucert, classfuzz is the first to
utilize MCMC sampling to selectively apply mutators and
find representative tests.

5. Conclusion
Testing mature JVM implementations and finding JVM de-
fects can be a challenging task. Although domain-aware
fuzzing has been employed in exposing defects in large-scale
software systems, it has not yet been successfully employed
in JVM testing. We have proposed a coverage-directed ap-
proach named classfuzz to differential testing of JVMs. Our
evaluation results have clearly shown that classfuzz is effec-
tive in yielding representative test classfiles and finding JVM
defects. We believe that JVM developers can use classfuzz
to identify latent flaws in JVM implementations and improve
their robustness.

13 http://docs.oracle.com/javame/testing/testing.
html

More information on our project on differential JVM
testing can be found at http://stap.sjtu.edu.cn/
˜chenyt/DTJVM/index.htm.

Acknowledgements
We would like to thank our shepherd, Martin Rinard, and
the anonymous PLDI reviewers for valuable feedback on
earlier drafts of this paper. We would also like to thank
JVM developers for analyzing our reported issues. This re-
search was sponsored in part by 973 Program in China (Grant
No. 2015CB352203), the National Nature Science Founda-
tion of China (Grant No. 61572312, 61272102, 61472242,
and 61572313), and United States NSF Grants (Grant No.
1117603, 1319187, 1349528, and 1528133). Yuting Chen
was partially supported by Science and Technology Commis-
sion of Shanghai Municipality’s Innovation Action Plan (No.
15DZ1100305).

References
[1] https://lcamtuf.coredump.cx/afl/.

[2] https://gcc.gnu.org/onlinedocs/gcj/index.
html.

[3] http://openjdk.java.net.

[4] http://www.ibm.com/developerworks/java/
jdk/.

[5] http://www.jikesrvm.org.

[6] http://www.azulsystems.com/products/zulu.

[7] A. Bartel, J. Klein, Y. L. Traon, and M. Monperrus. Dex-
pler: converting Android Dalvik bytecode to Jimple for static
analysis with Soot. In Proceedings of the ACM SIGPLAN
International Workshop on State of the Art in Java Program
analysis (SOAP 2012), pages 27–38, 2012.

[8] A. Calvagna and E. Tramontana. Automated conformance
testing of Java virtual machines. In Proceedings of the 7th In-
ternational Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS), pages 547–552, 2013.

[9] A. Calvagna and E. Tramontana. Combinatorial validation
testing of Java Card byte code verifiers. In Proceedings of the
2013 Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 347–352, 2013.

[10] A. Calvagna, A. Fornaia, and E. Tramontana. Combinatorial
interaction testing of a Java Card static verifier. In Proceedings
of the 7th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2014), pages 84–87, 2014.

[11] Y. Chen and Z. Su. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proceedings of the
10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015), 2015.

[12] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’13), pages 197–208, 2013.

[13] S. Chib and E. Greenberg. Understanding the Metropolis-
Hastings algorithm. The American Statistician, 49(4):327–335,
Nov. 1995.

98

http://docs.oracle.com/javame/testing/testing.html
http://docs.oracle.com/javame/testing/testing.html
http://stap.sjtu.edu.cn/~chenyt/DTJVM/index.htm
http://stap.sjtu.edu.cn/~chenyt/DTJVM/index.htm
https://lcamtuf.coredump.cx/afl/
https://gcc.gnu.org/onlinedocs/gcj/index.html
https://gcc.gnu.org/onlinedocs/gcj/index.html
http://openjdk.java.net
http://www.ibm.com/developerworks/java/jdk/
http://www.ibm.com/developerworks/java/jdk/
http://www.jikesrvm.org
http://www.azulsystems.com/products/zulu

[14] A. Gauthier, C. Mazin, J. Iguchi-Cartigny, and J. Lanet. En-
hancing fuzzing technique for OKL4 syscalls testing. In Pro-
ceedings of the Sixth International Conference on Availability,
Reliability and Security (ARES 2011), pages 728–733, 2011.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: directed auto-
mated random testing. In Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Im-
plementation (PLDI 2005), pages 213–223, 2005.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
whitebox fuzz testing. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2008, 2008.

[17] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buck-
ley. The Java Language Specification, Java SE 8 Edi-
tion. 2015. URL http://docs.oracle.com/javase/
specs/jls/se8/jls8.pdf.

[18] A. Groce, G. J. Holzmann, and R. Joshi. Randomized differen-
tial testing as a prelude to formal verification. In Proceedings of
the International Conference on Software Engineering (ICSE
2007), pages 621–631, 2007.

[19] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code
fragments. In Proceedings of the 21st USENIX Security
Symposium (USENIX Security 2012), 2012.

[20] G. Kondoh and T. Onodera. Finding bugs in Java native
interface programs. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA 2008), pages 109–118, 2008.

[21] S. C. Kyle, H. Leather, B. Franke, D. Butcher, and S. Monteith.
Application of domain-aware binary fuzzing to aid Android
virtual machine testing. In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE 2015), pages 121–132, 2015.

[22] V. Le, M. Afshari, and Z. Su. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI
2014), page 25, 2014.

[23] V. Le, C. Sun, and Z. Su. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015), pages 386–399, 2015.

[24] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The
Java Virtual Machine Specification: Java SE 7 Edition.
2013. URL http://docs.oracle.com/javase/
specs/jvms/se7/html/index.html.

[25] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The
Java Virtual Machine Specification: Java SE 8 Edition.
2015. URL http://docs.oracle.com/javase/
specs/jvms/se8/html/index.html.

[26] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing
system virtual machines. In Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis
(ISSTA 2010), pages 171–182, 2010.

[27] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of state calculations by fast
computing machines. Journal of Chemical Physics, 21:1087–
1092, 1953.

[29] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly,
1997.

[30] G. Misherghi and Z. Su. HDD: hierarchical delta debugging. In
Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006), pages 142–151, 2006.

[31] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
Test-case reduction for C compiler bugs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2012), pages 335–346, 2012.

[32] J. Ruderman. Introducing jsfunfuzz. URL
http://www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/.

[33] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-
timization. In Proceedings of the Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2013), pages 305–316, 2013.

[34] E. G. Sirer and B. N. Bershad. Using production grammars in
software testing. In Proceedings of the Second Conference on
Domain-Specific Languages (DSL 1999), pages 1–13, 1999.

[35] G. Tan. JNI light: An operational model for the core JNI. In
Proceedings of the 8th Asian Symposium on Programming
Languages and Systems (APLAS 2010), pages 114–130, 2010.

[36] P. Tsankov, M. T. Dashti, and D. A. Basin. SECFUZZ:
fuzz-testing security protocols. In Proceedings of the 7th
International Workshop on Automation of Software Test (AST
2012), pages 1–7, 2012.

[37] P. Tsankov, M. T. Dashti, and D. A. Basin. Semi-valid input
coverage for fuzz testing. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2013),
pages 56–66, 2013.

[38] S. T.V. Oracle JRockit Diagnostics and Troubleshooting Guide,
Release R28. 2011. URL http://docs.oracle.com/
cd/E15289_01/doc.40/e15059.pdf.

[39] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization framework.
In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research, page 13, 1999.

[40] V. M. Weaver and D. Jones. perf fuzzer: Targeted fuzzing of
the perf event open() system call. Technical Report UMAINE-
VMW-TR-PERF-FUZZER, University of Maine, July 2015.

[41] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2011), pages 283–294, 2011.

[42] T. Yoshikawa, K. Shimura, and T. Ozawa. Random program
generator for Java JIT compiler test system. In Proceedings of
the 3rd International Conference on Quality Software (QSIC
2003), page 20, 2003.

[43] B. Zhou, H. Okamura, and T. Dohi. Markov Chain Monte
Carlo random testing. In Advances in Computer Science and
Information Technology, pages 447–456, 2010.

99

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://docs.oracle.com/cd/E15289_01/doc.40/e15059.pdf
http://docs.oracle.com/cd/E15289_01/doc.40/e15059.pdf

	Introduction
	Approach
	Background: Class Format and JVM Startup
	Coverage-Directed Classfile Mutation
	Mutating Classfiles
	Mutator Selection
	Accepting Representative Classfiles

	Differential Testing of JVMs

	Evaluation
	Setup
	Preparation
	Evaluated Methodology
	Metrics

	Results on Classfile Generation
	Results on Differential JVM Testing

	Related Work
	Conclusion

