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Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA)
based on their prior experience and external knowledge such as online examples. For novices or data scientists who lack
speciic knowledge about the dataset or problem to investigate, efectively obtaining and understanding the external in-
formation is critical to carrying out EDA. his paper presents EDAssistant, a JupyterLab extension that supports EDA with
in-situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search
results. he code search and recommendation are enabled by advanced machine learning models, trained on a large corpus
of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists’ current
practice (i.e., using external search engines). he results demonstrate the efectiveness and usefulness of EDAssistant, and
participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding
code recommendation tools.
CCSConcepts: •Human-centered computing→ Information visualization; • Information systems→ Search interfaces;
• Applied computing→ Document searching.
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1 INTRODUCTION
Exploratory data analysis (EDA) [53] is a critical process in modern data science worklows [2, 3, 52]. During
EDA, data scientists investigate new datasets or problems with the broader goal of understanding “what is
going on here?” and with an emphasis on visualization of data, iterative and tentative model building, as well as
hypothesis generation and measures [5]. Due to its vague goal and exploratory nature, EDA is oten challenging,
as data scientists need to decide among a large number of possible actions [4, 61, 66]. To mitigate this challenge,
many visual tools have been proposed to facilitate the EDA process with intuitive authoring interfaces (e.g.,
Tableau1 and PowerBI2), data wrangling support [25], and recommendations of data visualizations [61, 66].

Despite the beneits of these visual tools, computational notebooks, such as Jupyter Notebook3 and RStudio4,
are the single most popular and useful means for data scientists to perform EDA [29, 47]. One reason is that
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computational notebooks combine code, documentation, and outputs (e.g., tables, charts, and images) within a
single document, which provides expressive and interactive support for EDA. Moreover, computational note-
books support literate programming in languages such as Python, which allows for directly integrating EDA
code into a production pipeline. Most importantly, computational notebooks can be easily shared and hosted on
platforms such as GitHub5 and Kaggle6, making it possible to leverage the collective wisdom of the data science
community.

Indeed, people learn programming from the widely-available examples and tutorials online, and code search
is one frequent and critical activity for developers [7, 46, 50, 65]. his is the same for EDA and using notebooks
[20, 52]. When data scientists, especially novices, start to investigate their data or are stuck on some problems,
they usually look for EDA notebooks online to learn how others approach the same or similar problem, check the
APIs, models, and metrics that others have used, and get inspirations for performing EDA themselves [40, 47, 52].
he code that data scientists write in their current notebooks is oten an externalization of their thoughts or
hypotheses, which could inform future steps. hus, leveraging large repositories of EDA notebooks, several
researchers have atempted to use machine learning for automating EDA, such as recommending the next op-
erations in data wrangling [63] and generating EDA sessions from a dataset [2]. However, these methods are
constrained to a small set of EDA operators (e.g., filter, merge, and groupby in pandas7), sometimes imprecise
due to the complexity of EDA goals, and lack human engagement and interaction. Further, while these methods
sometimes could inform data scientists what to do next, they do not tell the data scientists why or allow them
to learn or improve skills.

To ill the gap, we propose EDAssistant, an interactive and visual tool that facilitates EDA with in-situ code
search, exploration, and recommendation based on existing notebook repositories, embedded within the Jupyter-
Lab environment for a seamless user experience. To design EDAssistant, we irst curated a large corpus of EDA
notebooks (consisting of 38,581 notebooks from Kaggle), and characterized the EDA process based on a forma-
tive study with two data scientists as well as a quantitative analysis of the corpus. We conirmed the observation
that data scientists organize their EDA code in sequences of blocks (e.g., [33, 52]), and discovered four major
types of EDA blocks. Our indings also relect typical characteristics of data science worklows mentioned in the
literature [3, 26]. With the analysis and dataset, we employed advanced deep learning models, specially Graph-
CodeBERT [17], to learn a latent representation (i.e., embeddings) of all the EDA sequences. As the backend of
EDAssistant, we developed a search engine for retrieving relevant EDA sequences based on a data scientist’s
current code and a recommender for potential APIs to use next, which facilitates their EDA with useful exam-
ples and suggestions. Further, we built a visual interface, as a JupyterLab extension, to allow users to conduct
EDA while accessing EDAssistant smoothly. he user interface also features a novel visualization that provides
an informative overview of the search results and the coding paterns in EDA notebooks.

During the development of EDAssistant, we conducted quantitative experiments to compare diferent mod-
els including GraphCodeBERT and Doc2Vec [31] in our search and recommendation tasks. We also carried out
a user study with 14 participants, who have diferent levels of technical expertise in data science, to evaluate
EDAssistant as a whole on conducting EDA, by referencing a baseline seting of using external search engines
(e.g., Google).he results indicate that participants appreciated the new in-situ code search and recommendation
experience during EDA as well as the interface design of EDAssistant on retrieving, exploring, and understand-
ing code examples. Moreover, several design implications are discussed, shedding light on future research. For
5htps://github.com/
6htps://www.kaggle.com/
7htps://pandas.pydata.org/
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example, participants sometimes beneited from the diverse results on Google (e.g., video tutorials, forum dis-
cussions, etc.), and combining EDAssistant’s in-situ search with traditional manual keyword-based search could
potentially improve their EDA performance.

In summary, our contributions in this paper include: 1) an empirical characterization of the EDA process
with a formative study and a quantitative analysis of a large notebook corpus; 2) a search engine for retrieving
EDA examples and a recommender for suggesting useful APIs based on the application of the state-of-the-art
machine learning models; 3) an interactive tool, implemented within the Jupyter Notebook environment, which
ofers in-situ code search and recommendation as well as novel visual exploration of search results8.

2 BACKGROUND
In this section, we irst introduce computational notebooks and relevant tools, then exploratory data analysis
and systems, and lastly techniques for searching, recommending, and visualizing code in general.

2.1 Computational Notebooks
Computational notebooks (e.g., Jupyter Notebook and RStudio) have recently emerged as a new form of pro-
gramming environments. A notebook is broken down into cells, which contain code cells that are segments of
scripts, and markdown cells that are formated text to supplement and explain the code. Code cells can be in-
dependently executed in an arbitrary order, run multiple times, or even edited between diferent runs; these
cells are also interrelated as in the same notebook environment where they share common variables, function
deinitions, and so forth. In addition, the outputs of executed code cells, such as charts, tables and printouts, are
embedded in the notebook in place. he above characteristics of notebooks provide much freedom and lexibil-
ity, which perfectly suit EDA, allowing data scientists to dynamically experiment with diferent methods, try
out alternative models, and write temporary code [29, 47]. However, at the same time, such lexibility creates
challenges in code management, comprehension, and development with notebooks. For example, messes in code
may accrue during EDA, and data scientists may lose track of their thought processes. To address these issues,
several tools have been proposed, such as Variolite [27], Verdant [28], and Fork It [57], to support fast versioning
and history tracking. Code Gathering Tools [19] assist data scientists with cleaning, recovering, and comparing
versions of code in notebooks by analyzing code cells’ dependency and organizing code into chunks.

However, these tools focus on general code management and versioning in notebooks, rather than EDA tasks.
In our work, by taking the huge advantages of computational notebooks in supporting EDA, we designed and
developed EDAssistant as a JupyterLab extension, which can be used seamlessly in the environment that is
familiar to data scientists. Further, EDAssistant facilitates EDA in notebookswith in-situ code search, exploration,
and recommendation, enabled by analyzing a large collection of EDA notebooks gathered online.

2.2 Exploratory Data Analysis and Tools
he concept of exploratory data analysis (EDA) stems from John Tukey’s early work [53]. he nature of EDA is
loosely characterized by addressing goals or hypotheses with skepticism and lexibility, emphasizing the use of
data visualization, building tentative models, and applying robust measures, in an iterative manner [5]. Batch
et al. [3] further advocated the gap in using interactive visualization for EDA in data science.

Data scientists need to make many decisions during EDA, such as which models to employ, which parts of
data to examine, and which graphic representations to use?hus, a number of techniques have been proposed to
facilitate EDA, where most focus on supporting the creation of data visualization. Commercial tools like Tableau
and PowerBI allow analysts to interactively explore data, further enabled by intelligent algorithms (e.g., Tableau
“ShowMe” [36]) to recommend expressive visualization. Visualization speciication languages, such as Vega-Lite
8We will make the corpus and code publicly available upon publication.
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[48], have also been proposed to ease the process of creating common data charts programmatically. Based on
Vega-Lite, Voyager [60] and Voyager 2 [61] blend manual and automated visualization speciications in EDA.
Falx [55] automatically infers visualization speciication and data transformation from user-input examples. An-
other branch of research uses data-driven methods for automatically generating visualization. Examples include
Data2Vis [12], DeepEye [35], and VisML [23], which employ deep learning techniques to extract rules, paterns,
and designs from large collections of user-created charts. Further, ChartSeer [66] adopts a mixed-initiative ap-
proach to recommend visualization designs dynamically based on an analyst’s input. While the above systems
are efective in creating a visualization, they are standalone tools separated from the computational notebook
environment. Further, EDA is more than just data visualization [5], which also includes data processing, model
building and evaluation, etc. hus, switching among tools for diferent EDA tasks signiicantly reduces the ef-
fectiveness of a data scientist’s worklow.

here thus exist several tools, created with friendly integration to computational notebooks, for supporting
diferent aspects of EDA. Many R and Python packages have been developed, such as tidyverse9 (containing
ggplot2, etc.), matplotlib10, scikit-learn11, and pandas, which can be directly used in the corresponding notebook
environments. here also exist diferent techniques proposed as computational notebook extensions or plugins.
BURRITO [18] and TRACTUS [52] provide the provenance of EDA by capturing and displaying code outputs,
development activities, and users’ hypotheses. Wrex [13] is a Jupyter Notebook extension that supports data
wrangling with a programming-by-example approach. B2 [62] allows users to easily move from code to visual-
ization and vice versa by treating data queries as a shared representation. Although providingmuch convenience,
these tools assume that data scientists have a good idea about what to do in their EDA, lacking the support of
“tutoring or inspiring” them, especially for less-experienced data scientists. Oten they still need to leverage
other means, such as Google Search, to ind, browse, and learn from example notebooks online, which is our
focus in this work. PySnippet [56] is a Jupyter Notebook extension that allows users to create and share live
code, equations, visualizations, and narrative text as well as provide a simple “auto-completion” feature to for
rapid access of code segments. Similarly, PyMOL was developed in JupyterLab to facilitate molecular biologists
using their domain-speciic graphics libraries. Compared to EDAssistant, these tools lack the analysis of data
science worklows to provide more suitable code examples relevant to the programming context.

Learning from a large collection of notebooks, Auto-Suggest [63] can recommend the next step (e.g., which
pandas API to use, and with what parameters), but only in the data processing phase of EDA. Similarly, ATENA
[2] automatically generates data exploration sessions using deep reinforcement learning; however, the types
of EDA operations are limited to data iltering and grouping. At the same time, Pimentel et al.’s works [41, 42]
analyze a large collection of notebooks provided insights into the quality and reproducibility of notebooks, while
they did not speciically focus on EDA or code search. Inspired by these data-driven methods, EDAssistant
leverages the collective wisdom of the data science community by analyzing high-quality EDA notebooks online
to facilitate EDA with in-place code search and API recommendation. Instead of viewing EDA as a series of low-
level operations, we treat EDA as a sequence of semantic code blocks to enhance the utility of the search results.
Also, diferent from these pure automated methods, we employ interactive visualization to allow data scientists
to explore and understand searched notebooks, thus beter utilizing the examples and gaining knowledge.
9htps://www.tidyverse.org/
10htps://matplotlib.org/
11htps://scikit-learn.org/stable/
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2.3 Code Search and Visualization
Code search is a ubiquitous activity for developers, including data scientists. Sim et al. [50] comprehensively
compared several code search tools including Koders12, Google, Krugle13, and SourceForge14, with diferent sizes
of search target and search motivation. Common code search engines usually index code based on API keywords
and method signatures. Researchers have also utilized other information in code, such as structures, application
descriptions, and data lows, to enhance the traditional keyword-based search; examples include Examplar [37],
CodeGenie [32], and Sourcerer [34]. However, none of the above techniques are designed to tailor searching code
or EDA processes in computational notebooks, which have diferent characteristics compared to traditional code
modules. For example, in EDA notebooks, code cells are organized much more freely and method signatures
are diicult to extract. he analysis of structures and semantics relies on clean, well-documented, and linearly-
organized code modules, which are oten not available in computational notebooks.

Visual methods have also been employed to understand the functional and structural components of code.
Hofswell et al. [22] proposed an in-situ visualization to summarize variable values and distributions. Graph
visualization is another popular way of presenting code, such as the dependency between variables and meth-
ods [1, 49]. In the case of notebooks, Albireo [58] uses a force-directed graph to display relationships among
code cells and markdown cells. TRACTUS [52] employs a tree structure to reveal a hypothesis-driven analysis
process. However, these systems focus on visualizing one single notebook, and do not provide the capabilities
for searching or browsing a search result of multiple notebooks. Lodestar [43] uses a graph to model analysis
steps in notebooks and provides recommendations for the next steps based on a semi-automatic analysis on a
small corpus of about 6,000 notebooks. While this is similar to the API recommendation in our approach, it does
not ofer the in-situ search and exploration of code segments as we do, or thoroughly analyze high-level EDA
paterns from a large enough corpus. Another similar work is NBSearch [33], which supports semantic code
search in a notebook collection and the exploration of resulting notebooks. But their search method is based
on the code cell level, which is not efective in supporting EDA where higher-level blocks of code (containing
multiple code cells) need to be retrieved and explored.

here are also visualization techniques specially designed for presenting search results. For example, Feng
et al.’s study [14] examined users’ search behaviors in a web visualization. Wilson et al. [59] advocated that
web search interfaces should emphasize exploration. One way of presenting search results is based on a linear
ranked list (e.g., Google). TileBars [21] shows a colored bar next to each list item for the document length and
term frequency. uRank [11] provides on-the-ly search results reinement and reorganization as a user’s needs
evolve. Another way is to leverage a 2D space to present items with various layout methods. An energy model
has been proposed to place text snippets of search results with minimal overlap [16]. Space-illing techniques
(e.g., treemaps) have also been used for browsing searching results [9, 30]. Further, WebSearchViz [38], Topic-
Relevance Map [39], and RankSpiral [51] employ a circular (or spiral) layout, where the distance to the center
represents a document’s relevance, and the section of the circle denotes a speciic topic or cluster. However, the
above techniques focus on visualizing searched documents, rather than code or notebooks that have a diferent
set of characteristics such as the presence of cells, variables, API calls, outputs, etc. he interactive visualization
in EDAssistant, by contrast, displays EDA operations, code blocks, and the relationship between the searched
code and other irrelevant code in notebooks.
12htps://en.wikipedia.org/wiki/Koders
13htps://krugle.com/
14htps://sourceforge.net/
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3 EDA IN COMPUTATIONAL NOTEBOOKS
While EDA is not a new concept [53], topics on EDA with computational notebooks have recently gained much
popularity in both industry and academia. In this section, to characterize EDA processes in notebooks, we irst
describe how we curated a corpus of EDA notebooks, which is the testbed of this work. We then report a forma-
tive study with professional data scientists as well as a quantitative analysis of the corpus regarding the EDA
processes in notebooks.

3.1 Data Collection
Rule et al. [47] provided a large collection of public Jupyter Notebooks scraped from GitHub. However, this
corpus is noisy containing all kinds of notebooks with diverse goals, and it does not contain suicient or clean
metadata to determine whether a notebook is performing EDA or not. herefore, we curated a new corpus of
notebooks by crawling high-quality submissions from Kaggle competitions. Each Kaggle competition features
a data challenge, invites data scientists around the world to explore the data and build models to solve the
problem, and evaluates their submissions with both automated testing and community feedback. As the setup is
more controlled, the notebooks tend to have a beter quality as well as are well-formated and well-documented.
Also, as everyone works towards a single goal in a competition, it allows us to capture diferent approaches that
data scientists used.

We used the MetaKaggle15 dataset as our entry point for geting access to Kaggle competitions. We selected
competitions with the tags of “featured,” “research,” “recruitment,” and “playground” because the challenges are
normally more open-ended, thus containing more EDA notebooks, and participated by expert data scientists,
thus having higher-quality submissions. In total, we selected 281 competitions from Kaggle. For each selected
competition, we iltered the notebooks by their ranks of accuracy on Kaggle (i.e., selecting the top 10% of the
total submissions). We also included notebooks that are never submited but have a high number of upvotes and
reviews, which normally guides notebooks (e.g., writen by the winners for explaining and summarizing their
methods atermath). In the end, we obtained a total of 38,581 notebooks, consisting of 856,941 code cells and
303,041 markdown cells. he median length of the notebooks is 22 code cells 75% of all notebooks contain 39
cells at most.

3.2 Formative Study
While there exist many empirical and qualitative studies about data scientists’ behaviors and worklows [3, 26,
33, 52, 54], many of them do not focus especially on EDA in computational notebooks. To beter understand
such EDA processes, we conducted semi-structured interviews with two professional data scientists (referred to
as E1 and E2 below), recruited through the word of mouth. Both experts have PhD degrees in computer science
and have worked for three or more years as data scientists in large IT companies. heir job responsibilities in-
clude discovering business insights into customer data, deriving models and metrics for products, and creating
visualization and reports, which consist of many EDA tasks with Jupyter Notebooks. he semi-structured inter-
view included questions and discussion points on: how our interviewees perform EDA in their daily work, how
they manage EDA with computational notebooks, what the key steps are in an EDA process, and what drives
their decisions during EDA. Ater, we used Oter.ai16 to transcribe the audio recordings of the interviews. Two
authors independently coded the transcripts and then formed an ainity diagram together to discover themes
and insights in the results. Our results are described as follows, which also conirm many observations from the
literature.
15htps://www.kaggle.com/kaggle/meta-kaggle
16htps://oter.ai/
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R1: Data scientistsmanage their EDAprocesses in semantic code blocks.As the nature of EDA is highly
dynamic and uncertain, it is oten challenging for data scientists to keep track of their analysis [5, 66]. When
using notebooks, they strive to maintain an analysis provenance, even for actions leading to dead ends [47]. To
mitigate the chance of geting lost and preserve the provenance, data scientists oten organize their code into
blocks and use these as checkpoints for navigation later, where each block represents one meaningful step in the
EDA (e.g., loading data) [52]. Our experts echoed the same behavior, where we refer to the code blocks as EDA
blocks. E2 said that a code block could contain one or multiple small code cells, but sometimes several semantic
blocks are placed in “a giant code cell.” E1 also mentioned “I usually put all my preprocessing code and ploting
code together, in one or several cells […] I sometimes use PowerPoint slides to record the results of a section of code.”

R2: A canonical EDA process generally contains a sequence of diferent semantic blocks. Several
prior studies have investigated the general worklow of data science. Kandel et al. [26] identiied ive stages in
enterprise data analysis and visualization, including discovery, wrangling, proiling, modeling, and reporting.
Similarly, Batch et al. [3] discovered four main elements in EDA based on context inquiries, including input
(e.g., question), process (e.g., select, ilter), environment (e.g., GUI, programming), and output (e.g., visualization).
Subramanian et al. [52] also found data scientists’ exploration involves standard routines such as inding base
code, cloning, contextualizing, and evaluating the result. Our experts described very similar steps in their EDA
practices, wherewe tried to identify the basic units of EDA in terms of coding tasks. In the end, we concludedwith
four diferent types of EDA blocks, together forming a canonical EDA sequence. hey include: (1) coniguration
and data preparation, (2) model exploration and development, (3) hypothesis veriication and evaluation, and
(4) output examination and visualization. he four stages were also conirmed by both experts. In addition, E2
mentioned: “he beneit of Jupyter Notebook is the outputs (visual or textual) are persistent. I could complete a stage
and move forward without rerunning the previous code again.”

R3: A real-world EDA process is normally iterative and non-linear, guided by data scientists’ ratio-
nale. Our participants stated that in practice EDA is far more complex than we thought. Because EDA oten
explores “the unknowns,” E1 made an analogy to the design thinking or user-centered design process [8]. She
said that “an actual EDA process is iterative, going through the steps (basic EDA blocks) again and again, and
also non-linear, jumping from one step (EDA block) to another,” not necessarily following the canonical order.
hus, sometimes an entire EDA process can be modeled as a tree structure or even a graph [52], where each
path could form an EDA sequence. Moreover, E2 indicated that such a real-world EDA process is guided by the
rationale formed by a data scientist’s prior experience, dynamic text and visualization outputs, and most impor-
tantly external knowledge (e.g., searched examples online). “When I want to apply some non-trivial methodology,
I frequently look for samples online. he API docs are not very helpful in this case,” said by E1. his resonates Subra-
manian et al.’s indings [52] and the fact that code search is critical in exploratory programming with notebooks
[7, 33, 65].

3.3 Analysis of Computational Notebooks
To further characterize EDA processes, we performed quantitative analysis on our corpus of EDA notebooks,
guided by the obtained results from the formative study. As real-world EDA is highly iterative and non-linear,
a notebook may contain several interleaving canonical EDA processes (R3). First, we aimed to decompose a
complicated notebook into multiple EDA sequences. To do so, for each cell that produces outputs (such as vi-
sualizations, printout tables, etc.) in a notebook, we checked the variable and function call dependency of that
cell by using a similar program slicing technique in code gathering tools [19]. he rationale of employing such
a method is that we assumed a canonical EDA sequence ends by examining staged results with visual or textual
outputs (R2). hus, each sliced code segment is an executable script from the original notebook, which mostly
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starts from the irst few cells of the notebook that perform environment setup and data preparation, and ends
at a cell that produces some intermediate (or inal) outputs.

We obtained 236,501 EDA sequences from our corpus. Note that the script in each EDA sequence may be
composed of code from more than one cell, and a cell may be split into diferent EDA sequences. While data
scientists tend to organize their code in semantic blocks, sometimes diferent steps of EDA are writen in one
cell (R1). he above analysis breaks the original cell boundaries and builds based on code dependency, which
allows for beter capturing the semantics in code. However, we observed that in most of the cases, cells were
“preserved” in our sliced programs, because many cells just contain small and atomic chunks of code or a single
function deinition.

Moreover, we aimed to analyze the steps in our sliced EDA sequences. Inspired by the literature on text
analysis, we employed topic modeling [6] to discover themes in the code. Intuitively, we treated each EDA
sequence as a “document” and tried to identify its “topic” composition, where each “topic” governs code that is
semantically coherent. However, diferent from natural language documents mostly containing English words,
code may exhibit a larger vocabulary because variables can be freely named. hus, we only extracted the APIs
from common data science toolkits (e.g., pandas, numpy, scipy, scikit-learn, and some Python built-in functions)
as the “words” in “documents.” By analyzing the code dependency and structure, we extracted full API calls as our
tokens; for example, we expanded the python builtin API len to __builtins__.len. his normalized diferent
forms of calling an API in diferent notebooks, reducing non-necessary duplications. In total, we identiied 19,453
unique API keywords, denoting the vocabulary of notebooks’ code.

Next, we performed LDA [6], a widely-used method in topic modeling, on EDA sequences represented by
these keywords. To thoroughly explore the data, we varied the number of topics in the LDA input. When there
are four topics, the code scripts are relatively separated; when there are ive topics, two of them overlap a
lot, which could be combined into one topic with many python built-in and common data science APIs. hese
observations were based on our exploration of the results with the pyLDAvis17 visualization. his conirms our
formative study results that there exist four diferent EDA operation types (R2). We then examined the keywords,
which matched our expectations for the four types. To obtain more precise and descriptive topics, we further
conducted GuidedLDA [24] using somemost salient keywords selected from our initial LDA results. As shown in
Figure 1, the resulting four topics are relatively separated based on PCA (principal component analysis). From
the top keywords shown on the side, we can roughly discover: Topic 1 (red) is about hypothesis veriication
and evaluation (mostly builtin and numpy APIs); Topic 2 (blue) is about output examination and visualization
(mostly matplotlib APIs and print); Topic 3 (yellow) is about coniguration and data preparation (mostly pandas
APIs); and Topic 4 (purple) is about model exploration and development (mostly sklearn and keras APIs).

4 EDASSISTANT OVERVIEW
he curated corpus, formative study, and quantitative analysis of the notebooks have set the basis of the design of
EDAssistant, which aims to facilitate open-ended EDA in computational notebook environments. In this section,
we irst introduce the design goals of EDAssistant, and then an overview of the EDAssistant’s architecture,
followed by a scenario of using the tool.

4.1 Design Goals
Based on our understanding of the challenges of EDA from the formative study and the literature, we distilled
the following design goals to guide the development of EDAssistant.

G1: Provide suitable EDA examples in context. Because real-world data problems are oten vague and
ill-deined, data scientists usually search for existing EDA notebooks online to learn how others address similar
17htps://github.com/bmabey/pyLDAvis
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Fig. 1. Topic analysis of the EDA sequences in our notebook corpus with GuidedLDA. The top 30 frequent keywords of each
topic are shown in the corresponding color. The figure is generated using pyLDAvis and is in high resolution.

issues [20, 33, 52]. Our E1 and E2 conirmed this as well (R3). Code search is an essential activity for almost all
developers beyond just data scientists in conducting EDA [7, 46, 50, 65]. herefore, the system should be able to
retrieve appropriate EDA examples from the widely available public EDA notebooks online, which is necessary
for data scientists, especially novices, to get up to speed with their EDA. However, current data scientists still
use external tools such as Google Search to achieve this task. hus, the retrieval support needs to be in place,
within their programming environment (e.g., Jupyter), and in-situ, closely associated with the code scripts they
are working on.

G2: Facilitate exploration of example EDA processes. As mentioned earlier, a real-world EDA process
exhibited in a notebook is oten interleaving and non-linear (R3), although data scientists organize their code
in semantic blocks (R1). Even though a set of suitable notebooks are retrieved for the context, it is challenging
for a data scientist to quickly comprehend others’ EDA processes and make use of the search results [19, 33].
Currently, data scientists can only rely on an embedded renderer (e.g., on GitHub or Kaggle) to view notebooks
and try to decipher others’ code which may also contain a lot of irrelevant information. hus, the system should
extract the relevant parts from an entire notebook and present those parts irst in a complete EDA sequence
(R2). Further, the system should support interactive exploration of the complicated EDA processes relected in
the retrieved notebooks.

G3: Ofer suggestion for subsequent EDA actions. While with example notebooks data scientists can
obtain knowledge from others’ code such as the APIs used, the number of examples they can view during their
EDA is limited. Being able to provide some suggestions about subsequent exploration steps can be signiicantly
helpful, not only in data manipulation [2, 63] but also in visualization generation [36, 60, 61]. his is essential
for novices to learn and get familiar with a large number of methods/APIs available in data science toolkits (e.g.,
pandas) [18, 20], thus helping them form rationale for the next steps (R3). While completely automating the
whole EDA process without any limitation is not possible, the system should ofer some level of suggestion, also
in-situ, such as the operations that are likely to use next based on the current code sequence (R2). his allows
data scientists to efectively make decisions for carrying out their EDA.

he existing practice for data scientists to search for examples during EDA is based on frequently switching
between the Jupyter interface and external search engines such as Google and StackOverlow. Compared to this,
the above design goals have outlined the demand for more context-based code search, recommendation, and
exploration and a more integrated data science worklow with computational notebooks. However, our goal
here is not to replace the existing practice, but to investigate efective means of facilitating EDA with in-situ
support during the EDA process.

ACM Trans. Interact. Intell. Syst.



10 • Li, et al.

Preprocessing and
storage

Back-end analytics
engine

front-end visual
interface

Graph 
CodeBERT

Program
Analyzer

Program Slicer

Search  
Engine

API
Recommender

Sliced EDA
Sequences

API Execution
Orders

Code
Embeddings

Code Block
Type 

Code Block
Keywords

Raw  
Notebooks

Search Results
View

API Suggestion
View

Notebook
Detail View

Fig. 2. EDAssistant system architecture, which consists of three components: (1) a Data Preprocessing and Storage module,
(2) a back-end Analytics Engine, and (3) a front-end Visual Interface.

4.2 System Architecture
Following the above design goals, we developed EDAssistant, an interactive and visual tool that facilitates EDA
with code search, exploration, and recommendation based on existing notebook repositories. EDAssistant is
embedded within the Jupyter Notebook environment as an extension for seamless access to these functionalities.
As shown in Figure 2, the EDAssistant system consists of three components: (1) a Data Preprocessing and Storage
module, (2) a back-end Analytics Engine, and (3) a front-end Visual Interface. Details about these components
will be introduced later.

In the Data Processing and Storagemodule, from the raw corpus of EDA notebooks (see Section 3.1), a Program
Slicer disentangles EDA sequences from the original notebooks, as described in Section 3.3. Each sliced EDA
sequence, which is an executable script, is fed to a Program Analyzer (see Section 5.1) that extracts three types
of information: (1) used APIs or methods in the order of execution, (2) descriptive keywords for code blocks, and
(3) EDA types for code blocks, based on the LDA topic analysis in Section 3.3. he sliced EDA sequences are also
used for ine-tuning the GraphCodeBERT [17], a pre-trained code representation deep learning model, for our
two downstream tasks: EDA sequence search and next API prediction. GraphCodeBERT generates a set of code
embeddings, which is stored in a database, along with other computed information above, for later use in other
components of the system.

he back-end Analytics Engine includes two key components, which work interactively with the front-end
Visual Interface that contains three main views. First, a Search Engine (see Section 5.2) leverages the code em-
beddings to retrieve potentially useful EDA examples based on a code query from the front-end (i.e., relevant
code in the notebook based on the current working cell), and all the examples are then summarized in a Search
Results View (Figure 3-b; see Section 6.1) with a novel visualization (G1, G2). Second, an API Recommender (see
Section 5.3), also built upon the GraphCodeBERT model, utilizes the code embeddings and extracted API execu-
tion orders to predict APIs that are most likely to use next. he recommended results, which are obtained from
a code query constructed in a similar way as above, are displayed in the API Suggestion View (Figure 3-d; see
Section 6.3) on the front-end (G3). Finally, the front-end Notebook Detail View (Figure 3-c; see Section 6.2) allows
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for viewing the detailed code of each searched EDA example within the context of the original notebook that it
was extracted from (G2). Based on the experiments with our notebook corpus, it takes about 23 seconds to load
the trained model (only once when the back-end server starts) and about 0.5 seconds to perform a code search
or API recommendation (i.e., model inference time), with a coniguration of an Intel(R) Xeon(R) 2.20GHz CPU,
25GB RAM, and a Tesla P100-PCIE-16GB GPU.

4.3 Usage Scenario
In this section, we demonstrate the basic usage of EDAssistant with a simple scenario. Suppose that Alex is a
junior data scientist who just starts his job at a bank, and he is asked to ind some insights from some customer
loan default records. Ater loading the dataset and printing out some portions of the data table in JupyterLab,
Alex gets stuck on how to proceed with his EDA. hus, he launches EDAssistant and places the panel beside his
notebook (Figure 3-a).

He clicks “Search for Examples” and within seconds, EDAssistant returns a rank list of EDA sequences based
on his current notebook and working code cell, organized horizontally in the Search Results View (Figure 3-b).
Each example EDA sequence is visualized as colored strips stacked together, where each strip represents a con-
tinuous code block in the searched notebook and the color indicates the EDA operation type (i.e., preprocessing,
modeling, visualization, and evaluation, as shown in the legend). he white strips (spaces) indicate other less im-
portant code in the notebooks. He has an intuition that some visualization of the data is needed before building
any models, so he clicks on the purple parts of the searched EDA sequences. his displays the corresponding
code in the Notebook Detail View and jumps to the selected line of code (Figure 3-c).

Similarly, he browses a few top-ranked examples; and he inds out that the methods countplot and boxplot
from the seaborn library are used oten for initial data visualization. By toggling the “Fold/Unfold Details” buton,
he is able to switch his focus between the relevant code scripts and the whole example notebook. He can also
browse the markdown cells and in-line comments available in the examples to get some context about how
the methods are used and why. Some basic data manipulation APIs are recommended as well (with importance
encoded by color transparency), when Alex clicks “Suggest Methods” (Figure 3-d). Following the API usages in
these examples, Alex easily swaps some parameters and creates a few charts to view several basic characteristics
of his data, such as the distributions of Bank_Balance over IfDefaulted (Figure 3-e).

Now Alex identiies some relationships between IfDefaulted and other data variables. So he wants to build
somemachine learningmodels to predict the loan default state. Again, he has no ideawhat technique to use.hus,
he clicks “Suggest Methods” which triggers the API recommendation and returns a list of potentially useful meth-
ods next, based on his current code. Alex inds that the second-highest rankedmethod RandomForestClassifier
from scikit-learn could be an interesting technique to try (Figure 3-g). Hovering over the API provides a brief
method summary from its oicial documentation, and clicking it directs Alex to the documentation page online.
With this in mind, Alex copies and pastes the API call signature to his notebooks, and then clicks “Search for
Examples” again. A diferent set of examples is retrieved based on his updated code (Figure 3-f), which indeed
contains some sample usage of RandomForestClassifier. hus, Alex decides to follow the examples to apply
this classiier to his prediction problem.

5 NOTEBOOK ANALYTICS IN EDASSISTANT
In this section, we describe the data processing and analysis in EDAssistant, including howwe prepared the data,
built the search function, and constructed the API recommender.
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Fig. 3. A data scientist is conducting EDA on a bank loan default dataset with EDAssistant, which is a JupyterLab extension
to ofer situated EDA support with three interactively coordinated views for Search Results (b), Notebook Detail (c), and
API Suggestion (d).

5.1 Analyzing Sliced EDA Sequences
he preprocessing and storage module of EDAssistant is based on the previous explorative analysis described in
Section 3.3. As shown in Figure 2, the raw notebooks are sliced into EDA sequences by the Program Slicer based
on the approach in code gathering tools [19]. he sliced scripts are then processed by the Program Analyzer that
produces the following three kinds of outputs for future use in EDAssistant.
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• Code EDA operations. Section 3.3 describes our exploration of the EDA operation types based on topic
modeling, which detects four “topics” in code: (1) coniguration and data preparation, (2) model exploration
and development, (3) hypothesis veriication and evaluation, and (4) output examination and visualization.
Leveraging the learned topical keywords and their probability distributions within each topic, the main EDA
operation type can be identiied for any given code block. However, it is challenging to deine the boundaries
of semantic code blocks, as data scientists sometimes split them into diferent code cells or just write a giant
code cell for several goals (see Section 3.2). As an initial step, we relied on the code cells from the original
notebooks to determine code blocks. hat is, if the lines of code are from the same code cell originally, they
stay in the same code block in the sliced script. hus, the Program Analyzer generates a sequence of high-level
EDA operations based on the order of the code blocks and their contents.

• API execution orders. Section 3.3 also describes how we extracted the keywords for the topic modeling,
which include the APIs from common data science toolkits such as pandas. he Program Analyzer keeps this
information and outputs the API or method execution orders of each sliced script based on its parsed abstract
syntax tree.

• Code keywords. Further, the Program Analyzer outputs a set of descriptive keywords for each of the code
blocks in the sliced EDA sequences, which helps summarize the gist of the code. We utilized a simple TF-IDF
approach [44] in document retrieval, by viewing each EDA sequence as a “document” and each extracted
API or method in code as “words.” he keywords with top TF-IDF scores are treated as more informative for
describing the content of the code.

5.2 Retrieving Example EDA Sequences
As shown in Figure 2, we ine-tuned GraphCodeBERT [17] to build the Search Engine in EDAssistant, which can
retrieve suitable EDA examples from our notebook corpus, dynamically based on the code that a data scientist
currently works on (G1). Pre-trained models such as BERT [10] have shown signiicant advantages in natural
language processing (NLP) tasks. he pre-trained models are irst trained on a large unsupervised corpus to
generate latent representations of the text (i.e., embeddings), and then ine-tuned on downstream tasks. Graph-
CodeBERT is the state-of-the-art model for programming languages based on similar structures of BERT and
CodeBERT [15], which is comprised of an encoder (that converts code into embeddings) and a decoder (that
converts embeddings into code). We chose GraphCodeBERT because it also leverages the data low graph in pro-
grams for training and achieves the best performance for many downstream tasks such as code clone detection
and natural language code search.

In our development, based on pre-trained models [17], we ine-tuned GraphCodeBERT for the downstream
code search task with massive EDA sequences, each being a series of code blocks as described in Section 5.1.
Intuitively, each code block is like a “word” in a “sentence” that is the whole EDA sequence, and our goal is
to obtain the embeddings of the EDA sequences for our Search Engine. hus, guided by SentenceBERT [45],
we added a mean pooling layer to obtain the “sentence” embeddings, which has shown efectiveness in their
experiments (Figure 4-a). We used 60% of the data for training, 20% for validation, and 20% for testing. Ater
the training process, each EDA sequence can be represented by a 768-dimensional vector, and an encoder that
can transform any EDA sequences into embeddings is obtained. herefore, during the inference time, the Search
Engine takes an input EDA sequence, uses the encoder to get its embedding, and leverages the embedding to
ind relevant EDA sequences in our corpus based on cosine similarity (Figure 4-b). hese related examples could
help data scientists get inspiration on what to do next in their own EDA.

To investigate how well GraphCodeBERT works in our situation, we compared it with a baseline, Doc2Vec
[31], which was trained to generate embeddings of the same size. Doc2Vec is a classic NLP method for unsu-
pervised document representation learning, not based on neural networks. We chose this method because the
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Fig. 5. Comparison of GraphCodeBERT and Doc2Vec on the numbers of true samples retrieved in the top-� search results.

experiments in GraphCodeBERT already compared the model with a couple of state-of-the-art neural network
based models. he two models were compared using simulated code searching tasks. For each EDA sequence
in our test dataset, we used its irst � code blocks as the query and checked the rank of the original full EDA
sequence (i.e., ground truth) in the retrieved results. hus, we generated � − 1 queries for each EDA sequence
to perform the experiments, where � is the length of the sequence. Figure 5 shows the counts when the ground
truth falls within the top-� items of the search results (until top 100). We can see that GraphCodeBERT returns
signiicantly more correct EDA sequences than those by Doc2Vec for any given rank; Doc2Vec barely retrieves
any true samples within top-20.

5.3 Recommending Potentially Useful APIs
Besides providing suitable examples to inspire data scientists on how to perform their current EDA, EDAssistant
recommends the potential APIs to use next via the API Recommender (G3). It is built upon the same architecture
as the Search Engine model using GraphCodeBERT (Figure 4). Speciically, a dense layer is added ater the last
EDA sequence embedding layer to predict a one-hot vector (in 19,453-dimension) representing the next API to
use over all the possible APIs (i.e., our vocabulary). During training, in addition to the EDA sequences as the
input, the extracted API execution orders (see Section 5.1) were used as ground truth for the target prediction.
his design allows the Search Engine and API Recommender models to share the same architecture and achieve
two tasks simultaneously with one training process, signiicantly increasing the eiciency.
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Table 1. Comparison of diferent API recommendation models with accuracy and IOU.

Accuracy IOU

GraphCodeBERT with a dense layer (API Recommender) 0.507 0.399
GraphCodeBERT only (Search Engine) 0.146 0.079
Doc2Vec 0.491 0.389
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Fig. 6. Comparison of GraphCodeBERT and Doc2Vec on training losses for API recommendation.

Similarly, we evaluated the API Recommender by comparing it with two diferent baselines. he irst is the
Search Engine itself, where the APIs of the top-ranked EDA sequence in search results were treated as recom-
mendations. his baseline helps us investigate whether the added dense layer is necessary. he second is based
on the Doc2Vec model, where a similar approach was used to get recommended APIs (i.e., extracted from the
search results). However, the GraphCodeBERT with a dense layer predicts a probability distribution over all
possible APIs, rather than a set of APIs like the two baselines. We thus used log(�� ) > 0.5 as a threshold to select
the APIs where �� is the probability of API� . We used a similar experimental setup to 5.2simulate the processes
of geting API recommendations. For each EDA sequence in the corpus, we used its irst 1 to irst � − 1 code
blocks to create � − 1 queries and compared the predicted APIs with ground truth APIs.

Given these predicted sets of next APIs, we computed the accuracy of the models by averaging the number of
correctly predicted APIs divided by the actual number of ground truth APIs in each query. However, the accuracy
measure does not consider the size of predicted sets, because when the size of a predicted set is larger, more
ground truth APIs are likely in it. We thus computed the IOU (intersection over union) between the predicted
sets and the ground truth sets, so larger predicted sets get some penalty. As shown in Table 1, the results indicate
that the API Recommender model is comparable with Doc2Vec, but signiicantly outperforms the bare Search
Engine model without the dense layer. Given that GraphCodeBERT signiicantly outperforms Doc2Vec for the
code searching tasks (see Section 5.2), it is thus still valuable to use the GraphCodeBERT-based models in our
cases due to the eiciency in sharing the code embeddings. Further, as shown in Figure 6, GraphCodeBERT
converged much faster during training than Doc2Vec, which could be more applicable in practice for larger
training datasets.

6 USER INTERFACE OF EDASSISTANT
In this section, we introduce the front-end visual interface of EDAssistant (Figure 2) which is developed as an
extension of JupyterLab. It can be accessed on a panel next to the main notebook panel and contains three
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interactively coordinated views (Figure 3): the Search Results View, Notebook Detail View, and API Suggestion
View.

6.1 Visualizing Searched EDA Sequences
At any time during the EDA, a data scientist can initiate a search for useful EDA sequences to guide their analysis,
by clicking the “Search for Examples” buton on the top panel (G1). EDAssistant analyzes the currently active
code cell in the notebook, extracts dependencies from other cells, and constructs a sequence of code blocks as
the query for the Search Engine. hen, EDAssistant displays the retrieved EDA sequences in the Search Results
View (Figure 3-b), with a novel visualization, called DNA plot. he visual design resembles the chromosomes on
DNAs, and the retrieved EDA sequences are displayed from let to right based on their search ranks (Figure 7).
Prior work indicates that visualization of search results and code, rather than textual ranked lists, is necessary for
users to beter understand and explore the returned items (e.g., [21, 33, 38, 39]). Our visualization here can help
data scientists get an overview of the search results and thus make decisions to explore speciic EDA sequences
(G2).

Fundamentally, each EDA sequence is extracted from a real-world notebook, and the notebook is also impor-
tant to understand the EDA sequence. However, exposing too much unnecessary information could overwhelm
users. he DNA plot encodes an example EDA sequence in the context of its original notebook, with horizontal
colored strips indicating each code block inside the sequence and white space indicating those not belonging to
the sequence (Figure 3-b, Figure 7). he color of the strips represents the EDA operation type of the code block.
As the original notebook might be lengthy, a “folded” visual metaphor is used to indicate many consecutive code
blocks that are not in the retrieved EDA sequence. Hovering over the strip or the white space initiates a tooltip
of the actual code it represents. Further, a set of code keywords (one of the outputs of the Program Analyzer;
see Figure 2) are shown beside the DNA plot to provide more contextual information (Figure 3-b, Figure 7). he
DNA plot design facilitates data scientists with showing approximately where the EDA sequence is located in
the original notebook and what operations the EDA does in general.

6.2 Exploring EDA Sequences in Context
Based on the search results, the Notebook Detail View of EDAssistant allows a data scientist to browse the actual
code in an EDA sequence in detail by clicking the corresponding DNA plot (G2). Moreover, clicking a color strip
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navigates the view to the speciic lines of code it represents (Figure 3-c). he code is presented in a similar visual
fashion to the JupyterLab user interface for ease of learning. Initially, only the code belonging to the selected
EDA sequence is shown in the Notebook Detail View. As each EDA sequence is extracted based on variable
dependencies, it is a complete and executable script that is normally suicient for the data scientist to understand
the searched examples. However, clicking the “Fold/Unfold Details” buton on the middle panel toggles other
cells in the original notebook, which provides more context on demand. To distinguish the cells within the
EDA sequence from other cells, a small red vertical bar is shown on the right for each cell in the sequence and
the current select line of code is also highlighted. his design avoids presenting too much information at once,
increasing the eiciency of comprehending the code, leveraging the useful knowledge, and browsing the search
results.

6.3 Discovering Subsequent APIs to Use
In addition to the searched EDA sequences that allow a data scientist to learn from the examples and carry out
their own EDA, EDAssistant recommends common APIs that can be potentially used next, also based on the
current coding context. he data scientist can initiate the recommendation by clicking the “Suggest Methods”
buton in the API Suggestion View (Figure 3-d). his triggers the API Recommender of EDAssistant and the
returned APIs are displayed as tags with the color transparency indicating the probability. he darker the color
is, the more likely the system thinks that API is useful. Further, clicking the tag links to the online documentation
of the corresponding API, which helps the data scientist learn about its usage. While only a set of common data
science toolkits are considered now in EDAssistant, it is easy to integrate more APIs in the future.

7 USER STUDY
To assess the efectiveness and usefulness of EDAssistant in supporting EDA, we conducted a user study by
investigating our tool and a baseline approach that resembles the setup of data scientists’ current practice (i.e.,
using a separated search tool, Google Search, while conducting EDA in computational notebooks). However, we
note that Google Search can access a much larger corpus of notebooks and knowledge base than ours. We do
not want to compare EDAssistant with a customized search engine with only our dataset, because that might
constrain the user experience and our investigation. Our goal here is not to replace the existing search engines,
but to understand the strengths and weaknesses of both approaches and seek opportunities for EDAssistant to
be used in data scientists’ worklows. he general purpose of the study is to explore users’ experience of inding
useful examples during EDA with their current practice and EDAssistant.

7.1 Participants
We recruited 14 participants, 12 males and 2 females, aged 22–41 (m=27.8, sd = 5.8), through mailing lists at a
local university and social media. heir technical backgrounds included computer science and engineering. Of
all the participants, two were with PhD degrees, seven with Master’s degrees, and ive with Bachelor’s degrees.
Further, four of them were professional data scientists and the rest were students. We did a pre-screening for
participants’ experience in using Python, computational notebooks, and relevant data science toolkits. We se-
lected the participants who met the minimum technical standard for a novice or entry-level data scientist. On a
1–7 Likert scale (from “no experience” to “expert”), participants’ self-reported technical knowledge was as the
follows: Jupyter, md=6, iqR = 0.75; Python, md=6, iqR = 0.75; chart ploting libraries such as MatplotLib, md=6,
iqR = 1; machine learning libraries such as scikit-learn, md=5, iqR = 0; data science libraries such as Pandas and
numpy, md=6, iqR = 0.75; as well as familiarity with visualization, md=5, iqR = 0.
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7.2 Tasks and Design
Two datasets were selected from the test set of our notebook corpus, which has similar sizes (i.e., the numbers
of columns and rows) and complexity. Both were tabular datasets including categorical and numerical atributes.
One was about students’ exam scores with their demographic information (e.g., gender, catered lunch or not),
and the other was about customers’ loan defaults with their personal data (e.g., income, employed or not). hese
two datasets are relatively less popular to analyze on Kaggle, which could potentially avoid the case that some
participants had done some analysis on these datasets before.

We adopted a within-subjects design for our study. he task resembled a realistic open-ended EDA with a
controlled structure, which contained two parts. he irst part was more constrained, in which participants
were asked to plot charts on certain atributes. he purpose of this was to help participants get familiar with
the dataset and warm up. he second part was more open, in which participants were asked to investigate the
data paterns in more depth by building models to predict certain values, cluster the data points, or classify the
records. Participants were encouraged to plot charts during this exploration process. Participants were instructed
to search for examples freely only using the provided tool (i.e., Google Search or EDAssistant). Tomake the study
more trackable, they were only allowed to use the loaded libraries in a starter Jupyter notebook, which included
pandas, numpy, scipy, matplotlib, seaborn, and scikit-learn. hese libraries were common data science toolkits
and were suicient for the study tasks. he order of presenting the study tools and the datasets was counter-
balanced with a Latin square design across participants.

7.3 Procedure
he study was conducted using remote conferencing sotware, where participants used their own computers
to access EDAssistant hosted on a server. In the beginning, they were introduced to the general background
and procedure of the study. hen, each participant was asked to complete two EDA tasks as described above,
one with each tool (i.e., Google Search or EDAssistant). For EDAssistant, a brief video tutorial was provided
right before the task and participants could ask any questions about the tool’s functionalities. As EDA is usually
open-ended and there is no clear indication of completeness, we set a 20-minute limit for each task, where
participants were encouraged to explore the data as much as possible. here was no hard time limit for each part
of the task but they got a reminder around 9 minutes. Ater each task, participants illed in a short questionnaire
regarding their experience of using the tool. In the end of the study, a semi-structured interview was conducted
to collect participants’ qualitative feedback about the two tools. he whole study lasted about one hour for each
participant, and they received $10 for remuneration.

7.4 Results and Analysis
In this section, we report the results of our user study, which includes participants’ task performance, subjective
ratings on their experiences, and qualitative feedback to EDAssistant. Participants are referred to as P# in the
following text.

7.4.1 uantitative Results. Table 2 shows diferent task performance metrics of Google Search and EDAssistant.
here was no signiicant diference in time between the tools for participants to complete the two study tasks
and reach the results that they were satisied with. While participants with EDAssistant took a longer time on
average, as EDA oten has vague goals, task completion time is less of an indicator. But this is still encouraging
because the new visualization and interface of EDAssistant that require further familiarity did not signiicantly
slow the participants down.

he ending states of participants’ notebooks at the end of the study were similar between the two conditions,
in terms of the number of lines, code cells, and charts created. he reason that EDAssistant has a high variance
for the number of lines is because P9 wrote 68 lines in their exploration. hese results demonstrate that both the
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Table 2. Comparison of participants’ task performance with diferent indicators by M and SD (in parentheses).

Google Search EDAssistant

Completion Time (minutes) 9.8 (2.5) 12.9 (3.7)
Number of Lines Writen 16.1 (9.2) 17 (15.5)
Number of Cells Created 7.1 (1.8) 6.4 (1.3)
Number of Charts Generated 1.7 (0.8) 1.8 (0.4)
Number of Searches Performed 4.2 (1.8) 3.6 (1.9)
Number of Users Built Models (out of 14) 6 10

Fig. 8. Participants’ ratings on the post-study questionnaire on a 1–7 Likert scale (1 - strongly disagree, 7 - strongly agree).

tools could lead participants to reasonable EDA for our tasks, while with Google Search, participants have the
advantage of geting access to a much broader range of information (e.g., videos, web tutorials), in addition to
just notebooks.

Overall, participants conducted similar numbers of code searches with Google Search and EDAssistant during
the study. Participants conducted a few more searches with Google Search since they needed to adjust their
search keywords several times when the context-based search (in EDAssistant) was not available. For the API
recommendation in EDAssistant, on average participants used it 1.0 times (sd = 0.7); however, seven out of 14
participants did not use this function. When asked for reasons, they mentioned that it was not needed as they
already had an idea of using which methods from their past experience and the received examples from the
search.

As the second part of our study task asked participants to try to build a prediction model with the data, we ob-
served 6 out of 14 (43%) participants successfully employed amachine learningmodel with Google Search during
the study, compared to 10 participants (71%) with EDAssistant. his indicates EDAssistant helped participants
build models based on the searched examples. Moreover, participants used a larger variety of machine learning
models with EDAssistant, including logistic regression, k-means, linear regression, DBSCAN, kNN, random for-
est, gradient boosting, and decision tree. However, with Google Search, participants only employed k-means,
random forest, linear regression, and decision tree. his may be because the EDA notebooks returned by EDAs-
sistant have a broader coverage since they are based on participants’ customized code; it is more constrained as
in Google Search participants searched more similar keywords in the study.

Figure 8 shows participants’ ratings on the post-study questionnaire (the higher the beter). In both conditions,
participants were highly satisied with their EDA results (Google: md=7, iqR = 1; EDAssistant: md=6, iqR = 1) and
EDA processes (Google: md=5.5, iqR = 1; EDAssistant: md=5, iqR = 0.5), where the medians of the ratings on both
tools were similar. Google Search was rated slightly higher, and one reason was that it could provide more
diverse search results other than just code. Moreover, for the usefulness to real-life scenarios, both were rated
highly (md=6, iqR = 0), which indicates that participants perceived EDAssistant as a good alternative compared
to Google Search.
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7.4.2 ualitative Feedback. Overall, participants were positive about their experience with EDAssistant and
appreciated the new ways of conducting EDA and notebook example searches. hey thought the interface of
EDAssistant was intuitive and useful. “he idea is good and obvious.”-P14. hey also liked the visual encodings
and user interactions, which made it easier to understand the searched examples. In the following, we organized
our interview results based on the design goals in Section 4.1.

In-context and in-situ search experience for EDA examples (G1). Participants, in general, felt the search
experience with EDAssistant smoother and more efective than using Google Search. “It was helpful to give me
similar code examples.”-P7. “I think the system (EDAssistant) was very useful. he relevant libraries are all there.”-
P10. P4 echoed the same point: “his will deinitely help programmers, because we do need examples, not the APIs.”

Further, P12 had the following statement when comparing EDAssistant with Google Search: “he main advan-
tage of the interface (EDAssistant) is that the code it provided was all usable because they are from Kaggle. If I was
using Google, I wanted to see the detailed implementation, but normally there might be some non-related texts.”

Participants also gained experience while using EDAssistant. For instance, through the searched examples,
P7 mentioned “I did not realize I can actually plot two separate charts to solve the irst task.” At the same time,
participants pointed out that EDAssistant did not have the capabilities of Google Search to retrieve a diverse set
of results beyond notebooks, such as video tutorials, forum discussions, etc.

“Google will return results with non-code stuf. For instance, some StackOverlow results provide code and de-
tailed explanation.”-P9. “Because Google usually has many diferent types of results, some of them have interactive
explanations which save time for understanding the code.”-P6.

Participants (P2 and P5) also suggested that it would be more efective to combine the keyword-based search
with Google Search and the in-situ search with EDAssistant, which allows the tool to take more “users’ opinion”
into consideration.

P12 explained “he advantage of Google is that I can predict the search results, especially when I know which
library to use. If I can have a Google + the interface combination, that would be great.” P4 also stated that using
EDAssistant more would result in beter performance: “If I am familiar with it, it will be extremely helpful.”

Visualization and exploration of searched EDA examples (G2). Participants especially liked the design
of EDAssistant for supporting the exploration and understanding of searched notebooks. For example, P12 men-
tioned “Visualization and interface are clean and neat. No useless information.” P1 appreciated the visual design
of the Search Results View, mentioning: “I think the colors from the irst view can help me ilter down for what
I am looking for. When I am looking for ploting methods, I tried to read the purple lines irst.” Further, P2 said:
“Amazing, very helpful, especially when you don’t know what the code is doing, the visual encoding can give you
some hints.” Similarly, “Compared to Google, which doesn’t have this color-coded highlighting, this is intuitive.”-P8.

Together with the keywords besides the EDA sequences, participants found that: “It can help you locate the
answers faster. he tags are prety good, using colors to encode importance. And the colors from the irst view are
helpful. hey basically try to tell you what kind of operation that line is.”-P10. “he words besides can tell you what
are the packages being used before clicking it, and hovering over gives you the imports. I think the searched sequences
are helpful.”-P7.

However, some participants demanded a higher-level summarization for the EDA sequences with text. “he
idea is good, but sometimes the keywords were not important enough.”-P9. “Some keywords, such as ’df’, do not con-
tain much information.”-P14. “It might be helpful if you can summarize what the code is doing in natural language,
rather than keywords.”-P10.

As for the Notebook Detail View, participants realized its importance and used it oten with the Search Results
View for exploring the EDA sequences. hey thought it was standard and efective for demonstrating the code.
hey also liked the fold/unfold feature: “It’s good to highlight the speciic operation you just clicked from the top
view, and use fold/unfold to go over the entire notebook.”-P7.

ACM Trans. Interact. Intell. Syst.



EDAssistant • 21

Participants suggested that some iltering and searching mechanism could be integrated into both views. “It
will be good if the keywords from the irst view can tell me which one contains linear regression, and this will save
lots of my time. Otherwise, I need to read the code line by line.”-P1.

Also, P9 recommended that the same color coding of the Search Results View could be added: “But I want to
try to introduce some consistency here. In the irst view, you use colors to encode the operation type for each line, is
it possible to do the same thing from the second view?”

Recommendation of APIs to use next (G3). Seven out of 14 participants used the API recommendations
in EDAssistant and they thought this was useful for obtaining the methods to use and checking the API docu-
mentation, which was another key advantage participants perceived for our tool.

“It can quickly go to the documentation page, which is the main advantage. Usually, I click the dark green one
irst, because it usually gives the most relevant method.”-P7. “I realized the botom view later, but the botom view
was really helpful to understand the key methods that are helpful.”-P2.

Moreover, P14 gave speciic examples: “I think the botom view was good. Ater drawing the irst catplot, it
recommended me the matplotlib.plot function for the second chart. Ater writing some code related to training, it
provided me with some validation functions.”

Similar to searching EDA sequences, participants suggested the integration of manual search keywords into
the API recommendation. “I hope the buton could take user text inputs, so that I can have a litle bit of control over
the results.”-P5. Further, P11 recommended an interesting feature that “helps auto-ill current working cell” ater
clicking the tags.

8 DISCUSSION AND FUTURE DIRECTIONS
In this section, we discuss some design implications obtained from our study results, limitations of the current
EDAssistant implementation, and future directions to enhance the work.

8.1 Design Implications
From our study results, we observe a trade-of between the “active-style” search by inputing keywords on
Google Search and the “passive-style” search in EDAssistant based on codewriten by users. Participants thought
that actively inputing the keywords allowed them to know what to expect. “Manual search can help us ind
things that match with ideas in our minds.”-P4. “If I’d like to ind things related to the chart, then I will have some
expectations in my head.”-P3. his is essentially helpful when data scientists have a clearer goal of what to do
and what to search. his also explains why participants thought Google performed beter in the irst part of the
EDA task in our study, which was more prescribed. However, “Manual search is not always beter and it only
performs well when results contain what we really expect.”-P7.

In cases where the goals were vague (e.g., in the second part of each study task), participants felt that the expe-
rience with EDAssistant, by just clicking the “Search for Examples” buton, was more natural and integrated into
their worklows with computational notebooks. his is also true when users lack adequate domain knowledge
or experience in their problems. Further, as described in our qualitative results, participants hoped to combine
both active and passive search styles together in their EDA. Interestingly, we did observe that some participants
“hacked” our tool by creating a new cell containing the keywords they wanted to search with and initiating
the search. “Later I tried to put some keywords into the current working cell, to see whether I could afect the inal
results.”-P14. However, this does not fully leverage the advantages of EDAssistant in understanding the code
structures. herefore, in the future, it is worth considering how to design such integrated EDA support tools
within the Jupyter environment, while balancing the two search styles.

Moreover, another trade-of lies between the diversity and consistency of search results. Several participants
(such as P6 and P9)mentioned that Google retrieved a lot of “non-code stuf” such as forumdiscussions and videos,
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which could beneit their EDA tasks. For example, a few well-curated interactive tutorials or web blogs could
be signiicantly helpful for learning new concepts and APIs. However, this highly depends on the availability
of the resources and the speciic cases that users encounter. On the other hand, due to limited data diversity,
EDAssistant right now can only retrieve EDA notebook examples. P8 made a nice analogy that “I think what
you are trying to replicate is like what I was doing: when I forgot how to plot chart, I would search among my past
projects and ind what I did.” Indeed, in some corporate scenarios, teams tend to work on a set of aligned goals and
use many internal APIs of which learning materials are hard to ind in the public domain [33]. More consistent
and focused search results would be beneicial for onboarding new employees or team members, which may
otherwise overwhelm the users. Also, developers in companies usually generate a lot of code but few well-made
tutorial resources due to various constraints on time and money. Being able to search for code examples by other
senior co-workers in a seamless way would increase new members’ productivity under such constraints. hus,
future research could be conducted to study how the diversity or consistency factor afects data scientists’ EDA
in diferent real-world scenarios.

hirdly, there exists a trade-of between encouraging creativity and following past practices for novice data
scientists using tools like EDAssistant. As the suggested EDA sequences are mined from Kaggle competitions,
this might compel data scientists to follow certain routines of analysis. While EDA is a relatively creative process,
these suggestions may further reinforce common previous practices and allow more and more users to follow.
his is a double-edged sword. On one hand, it helps novice data scientists quickly gain skills from existing
knowledge, but on the other hand, it reduces their chances to experiment with new ideas and approaches in
EDA. While assessing the trade-of is out of the scope of this paper, it is a profound research problem that
should be studied in-depth in the future.

Finally, EDAssistant was designed and developed according to the typical stages of data science worklows [3,
26], where four diferent semantic EDA blocks have been identiied based on our analysis of the corpus. However,
it is challenging to optimize the code search and recommendation in EDAssistant for all four stages in EDA, due to
the characteristics of the available notebook corpus. For the stages that tend to be more standard in terms of API
usage and analysis procedures, such as coniguration & data preparation and output examination & visualization,
EDAssistant would perform beter, as the machine learning models could extract more generalizable rules. In
contrast, for the other two stages, model exploration & development and hypothesis veriication & evaluation,
there exist more creativity and diversity in how exactly the EDA is performed by diferent users. hus, users
may not be able to get the most relevant code examples through the system and it is also diicult to learn
from these examples with diverse analysis approaches. However, in general, the search result visualization in
EDAssistant, the DNA plot, could help mitigate this issue by providing the interactive exploration of searched
code. Future studies should be carried out to investigate the diferences between the four stages and verify the
above observation.

8.2 Limitations and Future Work
Our tool and study design are not without limitations. First, while we trained our models on a reasonable-
sized corpus including around 38K notebooks, it is still small compared to the vastly available online resources
that other search engines (e.g., Google Search) can leverage. Further, all the notebooks were captured from
competitions on Kaggle to ensure their quality, this, however, may introduce bias into the trained models. hus,
further collecting larger and more diverse data is necessary to maximize the potentials of efective in-situ search
experience that EDAssistant has brought to data scientists. Using more diverse data, we could also support
data scientists with a beter understanding of why certain notebooks or APIs are suggested (i.e., explaining the
recommendation), which is a promising future direction.
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Moreover, EDA is highly dynamic and case by case, and the notebooks collected in Kaggle competitions are
dataset or problem-dependent. Data scientists may work on a diferent problem and at the same time require
suitable examples. While the literature [2, 63] has atempted to learn data-independent paterns from notebooks
and the models we used to have such abilities, the utility of retrieved example notebooks can still vary in dif-
ferent situations. P9 mentioned that “People can have diferent next steps because they have diferent goals.” he
characteristics of working datasets have not been considered in EDAssistant’s search and recommendation yet.
Future approaches for learning embeddings that also represent dataset features can be employed, such as in a
similar vein to VizML [23] for generating visualizations from datasets.

hird, as discussed above and in participants’ feedback (Section 7.4.2), the current code search and recommen-
dation in EDAssistant lack diversity in results and iner manual control over the inputs. Computational methods
and visual interfaces to support these functions can be developed in the future. Also, participants pointed out
some other improvements for EDAssistant to beter support the understanding of the searched examples, such
as providing a natural language code summary instead of discrete keywords in the Search Results View.here is
a need for EDAssistant to ofer more context for the retrieved EDA code, such as relating to forum discussions
and video tutorials that are sometimes returned in Google Search. hus, it is interesting to broaden our corpus
to include these contents on top of notebooks as well as develop code summarization capability of machine
learning models (e.g., [64]).

Last, our study still has limitations, since EDA is oten open-ended and lexible. he current study design is in
a controlled environment with ixed datasets, problems, and task procedures, whereas EDA in the wild can be
more diverse. Longer-term deployment studies are needed to thoroughly examine the strengths and weaknesses
of EDAssistant, compared to data scientists’ existing practice. Also, as discussed above, the proposed approach
could be more efective in corporate scenarios where employees deal with similar sets of problems, compared to
more general-purpose search cases. Future studies need to be conducted to examine this hypothesis.

9 CONCLUSION
Wehave presented EDAssistant, an interactive and visual tool that facilitates EDAwith in-situ code search, explo-
ration, and recommendation, which is developed as a JupyterLab extension to enable a seamless user experience.
To develop EDAssistant, a large corpus of high-quality EDA notebooks was curated from the competitions on
Kaggle. We then characterized data scientists’ behaviors with EDA notebooks based on a qualitative formative
study and a quantitative analysis of the corpus. Advanced machine learning models were trained and evaluated
based on the corpus, resulting in the search and recommendation modules of the tool. EDAssistant also features
a novel visualization to support the exploration and understanding of searched EDA examples, as well as a user-
friendly interface for accessing the search and recommendation functionalities. A user study was conducted to
assess the strengths and weaknesses of EDAssistant in EDA tasks as well as a baseline setup of using the external
Google search. he results indicate that, while Google Search performed beter in search results diversity and
input control, participants appreciated the EDAssistant design and the EDA experience with the tool as well as
seemed more successful in building prediction models in EDA tasks.
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