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Debugging is known to be a notoriously painstaking and time-consuming task. As one major family of auto-

mated debugging, statistical debugging approaches have been well investigated over the past decade, which

collect failing and passing executions and apply statistical techniques to identify discriminative elements as

potential bug causes. Most of the existing approaches instrument the entire program to produce execution

profiles for debugging, thus incurring hefty instrumentation and analysis cost. However, as in fact a major

part of the program code is error-free, full-scale program instrumentation is wasteful and unnecessary.

This article presents a systematic abstraction refinement-based pruning technique for statistical debugging.

Our technique only needs to instrument and analyze the code partially. While guided by a mathematically

rigorous analysis, our technique is guaranteed to produce the same debugging results as an exhaustive anal-

ysis in deterministic settings. With the help of the effective and safe pruning, our technique greatly saves the

cost of failure diagnosis without sacrificing any debugging capability.

We apply this technique to two different statistical debugging scenarios: in-house and production-run

statistical debugging. The comprehensive evaluations validate that our technique can significantly improve

the efficiency of statistical debugging in both scenarios, while without jeopardizing the debugging capability.
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1 INTRODUCTION

Bugs are prevalent in software systems before or even after deployment. As is well known, de-
bugging is a notoriously painstaking and time-consuming task. To reduce developers’ burden, re-
searches have proposed a wide variety of automated debugging approaches. As one major family of
automated debugging, statistical debugging1 collects failing and passing executions and applies sta-
tistical techniques to identify discriminative elements as potential bug causes [1, 15, 26, 33, 38, 61].
The rationale is that program elements that are frequently executed in the failing runs but rarely
executed in the passing runs are quite likely to be faulty.

1.1 Motivation

The problem with these statistical debugging approaches is that they consider every program el-

ement to be potentially relevant to the failure, and thus instrument and analyze the entire pro-

gram for debugging. Such full-scale program instrumentation incurs hefty cost in terms of CPU
time, memory consumption, network transfer, and disk storage, not just during instrumentation
and runtime execution but also analysis thereafter. However, in fact, most of the program code
works well, and only small portions of a program are relevant to a given bug [16]. As stated in
Reference [38], the majority (often 98%–99%) of program elements (e.g., predicates) monitored are
irrelevant to program failures, and thus unnecessary for instrumentation and analysis.

An open and fundamental challenge in statistical debugging is how to quickly identify a small
number of failure-correlated program entities (e.g., needles) from an ocean of entities in a program
of a reasonable size (e.g., a haystack), while more importantly, guaranteeing debugging quality.
This motivates us to devise a selective instrumentation technique such that only the necessary
program elements that are highly correlated to the failure are instrumented, ignoring irrelevant
ones. As such, the user-side overhead, data transfer, storage, and analysis cost can be significantly
reduced.

To address this challenge, two selective instrumentation approaches have been proposed so far.
One uses the random sampling technique [37], with the hope that the predicate profiling cost
can be amortized across a large number of users and runs. While random sampling reduces the
overhead the user experiences in each run of the instrumented program, it does not reduce the ag-
gregated total cost of data collection and analysis from the developer’s perspective. In other words,
although sampling collects less data from each run at each end-user, to achieve statistical signifi-
cance, more runs/end-users need to be involved and their data need to be transferred, leading to
increased latency for failure diagnosis and delayed patch design. For example, under the common
1/100 or 1/1,000 sampling rate, hundreds or thousands more failure runs need to be traced before
sufficient predicates get sampled to produce statistically meaningful results [6, 29, 37]. Further-
more, a whole-program sampling infrastructure may lead to a large baseline overhead (e.g., more
than 50%) that cannot be amortized through sampling [8].

1Some also call it statistical fault localization or spectrum-based fault localization. We treat them as the same class of

approaches in this article.
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The other approach uses the heuristics-guided sampling technique [7, 10, 16], with the hope
that failure-correlated predicates get sampled earlier than others. Some assume that failure predic-
tors are likely around failure points [7, 10], while others first profile predicates near the program
entrance and iteratively search down the control-flow graph based on the failure-correlation met-
ric, informally referred to as suspiciousness in this article, of already profiled branch predicates.
Unfortunately, these heuristics-guided techniques still have limitations. Each of these heuristics
naturally only works for some types of bugs and predicates and may behave worse than random
sampling in other cases [7, 10]. More importantly, they can never prune out any predicates while
guaranteeing the quality of debugging reports—without exhaustively profiling all predicates, it is
impossible for them to know whether the best predictor has been found or not. As a result, some
of these techniques simply terminate after a given number of predicates are profiled, sacrificing di-
agnosis ability [7]. Others require developers to manually and periodically check diagnosis results
to determine whether a good enough failure predictor has been found [10], which is, obviously, a
daunting task that most developers would be reluctant to do [51].

Instead of looking for a new sampling strategy, this article takes on a new quest driven by a
key question: Can we prune the predicate space with quality guarantees? If so, then we can reduce
diagnosis cost without sacrificing diagnosis ability.

1.2 Our Technique

We propose a general, rigorous, and automated pruning technique for predicated statistical de-
bugging. Our technique applies to all types of predicates. It can greatly reduce the number of
predicates that need to be profiled and analyzed, while never missing top-ranked failure predic-
tors with mathematical guarantees2 under the assumption that a fixed set of test cases are used
during debugging. With the help of the effective pruning, our approach greatly saves the cost of
failure diagnosis without sacrificing any failure diagnosis capability.

Our technique is inspired by—and formulated as an instance of—the abstraction refinement

framework [17]. Our key observation is simple: Predicates are concrete program entities consti-
tuting a huge space; profiling and analyzing them directly is doomed to result in a high cost. If
we can raise the abstraction level by first profiling and analyzing data from coarse-grained3 pro-
gram entities (e.g., functions), then we may obtain a bird’s-eye view of how each coarse-grained
entity is correlated with a failure. This view may then help us decide: (1) which coarse-grained
entity should be refined, with all the fine-grained entities (e.g., predicates) it represents profiled
and analyzed; and (2) which coarse-grained entity does not need to be refined, with all the fine-
grained entities it represents pruned away. Informally speaking, using inexpensive, coarse-grained
suspiciousness information, we can efficiently and rigorously identify the top k fine-grained sus-
picious predicates—the ultimate goal of statistical debugging—by profiling and analyzing only a
small portion of the large predicate space.

To carry out this insight, there are two critical questions to answer: (1) given an existing suspi-
ciousness metric I for concrete (fine-grained) entities, how to design a suspiciousness metricC for
abstract (coarse-grained) entities; and (2) how to useC to guide the fine-grained predicate profiling
and analysis?

Designing Metric C. Answering these questions is not trivial. Let us first consider the first ques-
tion. Our goal here is to make C as indicative of I as possible so precise refinement guidance
can be obtained from applying C to coarse-grained profiles. An ideal design of C is such that the

2We will refer to the guarantees several times in the article and discuss the underlying assumptions in details in Section 7.1
3The terms “abstract” and “coarse-grained,” and “concrete” and “fine-grained” are used interchangeably.
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Fig. 1. A high-level comparison between the traditional approach and our approach.

Table 1. A Comparison between Existing Statistical Debugging Techniques and the Proposed Work

Approaches User-side Overhead Data Analysis Effort IsAuto Quality of Results

Sampling-based [37, 59] Dep. on sampling rate Analyze all profiles Yes Dep. on sampling rate
Iterative [10, 16] Low Analyze selected profiles No Dep. on heur. and manual insp.
This work Low Analyze selected profiles Yes Fully precise

function with the highestC value must contain the predicates that have the highest I values. Hence,
to identify the top k predicates, one only needs to refine and analyze a small number of functions
with the highestC values. However, this ideal situation is impossible to achieve, as designing such
a C that works for all types of predicates is infeasible.

An alternative way to design C is to use various kinds of heuristic information so the top bug-
correlated predicates (e.g., ranked by I ) are likely to be inside the most suspicious functions (e.g.,
ranked by C). However, this is fundamentally no better than heuristics used by previous work.

To overcome this challenge, we take a novel perspective that allows us to explore the middle
ground. Given a suspiciousness metric I for predicates, we deriveC from I with the guarantee that
for any function f , C(f ) gives the tightest upper bound of all I (e) such that e is a predicate in f .
This upper bound guarantee will be useful in guiding predicate profiling and pruning, as discussed
below. The derivation is done by exploring the entire input space of I and encoding the inputs and
outputs of C in a table; details of this derivation can be found shortly in Section 4.

UsingC to Guide Refinement. Following our design ofC , we answer the second question with a
diagnosis process consisting of two major phases, with the high-level idea illustrated in Figure 1(b).

The first phase conducts simple and lightweight profiling of functions (i.e., abstract entities
indicated by the yellow rectangles in Figure 1(b)), collecting a set of abstract profiles for functions.
These profiles are then used to calculate C ( f ) for each function f .

The second phase conducts refinement. Only a subset of functions are refined by profiling all

predicates inside each function. For instance, the predicates corresponding to yellow circles in
Figure 1(b) are profiled. Since the suspiciousness of f ,C ( f ), provides an upper bound for the I val-
ues of all predicates inside f , our diagnosis automatically determines a subset of functions whose
C ( f ) is no less than the top-kth I value, effectively pruning away a large number of predicates
(i.e., dashed gray circles in Figure 1(b)) from profiling and analysis. The detailed discussion and
formulation of the refinement process can be found in Section 3.

As a result, our approach is fully automated and fully precise: The mathematical guarantee
(cf. Theorem 3.6) dictates that when our process terminates, the top bug predictors reported are
the same as those that would have been reported by an exhaustive approach that instruments
all predicates. In comparison, the original approach, shown in Figure 1(a), does not profile any
functions. Instead, it profiles all fine-grained predicates in one phase. A quantitative comparison
between our approach and several representative existing techniques can be found in Table 1.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 36. Pub. date: March 2023.



Toward More Efficient Statistical Debugging with Abstraction Refinement 36:5

We applied our abstraction refinement-based pruning technique to two statistical debugging
scenarios: in-house debugging and production-run debugging. Briefly, in-house debugging aims to
diagnose bugs appeared before software deployment. They stand for the approaches [31, 33, 61]
that require developers to run the instrumented program in the lab to obtain execution profiles.
While production-run debugging approaches [6, 10, 37] are performed to debug production-run
failures (or field failures [22]) in deployed programs. Users run the deployed instrumented pro-
gram to generate execution profiles that are sent to developers for subsequent analysis. Due to
the different ways of obtaining execution profiles, their performance focus varies. For in-house
debugging approaches, our goal is to reduce the instrumentation/analysis cost as well as the de-
bugging latency to make debugging more efficient. For production-run debugging, besides the
instrumentation and analysis cost spent by developers, the most crucial factor to be considered is
the user-side runtime overhead. We are required to guarantee sufficiently low user-side overhead
to encourage active participation from large user base. Based on the difference, we adapted our
technique particularly for each scenario. For in-house debugging (Section 5), the refinement phase
is simply implemented in two-pass manner where all the suspicious methods are refined within
one pass, thus reducing the debugging latency. While for production-run debugging (Section 6),
to ensure low enough user-side runtime overhead, an iterative procedure is adopted where the
suspicious methods are refined one-by-one via multiple refinements. The detailed descriptions of
each scenario will be given shortly.

1.3 Contributions

We made the following contributions:

• We propose a general and automated abstraction refinement-based pruning technique for
statistical debugging and apply it to two different debugging scenarios, namely, in-house
statistical debugging (Section 5) and production-run statistical debugging (Section 6).
• We design an abstract suspiciousness metric and devise the dynamic programming style

algorithm to compute it. We build the rigorous mathematical relation between the suspi-
ciousness scores of fine-grained and coarse-grained elements to ensure safe pruning.
• We conduct a rich set of experiments to validate the effectiveness of our technique. The

comprehensive evaluations on both C and Java subject programs show promising results.
All the code and scripts used in our evaluation can be accessed via the following link: https://
github.com/k-y-zhang/statistical-debugging-with-abstraction-refinement.

1.4 Outline

The rest of this article is organized as follows: Section 2 introduces relevant background regarding
predicated statistical debugging. We give the detailed description of our abstraction refinement-
based pruning technique in Section 3, followed by the design and computation of abstract sus-
piciousness metric in Section 4. Sections 5 and 6 describe the applications of our technique
to in-house debugging and production-run debugging, respectively. A series of important is-
sues are then presented in Section 7. We discuss the related work in Section 8 and conclude in
Section 9.

2 BACKGROUND

This section explains the important components of statistical debugging, including predicates, the
metrics used for measuring predicates’ suspiciousness, and two different debugging scenarios: in-
house and production-run debugging.
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2.1 Predicates

An instrumentation scheme widely used in the statistical debugging community was developed
by Liblit et al. [38]. It collects the outcome of predicates at runtime, representing certain program
state information. There are three categories of predicates considered, which have been shown to
be effective for diagnosing a wide variety of software bugs:

• Branches: For each conditional, two predicates are tracked to indicate whether the true or
false branch is taken at runtime.
• Returns: At each scalar-returning call site, six predicates are created to capture whether the

return value r is ever > 0, ≥ 0, < 0, ≤ 0,= 0, or � 0.
• Scalar-pairs: Ateach assignment of a scalar value, six predicates are considered:
x <, ≤, >, ≥,=,� yi (or c j ), where x is the assigned value, yi and c j represent one of
the other same-typed in-scope variables and one of the constant-valued integer expressions
seen in the program, respectively.

By means of software instrumentation or hardware profiling [6], a profile consisting of the
runtime values of these predicates is derived for each run. Each profile contains a set of predicate
counts, each recording the number of times a predicate is evaluated to true during the run. Only
those predicates whose counts are not less than 1 (i.e., the predicate is evaluated to true at least
once) are retained. Each profile is thus regarded as a set of items, each of which is a predicate
evaluated to true at least once during execution. In addition, each profile is labeled as passing or
failing, depending on whether it is collected from a passing or failing run. All the profiles constitute
a labeled itemset database, whose each transaction corresponds to one profile.

2.2 Statistical Metrics

After the profiles are obtained from many runs, statistical analysis is performed to compute a
suspiciousness value for each predicate (or a set of predicates that is termed as a bug signature [26]).
The top-scored predicate (or set of predicates) is regarded as the best predictor of the failure.

Various metrics have been proposed and studied to measure the statistical suspiciousness [33, 41,
45]. They commonly take into consideration four parameters: namely,p,n,pt ,nt . Given a predicate
(or a set of predicates) denoted as e , pt (e ), and nt (e ) indicate the number of passing and failing
runs in which e is observed to be true, respectively; while p (e ) and n(e ) represent the total number
of passing and failing runs in which e is observed,4 no matter true or false, respectively. All of
them are natural numbers, i.e., p ∈ [0, P],n ∈ [0,N ],pt ∈ [0,p],nt ∈ [0,n], where P and N are the
total number of passing and failing runs, respectively.

Here, we discuss two representative metrics, Ochiai [3] and IG (Information Gain) [54]. Ochiai

origins from the study in Botany and Zoology [47], which is both theoretically and empirically
validated to be a well-performed statistical debugging metric [2, 45, 53]. IG is adopted in bug
signature identification (MPS) [61], an in-house debugging approach.

Given a predicate e , Ochiai(e) is formally defined as Equation (1) to measure the correlation
between e and failing runs. In the application of production-run debugging discussed shortly in
Section 6, Ochiai is used to instantiate I as the fine-grained suspiciousness metric.

Ochiai (e ) =
nt (e )√

n(e ) ∗ (nt (e ) + pt (e ))
(1)

4Given a negative return value, all six returns predicates (> 0, ≥ 0, < 0, ≤ 0, = 0, � 0) are “observed.” However, only three

of them (< 0, ≤ 0, � 0) are “evaluated to be true.” p and n can be pre-computed easily based on pt and nt .
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The second metric we would like to describe is IG, which can be defined as follows:

IG (e ) = H (P ,N ) − pt (e ) + nt (e )

P + N
× H (pt (e ),nt (e ))−

(P + N ) − (pt (e ) + nt (e ))

P + N
× H (P − pt (e ),N − nt (e )), (2)

where

H (a,b) = − a

a + b
× log2

( a

a + b

)
− b

a + b
× log2

(
b

a + b

)
.

In an in-house bug signature mining approach [61], the following discriminative significance

metric (Equation (3)) based on IG is used to measure the fine-grained suspiciousness of predicates:

DS (e ) =
⎧⎪⎨
⎪
⎩

IG (e ) if nt (e )
N
>

pt (e )
P

0 otherwise.
(3)

Note that a bug signature is not restricted as a singleton predicate in Reference [61]. It is gen-
eralized to be a set of predicates. For a set of predicates e , the metric works as usual as long as
pt (e ) and nt (e ) indicate the number of passing and failing runs where all the predicates in e are
observed to be true, respectively

2.3 In-house and Production-run Statistical Debugging

According to the sites where the profiles are collected, we can roughly categorize statistical de-
bugging approaches as two different scenarios, namely, in-house debugging [15, 31, 32, 34, 61] and
production-run debugging [6, 7, 10, 16, 38]. To validate the applicability of our technique, we select
one representative work for each scenario—bug signature mining [61] for in-house debugging and
cooperative bug isolation [38] for production-run debugging—and apply our technique to each
of them. The detailed design and implementation of these applications will be given shortly in
Sections 5 and 6. The following gives the description of each original approach:

In-house Bug Signature Mining [61]. To provide informative clue for identifying, understand-
ing, and fixing bugs, more contextual information where the bug occurs is highly desired. To this
end, bug signature discovery is thus proposed [15, 26, 61]. Instead of pinpointing a single suspi-
cious element (statement or predicate), bug signature mining aims to uncover the bug context
information comprising multiple elements. To enhance the predictive power of bug signatures,
Sun and Khoo [61] proposed predicated bug signature mining (MPS for brevity), where both data
predicates and control flow information are utilized.

Given the buggy program and test suites, both passing and failing profiles comprising predi-
cates (as discussed in Section 2.1) are first collected. MPS [61] then takes the profiles as input and
performs two steps, i.e., preprocessing and mining, to finally obtain predicative bug signatures.
In Reference [61], the input profiles are first pre-processed to produce a dataset that is subsequently
fed into the bug signature miner. To begin with, some unimportant or redundant predicates are
filtered out in advance. Note that preprocessing is essential, as it constructs the database in a suit-
able format for the subsequent mining step; furthermore, it filters a great number of predicates to
effectively reduce the scale of mining. However, it is also quite expensive especially if the profiles
processed are of big size. Given a predicate itemset database constructed from profiles through
preprocessing, and the number of top discriminative signatures to mine k , a discriminative item-
set mining algorithm discovers the top-k discriminative bug signatures based on the discriminative

significance measure listed as Equation (3). They provided two modes of signature mining: inter-

procedural and intra-procedural. Since the inter-procedural signature mining where the predicates
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in a signature can span across multiple functions is much more expensive than the intra-procedural,
we focus on improving the efficiency of the inter-procedural mode in this work. We refer readers
to Reference [61] for the detailed mining algorithm. As usual, MPS requires instrumenting the en-
tire program to produce full-scale execution profiles for mining. Such full-scale instrumentation
is unnecessary and severely undermines the efficiency of debugging.

Production-run Cooperative Bug Isolation [39]. Most software deployed around the world
remains buggy in spite of extensive in-house testing. These failures that occur after deployment
on user machines are called field failures [18]. To debug these field failures, developers are required
to reproduce them in the laboratory according to the bug reports and then perform the same pro-
cess as in-house debugging [30]. However, in practice, it is usually hard for developers to repro-
duce field failures (especially client-side failures) in the lab due to the difference in environments
and configurations, as well as nondeterminism. To tackle this problem, production-run cooperative

(statistical) bug isolation [37–39] has been proposed and received much attention. This approach
applies the idea of crowd-sourcing in sampling classes of program runtime behavior from a large
pool of end-users running instrumented programs for bug tracking. The gathered program traces
enable developers to apply statistical techniques to pinpoint the likely causes of failures.

When each end-user runs the deployed program, a profile consisting of predicates (as discussed
in Section 2.1) is recorded and sent to the developer. This happens simultaneously at a large number
of end-users’ sites. Once a sufficient number of profiles are collected at developer’s site, a statisti-
cal metric (e.g., Ochiai , shown as Equation (1)) is adopted to measure the suspiciousness of each
predicate. Eventually, the predicates with the top-k highest suspiciousness scores are reported as
bug predictors. The success of this approach hinges on the availability of a sufficiently large user
base to run the instrumented programs. To encourage a great number of users to participate, the
user’s overhead for running the instrumented programs should be kept sufficiently low. To this
end, Liblit et al. adopted a sparse random sampling technique [37], which amortizes the cost of
monitoring user-end executions to a large number of users so each user suffers a relatively low
time overhead. Nevertheless, from the perspective of developers, this approach does not really
reduce the monitoring cost or the total size of execution data, which consumes many resources
such as network bandwidth, storage space, CPU time, due to the need for data transfer, storage,
and analysis. This constrains the applicability of post-deployment debugging, especially for large
applications.

3 ABSTRACTION-GUIDED STATISTICAL DEBUGGING

This section presents our abstraction-guided statistical debugging technique, first through an
informal description illustrated by an example in Section 3.1 and then through an abstraction
refinement-based formulation in Section 3.2.

3.1 Overview

Basic Idea. At the core of all existing approaches is predicate profiling. While the outcomes of
predicates are critical for failure diagnosis, whole-program predicate tracking and handling is too
expensive. As discussed in Section 1, existing overhead reduction techniques all have drawbacks.
None of them can automatically reduce the overall cost of predicate tracking and handling without
sacrificing diagnosis quality.

The goal of our work is to automatically prune the predicate space without sacrificing diagnosis
quality, and we will achieve this through lightweight information collected for coarse-grained
entities such as functions.
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Two-phase Approach. Our statistical debugging has a two-phase process: an abstract information

collection phase followed by a refinement phase.
In the first phase, instead of profiling predicates, our approach profiles functions, recording

which function is executed at least once in each run. This profiling is lightweight, and the resulting
profiles can be analyzed to obtain the suspiciousness score for each function based on a new metric
C . We will discuss what isC and how it is designed in Section 4. Here, we just need to keep in mind
thatC is derived from the fine-grained predicate-level suspiciousness metric I . Given a function f ,
C ( f ) is guaranteed to be the lowest upper bound of all such I (e ) that e is a predicate inside f .

The second phase conducts refinement. Given the coarse-grained suspiciousness information
C ( f ) for each function f collected in the first phase, our technique automatically determines the
suspicious functions that need to be refined. Assume we are only interested in the suspicious
predicates e whose I (e ) ≥ θ where θ indicates a constant suspiciousness threshold, as the coarse-
grained suspiciousness value C ( f ) is guaranteed to be the upper bound of all the fine-grained
suspiciousness value I (e ) that e is a predicate inside f , only the functions f whose C ( f ) ≥ θ
needs to be refined.

Due to the distinct considerations of different debugging scenarios, the refinement phase is con-
ducted differently. For in-house debugging, to reduce the debugging delay, a two-pass process is
adopted, namely, boosting pass and pruning pass. The first boosting pass is intended to achieve
a threshold θ that is then used in the subsequent refinement pass for safely pruning consider-
able predicates e whose I (e ) < θ . Specifically, the boosting pass picks the top function f that
has the highest C ( f ) value and instruments all the predicates f contains. The instrumented pro-
gram is then executed using all the failing and passing test cases to acquire fine-grained profiles.
By analyzing the profiles collected in boosting pass, a threshold θ corresponding to the top-kth I
value of predicates is received. In the second pruning pass, predicates with I value lower than θ
are pruned away, leaving behind a set of prospective predicates constituting the top-k suspicious
predicates. Only these prospective predicates are instrumented in the pruning pass. Finally, ana-
lyzing the profiles collected yields the identical top-k suspicious predicates as full instrumentation.
Note that, since we have obtained the fine-grained profiles corresponding to the predicates instru-
mented during the first pass, we do not need to instrument these predicates again in the second
pass, thus further reducing execution time and storage space for profile collection.

While in production-run debugging, for the sake of sufficiently low user-side runtime overhead,
an iterative refinement process is applied so only one function is refined at each iteration. The
threshold θ is also updated iteratively. Each iteration retrieves the top function f from the list
L of all not-yet-refined functions ranked by their suspiciousness values in C and refines f by
instrumenting all predicates it contains. Note that our instrumentation is not accumulative—the
instrumentation code added in previous iterations is all removed. The re-instrumented program
is executed and, similar to the original approach, I is employed to produce a suspiciousness value
for each instrumented predicate. At this point, suspiciousness values have been obtained for pred-
icates instrumented in both the current iteration and all previous iterations. These predicates are
then sorted and the top k predicates are identified. At the end of each iteration, we need to decide
whether the existing top k predicates are already the top k predicates the original (exhaustive)
approach would have produced globally. This decision is made by comparing the lowest suspi-
ciousness value I (e ) among the existing top k predicates with the highest abstract suspiciousness
value C ( f ′) among the remaining unrefined functions in L:

• If I (e ) > C ( f ′), then the debugging process can be safely terminated with the guarantee that
the globally top k predicates have been found. The reason is thatC ( f ′), which is smaller than
I (e ), is an upper bound for the suspiciousness value of all the remaining unrefined functions
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Fig. 2. The original approach. Fig. 3. The abstraction phase.

Fig. 4. The two-pass refinement phase for in-house debugging: (a) boosting and (b) pruning.

and the non-profiled predicates within them. Consequently, all the non-profiled predicates
can be pruned at this point without affecting diagnosis quality.
• IfC ( f ′) ≥ I (e ), then we will enter the next refinement iteration, as there might be a predicate

in method f ′ with a suspiciousness value equal or higher than I (e ).

Example. We use an example shown in Figures 2–5 to illustrate the difference between the tra-
ditional approach and our approach. Here, a program P is represented as a tree structure where
leaf nodes e represent predicates and non-leaf nodes f represent functions.

The original statistical debugging technique (shown as Figure 2) profiles all predicates across
the whole program through many runs and computes a suspiciousness value I for each predicate.
Predicates are ranked based on their suspiciousness, and the top k predicates are reported. In the
example shown in Figure 2, each predicate has a hypothetical suspiciousness measurement and
the top 3 (k = 3) suspicious predicates are shown in the bottom table.

Our debugging technique is different. The abstraction phase is illustrated in Figure 3. This phase
profiles every function. The values of theC metric obtained after this phase are shown next to the
function nodes. The refinement phase is performed differently for different scenarios.

For in-house statistical debugging shown as Figure 4, the refinement phase starts with a boosting
pass retrieving the top suspicious function f1 and instrumenting e1, e2, and e3 in f1, as shown in
Figure 4(a). The profiles collected by running the re-instrumented program give rise to the follow-
ing I values: 0.8 (e2), 0.75 (e1), and 0.7 (e3). We take I (e3) (i.e., 0.7) as the threshold and get a set of
candidate functions (i.e., f4 and f2) whose C is higher than the threshold (i.e., 0.7). Subsequently,
a pruning pass is performed and all predicates in these selected functions are instrumented. The
refinement pass shown in Figure 4(b) profiles all the predicates in f4 and f2. Together with suspi-
ciousness values already obtained from the boosting pass, a re-ranking identifies the new top three
predicates: e10, e2, and e5. Clearly, this report is the same as what the exhaustive approach would
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Fig. 5. The iterative refinement phase for production-run debugging: (a) first refinement, (b) second refine-

ment, and (c) third refinement.

have produced, although only predicates in three of the five functions are instrumented, profiled,
and analyzed.

In production-run statistical debugging, for the sake of low user-side overhead, an iterative re-
finement phase demonstrated as Figure 5 is employed. The refinement phase starts with its first
refinement iteration that picks the top suspicious function f1 and instrumenting e1, e2, and e3 in
f1, as shown in Figure 5(a). Collecting and analyzing the profiles in the first refinement give rise
to the following I values: 0.8 (e2), 0.75 (e1), and 0.7 (e3). To know whether e2, e1, and e3 are the
top three predicates, we compare I (e3) (i.e., 0.7) with C ( f4), because f4 has the next highest sus-
piciousness value. Since 0.9 > 0.7, f4 may contain predicates whose I is higher than that of e3

(i.e., the third predicate identified) and thus another iteration of refinement is needed. Hence, all
predicates in f4 are instrumented. The second iteration shown in Figure 5(b) profiles the two pred-
icates in f4. Together with suspiciousness values already obtained from the previous iteration, a
re-ranking identifies the new top three predicates: e10, e2, and e1. Similarly, we compare the I (e1)
with C ( f2). Since I (e1) = 0.75 < C ( f2) = 0.8, the third refinement (Figure 5(c)) is required. At the
end of the third refinement, the top three predicates are updated to be e10, e2, and e5. Because the
next function on the remaining list is f5 and I (e5) (i.e., 0.8) is greater thanC ( f5) (i.e., 0.65), we are
guaranteed that e10, e2, and e5 must be the globally top three predicates and the debugging process
can be safely terminated. Clearly, the same results are reported as what the exhaustive approach
would have produced.

3.2 Problem Formulation

After the above informal description, we now present an abstraction-refinement based formulation
of our technique.

Definition 3.1 (Abstract and Concrete Entities). A program P consists of a set of functions F , each
of which is an abstract entity for instrumentation. A function f ∈ F contains a set of predicates
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E, each of which is a concrete entity for instrumentation. An abstraction relation α : E → F maps
each predicate e ∈ E to a function f ∈ F containing e . A concretization relation γ : F → 2E maps
each f to a set of predicates inside f .

In our definition, both the abstraction and concretization functions are straightforward—they
are determined by the “containing” relation between functions and predicates. Although this arti-
cle focuses on a two-level abstraction hierarchy, one can easily extend our technique to multiple
levels, for example, by incorporating other types of entities such as loops and basic blocks. Based
on the definitions of abstract and concrete entities, we define dynamic profiles.

Definition 3.2 (Abstract and Concrete Profiles and Measures). A concrete entity profile e ∈ E is
a five-tuple 〈e,p (e ),n(e ),pt (e ),nt (e )〉, where p (e ),n(e ),pt (e ),nt (e ) have the same meanings as in-

troduced in Section 2.2. An abstract entity profile f ∈ F is a triple 〈f ,p ( f ),n( f )〉. Given a concrete
metric I (e.g., Ochiai or Information Gain), a concrete suspiciousness measure (CSM) Ψ of a

program is a pair (Se , I ) defined over a set of concrete entity profiles Se ∈ 2E reversely ordered by
I (p (e ),n(e ), pt (e ), nt (e ))5 for each e ∈ Se . An abstract suspiciousness measure (ASM) Φ of a

program is a pair (Sf ,C) defined over a set of abstract entity profiles Sf ∈ 2F reversely ordered by

C (p ( f ),n( f )) for each f ∈ Sf where C is the abstract metric.

A profile is a statistical record of an entity collected from multiple runs of the program. A con-
crete profile of a tracked predicate e contains four values p (e ),n(e ),pt (e ), and nt (e ) that are fed
to metric I to obtain the suspiciousness value for e . An abstract profile of a tracked function f
contains two values p ( f ) and n( f ), representing the occurrences of f in passing and failing runs,
respectively. We do not track functions’ return values. Consequently, pt ( f ) and nt ( f ) are not
defined.

As shown in the motivating example, at the heart of our refinement-based technique is the
metric C . It takes as input two parameters p ( f ) and n( f ) and returns the suspiciousness value of
function f . A CSM is essentially a list of predicates ranked by their I values, while an ASM is a list
of functions ranked by their C values. Before describing how C is obtained in Section 4, we first
discuss here some important mathematical properties we want C to have.

Definition 3.3 (Abstraction Soundness). An ASM Φ = (Sf ,C ) is a sound abstraction of a CSM

Ψ=(Se ,I ) iff ∀e ∈ Se : ∃f ∈ Sf : (1) (e, f ) ∈ α ∧ (2) C (p ( f ),n( f ))≥ I (p (e ),n(e ),pt (e ),nt (e )).

The second property indicates thatC (p ( f ),n( f )) must be an upper bound of the suspiciousness
values for all predicates e inside f . Clearly, the definition of C plays a central role in the develop-
ment of a sound abstraction. Given an appropriately definedC , we can easily obtain a sound ASM
Φ by instrumenting all function entries and collecting function profiles (in the first phase). The
subsequent refinement phase is essentially a process of incrementally building the CSM Ψ. Our
hope is that with the guidance of Φ, we can find the top k predicates without constructing the
complete Ψ.

Lemma 3.4 (Upper Bound Guarantee). Let ASM Φ = (Sf ,C ) be a sound abstraction of CSM Ψ=

(Se , I ). Let ei = 〈e, . . .〉 and fi = 〈f , . . .〉 be the ith concrete and abstract entity profile in the (reversely

ordered) set Ψ and Φ, respectively. We have the following guarantee: ∀ index i ∈ [0, |Ψ|), j ∈ [0, |Φ|) :

I (ei ) ≥ C ( fj ) =⇒ ∀index k ≥ j : ∀index t ∈ [0, |Ψ|) : (et .e, fk . f ) ∈ α : t ≥ i .

5For certain metrics such as IG, only pt (e ) and nt (e ) are used.
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Proof. Step (1): I (ei ) ≥ C ( fj ) implies that, for any index k ≥ j, I (ei ) ≥ C ( fk ) due to C ( fj ) ≥
C ( fk ).

Step (2): Since ASM Φ = (Sf ,C ) is a sound abstraction of CSM Ψ = (Se , I ) and (et .e, fk . f ) ∈ α ,

based on Definition 3.3, we have C ( fk ) ≥ I (et ).
From Steps (1) and (2), we have I (ei ) ≥ I (et ), which indicates that et must have a larger index

(i.e., t ) than ei (i.e., i) in the CSM. �

Informally, if the suspiciousness value of a predicate e indexed i in the CSM (i.e., I (ei )6) is ≥ the

suspiciousness value of a function f indexed j in the ASM (i.e., C ( fj )), then as long as Φ is a sound
abstraction of Ψ, the suspiciousness value of any predicate e ′ in f or any function lower than f
in the ASM must be ≤ that of e . Therefore, e ′ must have a larger index (i.e., t ) than e (i.e., i) in the
CSM.

Definition 3.5 (Abstraction Refinement). Given a partially constructed CSM Ψ = (Se , I ) and an
abstraction Φ = (Sf ,C ), an abstraction refinement � produces another pair of CSM Ψ′ and ASM
Φ′ by (1) removing the top function f from Φ, (2) instrumenting all predicates e in f , (3) executing
the newly instrumented program, and (4) collecting a set of concrete entity profiles e and adding
them into Ψ.

A refinement shrinks an existing ASM by removing its top entry while growing an existing CSM
by adding new predicate profiles and re-sorting all contained profiles based on their I values. It
is important to note that, at any step during the refinement, the entities in Φ and Ψ are always
disjoint: For each function profile in Φ, its corresponding predicate profiles must not be in Ψ. In
other words, Φ soundly abstracts the complement of Ψ. The refinement process starts with a full Φ
and an empty Ψ and gradually removes abstract entries from Φ and adds concrete entries into Ψ.

Theorem 3.6 (Termination Quality Guarantee). Suppose a chain of i refinement steps results

in a partial CSM Ψ = (Se , I ) and a partial ASM Φ = (Sf ,C ). For a given integer k , if I (ek ) > C ( f0),
then I (ek ) is guaranteed to be greater than the I values of all predicates in the functions in Φ.

Proof. Based on Lemma 3.4, if I (ek ) > C ( f0), then for all such et that (et .e, fq . f ) ∈ α and q > 0,
we have t > k . In other words, the index of any predicate et in a function in Φ must be greater
than the index of ek (i.e., k) in Ψ. Therefore, I (ek ) is guaranteed to be greater than the I values of
all predicates in the functions in Φ. �

Suppose our goal is to find the top k predicates that are most indicative of a bug. This theorem
provides a guarantee that if the I value v of the kth predicate in the CSM is > the C value of the
first function profile in the ASM Φ, then v must be > the C value of any function profile in Φ.
Since the C value of a function is an upper bound of the I values of all predicates in the function,
the theorem further guarantees that none of the functions yet to be refined may contain a predicate
that might make the top-k list in the CSM.

4 ABSTRACT SUSPICIOUSNESS METRIC DESIGN

As we have seen, the abstract suspiciousness metric C plays a critical role in our debugging ap-
proach. This section discusses the design and computation of this metric.

6For simplicity of presentation, we use I (ei ) and C (fi ) instead of their full notations (with four and two parameters,

respectively).
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4.1 Properties and Design Goals

When processing profiles from a set of runs, C takes as input two parameters p ( f ) and n( f ), the
number of passing runs and failing runs that have executed function f . It returns the suspicious-
ness value of f and has to satisfy several key properties:

• Upper bound. As discussed in Section 3, requiring Cf ≥ Ie for all e inside f is a necessary
condition to guarantee the correctness of our debugging process.
• Tightness. C has to be a tight upper bound to effectively prune the predicate space. For

example, makingC always return∞ would turn our technique into an exhaustive approach.
The tighter bound C gives, the more efficient our debugging process is.
• Generality. C is expected to work for all types of predicates, including branch predicates,

return predicates, and scalar-pair predicates discussed in Section 2.1.

Achieving these goals is challenging, asC needs to be computed without profiling any predicates.
In the following, we first present our insights around two key design questions before we present
the algorithm of computing C .

What Is the Input Domain of Ie? We first discuss how to infer the input domains of Ie based on
function profiles. As discussed in Section 2, Ie takes in four input parameters: p (e ) and n(e ), which
denote the numbers of passing and failing runs that have observed predicate e , as well as pt (e ) and
nt (e ), which denote the numbers of passing and failing runs that have observed e to be true.

Answers to this question hinge upon the relationship between the number of runs x that have
observed a function f and the number of runs y that have observed a predicate e , among a given
set of runs. We only care about whether or not f or e has been observed, not the exact number of
times it has been observed in a run as discussed in Section 2. Consequently, y has to be less than
or equal to x when e is inside f —if a predicate is observed, its enclosing function must have been
observed. This holds for all types of predicates.

This simple observation allows us to infer the input domain of Ie based on the profile of f , when
e is in f . That is, when function f is observed in p ( f ) passing runs and n( f ) failing runs, the
numbers of passing and failing runs that observe e must be p (e ) ∈ [0,p ( f )] and n(e ) ∈ [0,n( f )],
respectively. The numbers of passing and failing runs in which e is observed to be true, respectively,
must be pt (e ) ∈ [0,p (e )] and nt (e ) ∈ [0,n(e )].

How to Compute the Upper Bound of Ie? Knowing the above relationship, ideally, we could
directly derive the mathematical formula of C from the mathematical formula of I , e.g., by com-
puting an equation modeling the area enclosed by the tangent lines of the I function. However,
since I is a complex function, this derivation requires significant mathematical development and
may yield large over-approximations at various points.

One might wonder if the upper bound can be computed by setting the parameters to their bound
values. The answer is no, because I is not a monotone function. Hence, using bound values as its
parameters does not guarantee to generate the maximum I value.

Here, we take a different and more practical approach. Given a function profile 〈f ,p ( f ),n( f )〉,
we can enumerate all valid input combinations for Ie , where e is in f , using the input-domain
relationship discussed above. We can then take the maximum of these I values as Cf . This
high-level idea allows us to compute Cf based on the function profiles collected in our first de-
bugging phase before any predicate is instrumented or monitored.

To illustrate, consider a simple example where a function f is executed in one passing run and
two failing runs (i.e., p ( f ) = 1,n( f ) = 2). e is a predicate inside the function f . Without profiling
e , we do not know e is observed in how many passing runs (i.e., p (e )) and how many failing runs
(i.e., n(e )). Fortunately, we know that e cannot be observed in a run unless f is executed in that
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run. Consequently, we can infer that e is observed in at most one passing run and two failing runs
(i.e., 0 ≤ p (e ) ≤ p ( f ) = 1, 0 ≤ n(e ) ≤ n( f ) = 2). Hence, we enumerate all possible combinations of
p (e ) and n(e ), namely, (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), and (1, 2), and compute an I value for each
of these pairs. Finally, the maximum of all these I values is used as the C value for function f .
Obviously, this value is an upper bound of the I values of all predicates e inside f . Moreover, this
upper bound is the lowest upper bound that can be obtained.

4.2 Our Algorithm

This subsection describes our algorithm to implement this idea. A naive algorithm would sepa-
rately computeCf for every function, which is extremely time-consuming for large software. Our
design is much more efficient.

Our algorithm aims to produce a table that maps (i , j) toC (i, j ), where 0 ≤ i ≤ P and 0 ≤ j ≤ N
with P and N being the total number of passing runs and failing runs. With this table, we can get
the C value for every function f through a simple table lookup using index (p ( f ),n( f )).

To efficiently produce this table, we leverage dynamic programming7 and an insight that the
computation of C (i, j ) can be largely simplified by leveraging that of C (i − 1, j ) and C (i, j − 1).
Algorithm 1 shows the details. Following the high-level idea discussed above, Algorithm 1 com-
putes C(i , j) by enumerating and getting the maximum of all such I (a, b, l , k) that 0 ≤ a ≤ i, 0 ≤
b ≤ j, 0 ≤ l ≤ a, and 0 ≤ k ≤ b. Line 10 shows the key optimization in our algorithm: To compute
C(i , j), we only need to take the maximum of already-computed C(i − 1, j), C(i , j − 1) and the to-
be-computed maxInLastTwoD(i , j). The auxiliary function maxInLastTwoD takes two parameters
i and j and computes the maximum value of all I (i , j, l , k) where 0 ≤ l ≤ i and 0 ≤ k ≤ j. This
whole algorithm has an O (P2N 2) time complexity.

The amount of time and space used by Algorithm 1 is reasonable even for large programs, thanks
to the benefits from dynamic programming. Moreover, in practice the number of test cases (i.e., P
andN ) are fixed and often limited to a maximum of hundreds or a few thousands. Furthermore, this
algorithm only incurs a one-time cost: Invoking it once would generate the whole metric-matrix
C (0..P , 0..N ). After that, theC metric for every function can be obtained by a constant-time matrix
look-up.

When to Run This Algorithm? Algorithm 1 can be performed without any knowledge of the
targeting software or function; the resulting C-table is valid for all types of software and func-
tions. Consequently, we can re-use the C-table from one debugging process to another and keep
expanding the table when facing larger numbers of passing (P ) or failing runs (N ).

In our debugging framework, after the abstract information collection phase, we will use the
profile of each function f to look up the C-table and obtain the suspiciousness value of f , and
then use that to conduct further refinement.

Theorem 4.1 (Lowest Upper Bound). For each abstract entity profile f = 〈f ,a,b〉, a lookupC(a,

b) in the table computed by Algorithm 1 returns the lowest upper bound of I (i, j, l ,k ) for all such

concrete entity profile e = 〈e, i, j, l ,k〉 that (e, f ) ∈ α .

Proof. This theorem can be proved by contradiction. Based on the wayC is computed in Algo-
rithm 1, C(a, b) must be equal to a particular I (i, j, l ,k ) where 0 ≤ i ≤ a, 0 ≤ j ≤ b, 0 ≤ l ≤ i , and
0 ≤ k ≤ j. If C(a, b) is not the lowest upper bound, then there must exist another upper bound
less than C(a, b) and the I (i, j, l ,k ) from which C(a, b) is obtained, contradicting its upper bound
property. �

7A natural and efficient way to compute a mathematical property over a large (e.g., multi-dimensional) domain.
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ALGORITHM 1: Computation of the abstract suspiciousness metric C .

Input: Metric I , the total numbers of passing and failing runs P and N obtained from the first phase

Output: C encoded as a table

// Base case

1 C (0, 0) ← I (0, 0, 0, 0)

2 for i ← 1 to P do

3 C (i, 0) ← max{maxInLastTwoD(i, 0),C (i − 1, 0)}
4 end

5 for i ← 1 to N do

6 C (0, i ) ← max{maxInLastTwoD(0, i ),C (0, i − 1)}
7 end

// Iterative computation

8 for i ← 1 to P do

9 for j ← 1 to N do

10 C (i, j ) ← max{maxInLastTwoD(i, j ),C (i − 1, j ),C (i, j − 1)}
11 end

12 end

13 Function maxInLastTwoD(i , j)

14 largest ← 0

15 for l ← 0 to i do

16 for k ← 0 to j do

17 largest ← max{largest, I (i, j, l ,k )}
18 end

19 end

20 return largest

The suspiciousness of a function being the lowest upper bound of the suspiciousness of its
contained predicates provides a basis for the early termination of the refinement process, yielding
debugging algorithms that are both precise and efficient.

It is important to note C is computed when the entire input space of I is considered. In practice,
many integer inputs we consider when computingC may not actually appear in a particular set of
predicate profiles. For these profiles, there may be a gap between the suspiciousness of a function
given by C and the maximum suspiciousness of predicates in the function computed from I .

5 APPLICATION 1: IN-HOUSE STATISTICAL DEBUGGING

We demonstrate the effectiveness of our abstraction-guided pruning technique in this section by
applying it to an in-house debugging scenario, particularly predicated bug signature mining [61],
which is discussed in Section 2.3. As revealed by Reference [36], the efficiency of fault localization
indeed affects the adoption by the practitioners. The original approach requires instrumenting
the entire program to produce execution profiles for mining, severely undermining its efficiency
and thus affecting its adoption in practice. Based on our pruning technique, we design and imple-
ment an efficient predicated bug signature mining approach that results in significant savings in
instrumentation effort and substantial speedup in the subsequent analysis process. We abbreviate
the original predicated bug signature mining [61] as MPS (Mining Predicated Bug Signatures),
whereas our approach as ARMPS (MPS with Abstraction Refinement).
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5.1 Design and Implementation

Given a buggy program and two groups (failing and passing) of test cases, the objective is to
efficiently mine the top-k bug signatures that are highly correlated to the bug as measured by
the DS values (shown as Equation (3) in Section 2.2). We here design and implement an efficient
predicated bug signature mining approach based on our abstraction refinement-based pruning

technique (ARMPS). As discussed in Section 3.1, ARMPS comprises two phases: the abstraction
phase followed by a two-pass refinement phase. Briefly, the workflow of ARMPS is as follows:

(1) Instrument function entries, run the instrumented program, and collect function profiles;
(2) ComputeC with the DS metric together with the numbers of passing and failing runs P and

N using Algorithm 1;
(3) Compute the abstract suspiciousness measure Φ (i.e., a list of functions reversely ordered by

their respective C values) using C on the collected function profiles;
(4) First, refine a few functions denoted by γ (e.g., 5%) from Φ to build the initial concrete sus-

piciousness measure Ψinit (i.e., a list of signatures reversely ordered by their respective DS
values) to obtain the top-kth DS value θ ;

(5) Second, refine all other functions from Φ whoseC ≥ θ to build the final concrete suspicious-
ness measure Ψf inal .

Algorithm 2 gives the pseudo code of ARMPS. At the abstraction phase, only function entries of
the subject program are instrumented (Line 1). This sparsely instrumented program is then run
against all the failing and passing test cases to collect the abstract profiles (Line 2). Each abstract
profile consists of a set of functions that are executed at least once during execution. Given the
suspiciousness metric DS and total numbers of failing and passing runs P and N , we compute the
abstract metricC according to Algorithm 1 (Line 3). Based onC , an abstract analysis is performed
on the abstract profiles to build the abstract suspiciousness measure Φ, i.e., a list of functions
reversely ordered by their respective C values (Line 4). In the following, this abstract measure Φ
will be utilized to guide the refinement.

The refinement phase has two passes, each of which performs predicate-level instrumentation
followed by bug signature mining. The first pass is called “boosting.” It aims to identify a threshold
that will be used as a lower bound of the ultimate top-kth DS value of bug signatures. Specifically,
we first refine a few functions—we select 5% of functions (i.e., γ = 5%) in our experiments—with
the highest C values in Φ (Line 5) by instrumenting all the predicates inside (Line 6). The instru-
mented program is executed over the test suite to acquire concrete profiles (Line 7). The profiles
are preprocessed to create the mining dataset (Line 8), which is fed into the bug signature miner
to build the initial concrete suspiciousness measure Ψinit (i.e., an initial list of top-k bug signa-
tures reversely ordered by their respective DS values) (Line 9). Note that Lines 6–9 indicate the
traditional procedure of predicated bug signature mining stated by Reference [61], making it pos-
sible for modular plug-in of new debugging algorithm. As θ indicates the top-kth DS value in
Ψinit , the top-kth DS value in the final Ψf inal must be equal to or greater than θ . As such, the
predicates within functions whose C value falls below θ can be safely exempted from refinement,
since they cannot contribute a bug signature whose DS value is equal to or greater than θ . The
pruning pass only refines the functions whose C values are no less than θ (Line 11). Lines 12–15
perform the bug signature mining as usual. Finally, the identical top-k bug signatures as mined by
Reference [61] are returned (Line 16). Note that, since we have obtained the concrete profiles cor-
responding to the predicates in boost during the first pass, we only need to instrument other pred-
icates in prospect−boost in the second pass to further reduce execution time and storage space for
profile collection (Line 12). However, we have to preprocess all the profiles (i.e., PP+BP ) to perform
inter-procedural signature mining (Line 14).
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ALGORITHM 2: Predicated Bug Signature Mining with Abstraction Refinement (ARMPS)

Input: buggy program G, test suite T , number of signatures mined k , percentage of functions refined

for boosting γ
Output: top k suspicious signatures Ψf inal

/* abstraction phase: coarse-grained instrumentation and analysis */

1 Instrument all function entries in the entire program G;

2 Run all the failing and passing tests in T to collect abstract profiles;

3 C ← compute the abstract suspiciousness metric using the DS metric;

4 Φ← build the abstract suspiciousness measure using C on the collected abstract profiles;

/* refinement phase: fine-grained instrumentation and analysis */

// first pass: boosting

5 boost ← RefineForBoosting(Φ, γ );

6 Instrument all predicates in boost ;

7 Run all the failing and passing tests in T to collect concrete profiles BP ;

8 BD ← Preprocess(BP );

9 Ψinit ← MineBugSignatures(BD, k);

10 θ ← the kth top DS value of signatures in Ψinit ;

// second pass: pruning

11 prospect ← RefineForPruning(Φ, θ );

12 Instrument all predicates in prospect−boost ;
13 Run all the failing and passing tests in T to collect concrete profiles PP ;

14 PD ← Preprocess(PP+BP );

15 Ψf inal ← MineBugSignatures(PD, k);

16 return Ψf inal ;

5.2 Experimental Evaluation

5.2.1 Benchmarks. We applied our technique to both C and Java programs. We adopted two
repositories, i.e., SIR8 [21] and Defects4J9 [35], as our benchmark candidates, which are the well-
known and widely used benchmarks containing both buggy programs and test suites generated
both manually and automatically. To select benchmarks from the SIR repository, we first found all
programs that have at least 5,000 lines of code and then removed those whose test suites contain
less than 100 test cases. This left us 12 programs, among which, one could not compile and two did
not have failing runs. Removing those three resulted in the selection of 9 programs. For Defects4J,
we included all the subject programs with all their versions in it. Table 2 lists the subject programs,
the corresponding repositories, the number of faulty versions, lines of code (i.e., LoC), the number
of functions, the number of instrumentation predicates, the size of test suite used, and the language.
Each program has multiple faulty versions. Each faulty version contains a distinct bug, which is
either a real bug or manually injected.

The three types of predicates introduced in Section 2.1 (i.e., branches, returns, and scalar pairs)
are considered in our evaluation. To instrument C programs, we employed the sampler-cc tool
developed by Liblit et al. [37]. For Java, we implemented our own instrumenter named JSampler10

8Available at: https://sir.csc.ncsu.edu/.
9The specific version of Defects4J we chose is 1.5, available at: https://github.com/rjust/defects4j/releases/tag/v1.5.0.
10https://github.com/z-zhiqiang/JSampler.
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Table 2. Characteristics of the Chosen Subject Programs

Subject Repository Faulty versions LoC Functions Predicates Tests Language

space SIR 34 6,199 136 25,449 1,248 C
sed SIR 4 14,427 112 101,233 363 C
gzip SIR 13 5,680 91 179,962 213 C
grep SIR 5 10,068 129 228,498 809 C
bash SIR 6 59,846 1,458 928,566 300 C

nanoxml SIR 22 7,646 552 5,128 236 Java
siena SIR 3 6,035 249 19,130 567 Java
ant SIR 4 80,500 8,863 203,576 149 Java
derby SIR 3 503,833 28,887 1,389,976 258 Java

lang Defects4J 65 18,487 2,220 84,378 1,823 Java
chart Defects4J 26 85,074 7,489 558,336 1,815 Java
math Defects4J 106 50,651 4,819 845,426 216 Java
time Defects4J 27 27,259 3,881 93,138 3,917 Java
mockito Defects4J 38 8,901 1,317 9,218 1,141 Java
closure Defects4J 176 83,721 9,467 199,186 3,460 Java

based on the Soot framework.11 The machine on which the experiments were run has an Intel
Xeon 3.60 GHz CPU and 32 GB main memory, running 64-bit Fedora 19.

Since the goal of this work is not to increase the precision of any debugging method, but rather
to improve performance with quality guarantees, our evaluation focuses on understanding various
performance factors in different steps of MPS [61], including instrumentation, profile collection,
preprocessing, and mining. Since each instrumentation is only performed once and then the in-
strumented program can be run forever, its cost is not significant compared with the other steps
(i.e., profile collection, preprocessing, and mining). In the following, we mainly discuss the perfor-
mance improvement during the other three steps. Specifically, we measure the improvement of our
approach (ARMPS) in reducing execution time and storage space during profile collection in Sec-
tion 5.2.2. In Section 5.2.3, we compare with MPS [61] in terms of time and memory consumption
for preprocessing and signature mining.

5.2.2 Profile Collection. In this step, we run the failing and passing test cases to collect profiles.
This corresponds to Lines 2, 7, and 13 in Algorithm 2. Here, we consider two aspects of performance
cost, namely, the execution time for running the instrumented programs and the disk storage space
used for profiles.

As both performance costs are to some extent dependent on the number of predicates instru-
mented, we first present the percentage of predicates instrumented by our approach. Figure 6
depicts the percentage of predicates instrumented totally during both boosting and pruning to
obtain the top k bug signatures for each subject program. Note that as reported by an empirical
study [36], over 70% of developers only check top-5 ranked elements; nearly 98% of respondents
agreed that inspecting more than 10 program elements is beyond their acceptability level. Based
on this, we set k as 1, 5, and 10 to assess how well our technique performs. As can be seen,
compared with MPS where all the predicates (100%) in the whole program are instrumented,
ARMPS manages to prune away considerable predicates. Overall, more than half of the predicates
are exempted from instrumentation compared with MPS. Note that ARMPS performs quite well
especially on large programs. For subjects ant, derby, lang, chart, math, time, and closure, even

11http://sable.github.io/soot/.
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Fig. 6. Percentage and detailed number of predicates instrumented compared with 100% full instrumentation

in MPS [61]: The y-axis indicates the percentage, while the number of predicates with one decimal are shown

on top of each bar.

more than 90% of predicates are safely pruned away. We believe that the larger the program, the
higher percentage of predicates our approach can prune away. Moreover, for different k values,
the percentage varies. The smaller k is, the more predicates are pruned. This is reasonable, since
a smaller k value results in a larger threshold for pruning.

We have discussed the effectiveness of our approach in pruning unnecessary predicates in Fig-
ure 6. This provides empirical evidence that ARMPS incurs relatively less time in executing instru-
mented programs and also utilizes less disk storage space for profiles than MPS. We further validate
this hypothesis by directly measuring the execution time and the storage space for profiles.

Figure 7 illustrates the percentage of execution time (Figure 7(a)) and disk space (Figure 7(b))
used for profile collection of ARMPS compared with the baseline (100%) in MPS [61]. The above
costs of ARMPS involve the abstraction phase and two refinement (boosting and pruning) passes.
As can be seen, on average, ARMPS takes about 63.8% of the execution time and only about 29.9%
of disk space that MPS takes. For larger programs, such as chart and lang, around 62.3% and 86.9%
are saved in terms of execution time and disk space, respectively. Note that although our approach
ARMPS needs to run the subjects three times (one at abstract phase and two at refinement phase),
the total execution time of ARMPS is still much less than that of MPS. This is because the full
instrumentation of MPS could significantly slow down the original execution by several times or
even more (refer to Table 4 for the overheads). The only exception is mockito, whose execution time
is larger than that of MPS. After a deeper investigation into this subject, we found that almost all the
functions in mockito contain only one instrumented site. As a result, the time cost of abstract phase
(where only functions are instrumented) is nearly equal to the cost of MPS, which instruments
all the predicates. Since our two-phase approach needs additional runs for refinement, the total
execution time is larger than that of MPS.

Note that when accessing the execution time, we run each instrumented program four times,
ignore the first run, and compute the average execution time of the other three runs, thus ensuring
the credible and stable results.

5.2.3 Preprocessing & Mining. Having fine-grained profiles, we perform preprocessing to con-
struct the mining dataset (Lines 8 and 14) and then mine bug signatures (Lines 9 and 15). Here, we
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Fig. 7. Percentage and detailed amount of execution time (in milliseconds) and disk space (in bytes) used

for profile collection compared with MPS [61] (100% as the baseline): (a) execution time and (b) disk space.

The y-axis indicates the percentage, while the exact execution time and amount of disk space used with one

decimal are shown on top of each bar in (a) and (b), respectively.

compare ARMPS with MPS in terms of time cost and memory consumption for preprocessing and
mining. Note that in our experiment, both ARMPS and MPS perform the same procedure as stated
in Section 2.3 under the same setting.

Figure 8 plots the percentage of time (Figure 8(a)) and peak memory (Figure 8(b)) used for pre-
processing compared against that of MPS as the base (100%). Same as the above, we show the
results for different k (i.e., 1, 5, and 10). For preprocessing, ARMPS only takes at most around
32.7% of time; and the peak memory consumed is no more than 44.9% of that MPS takes for all the
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Fig. 8. Percentage and detailed amount of time (in milliseconds) and memory consumption (in bytes) for

preprocessing compared with the baseline (100%) in MPS [61]: (a) time and (b) memory consumption. The

y-axis indicates the percentage, while the exact execution time and amount of memory consumed with one

decimal are shown on top of each bar in (a) and (b), respectively.

subjects when k is 1. On average, even when k is 10, the savings in time cost and peak memory
consumption are also larger than 58.8% and 49.3%, respectively.

As for mining, the percentages of time cost and memory usage are demonstrated as Figure 9(a)
and 9(b), respectively. ARMPS can save about 14.6% of peak memory consumption in general. In
terms of mining time, ARMPS shows better performance on expensive mining workloads, such
as gzip and grep, whose mining time is larger than 100 seconds. For space, bash, time, and closure,
whose mining time is greater than 10 seconds, ARMPS also reduces the mining cost to some extent.
For other subjects including sed, nanoxml, siena, ant, derby, lang, chart, and mockito, the total
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Fig. 9. Percentage and detailed amount of time (in milliseconds) and memory consumption (in bytes) for

mining compared with the baseline (100%) in MPS [61]: (a) time and (b) memory consumption. The y-axis

indicates the percentage, while the exact execution time and amount of memory consumed with one decimal

are shown on top of each bar in (a) and (b), respectively.

mining time of ARMPS is larger than that of MPS. This is because their workloads are small, the
total time is thus dominated by the multiple invocations of mining process in ARMPS.

Generally, the savings in both time and memory consumption for mining are less than that for
preprocessing. The underlying reason is that a certain number of predicates have been pruned
through the filtering strategy during preprocessing discussed in Section 2.3, which weakens the
pruning effectiveness of our technique. This is especially the case for subject math, where the
preprocessing filters nearly all the needed predicates. Since our approach ARMPS needs one more
mining step, the time cost is around 1.3× as large as that of the baseline.
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ALGORITHM 3: Cooperative Bug Isolation with Abstraction Refinement (ARBI)

Input: buggy program G, number of predicates returned k
Output: top k suspicious predicates Pk

/* abstraction phase: coarse-grained instrumentation and analysis */

1 Instrument all function entries in the entire program G;

2 Deploy the instrumented program;

3 Collect sufficient function profiles;

4 C ← compute the abstract suspiciousness metric using the Ochiai metric;

5 Φ← build the abstract suspiciousness measure using C on the collected abstract profiles;

/* refinement phase: fine-grained instrumentation and analysis */

6 Ψ ← ∅;
7 θ ← 0;

8 while Φ � ∅ do

9 m ← function with the highest C value from Φ;

10 Φ← Φ −m;

11 if C (m) < θ then break;

12 Instrument all predicates in functionm;

13 Re-deploy the instrumented program;

14 Collect sufficient fine-grained profiles;

15 Update the concrete suspiciousness measure Ψ;

16 θ ← the top kth Ochiai value of predicate in Ψ;

17 end

18 return Ψ;

6 APPLICATION 2: PRODUCTION-RUN STATISTICAL DEBUGGING

In this section, we illustrate the employment of our technique to production-run debugging, in
particular, cooperative bug isolation (CBI) for field failures [38]. Different from in-house de-
bugging where developers run the instrumented program to obtain execution data, CBI directly
gathers execution profiles from end-users running the deployed instrumented program. Therefore,
besides considering the scale of execution data collected and analyzed by developers, we have to
consider another important performance aspect—user’s overhead for running the instrumented
programs. To this end, we conduct an iterative refinement phase for production-run debugging so
only one function is refined at each iteration.

6.1 Design and Implementation

Based on the abstraction refinement-based technique, we propose a cooperative bug isolation

approach with abstraction refinement (ARBI). Briefly, the workflow of ARBI is as follows:

(1) Instrument function entries, deploy the instrumented program, and collect function profiles;
(2) ComputeC with the Ochiai metric together with the numbers of passing and failing runs P

and N using Algorithm 1;
(3) Compute the abstract suspiciousness measure Φ using C on the collected function profiles;
(4) Iteratively refine functions from Φ to build the concrete suspiciousness measure Ψ until

termination.

Algorithm 3 depicts the pseudo code of ARBI, which consists of an abstraction phase followed
by an iterative refinement phase. At the abstraction phase, a function-level instrumentation is
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performed to instrument all the function entries of the entire program, and then the instrumented
program is deployed in the field (Lines 1–2). We collect sufficient execution data from a large
number of end-users running the instrumented program (Line 3). Given the suspiciousness metric
Ochiai and total numbers of failing and passing runs collected P and N , we compute the abstract
metric C according to Algorithm 1 (Line 4). Having C , we analyze the collected execution data
(i.e., abstract profiles) and eventually obtain the abstract suspiciousness measure Φ, i.e., a list of
functions reversely ordered by their respective C values (Line 5). This list provides the abstract
execution information that will be utilized to guide the iterative refinement.

At each iteration of refinement phase, we instrument at most one function at fine granularity.
We select the function m with the highest C value in Φ (Line 9). Based on the feedback θ , which
is the top-kth Ochiai value in Ψ explored so far, we check the necessity of refining function m by
comparing itsC value against θ . IfC (m) < θ , then we can safely terminate the refinement, since all
the remaining functions in Φ do not contain any predicate whose Ochiai value can be greater than
or equal to θ . Otherwise, we instrument all predicates within m according to the instrumentation
scheme of CBI discussed in Section 2.1 and redeploy the instrumented program (Lines 12–13). We
wait for sufficient execution data to be collected (Line 14). We next compute the Ochiai value of
predicates inm and update the top-k predicates Ψ as well as the top kth Ochiai value θ (Lines 15–
16). If the current list of functions is not empty, then we proceed to the next iteration. It is worth
noticing that each function in the list can be examined at most once as it is removed from the
list after it is considered (Line 10). The following gives more details about the re-deployment of
instrumented program (Line 13) and profile collection (Lines 3 and 14):

Re-deployment. No user involvement is needed in any of these steps: Program (re-)
instrumentation and (re-)deployment is completely automated. To achieve efficiency in deploy-
ment, we do not re-instrument or re-deploy the whole application in each iteration. We only re-
compile the changed component, which is essentially one function selected in each iteration. The
component recompiled and redeployed at each iteration is often small in size (demonstrated em-
pirically in Table 5).

For a C program, the changed component (i.e., one source file and/or header file) is re-compiled
as a patch to a shared library; while for Java, a new class file is generated. Version update is done
by utilizing a function wrapping mechanism—we wrap a function in a special way so calls to this
function can be intercepted and rerouted to a specific instrumented version of the function in the
library.

Note that re-deployment could be a problem for certain systems that consider dynamic instru-
mentation as a security risk. For now, we restart all re-instrumented programs after re-deployment.
Dynamic software update (DSU) techniques [46, 60] can be employed in the future to avoid re-
starting the program.

Profiling Sufficiency. Like all statistical approaches, statistical debugging relies on a large
amount of data to ensure the stability of results. In other words, given a sufficiently large number
of execution profiles, the same results (e.g., the same ranking of functions and predictors) can be
obtained even if the individual profiles under analysis are different. In our implementation, we
need sufficient profiles from both the abstraction phase (Line 3) and each refinement step in the
iterative phase (Line 14).

To achieve the goal, we apply an iterative, fixed point-based profile collection strategy, shown in
Figure 10. Specifically, we start off by collecting a small number of profiles, on which our analysis is
run to generate debugging results. Collection of additional profiles depends on whether the results
are stable enough. The arrival of new profiles triggers the re-analysis of all (old and new) profiles,
and the process is repeated until a fixed point is reached—no difference can be found in the results
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Fig. 10. Profile collection strategy.

(i.e., the ranking of functions and predicates) generated in the last N iterations (e.g., N = 3 is used
in our experiments).

Distributed Environment. We have created an additional distributed program for our Java-based
implementation that runs on a master and a set of slave nodes. The master program simulates the
developer who performs the debugging while slave programs simulate users that run the instru-
mented program. The master instruments the program in each iteration and sends the recompiled
class files to the slaves. The instrumentation code records traces at each slave and sends them
back to the master over the network. The master then analyzes them and performs refinement.
The master-slave communication is done over the socket. Having a distributed implementation
enables us to measure performance factors such as profile sizes and network traffic, which have
never been evaluated in existing statistical debugging techniques.

6.2 Experimental Evaluation

We adopted the same subject programs as that used in Section 5, whose details are shown as Table 2.
Similarly, the three types of predicates introduced in Section 2.1 are taken into consideration. Same
as Section 5.2, our evaluation focuses on understanding various performance factors, including, for
example, instrumentation effort, user-side runtime overhead, and network traffic and latency.

To have a thorough assessment of these factors, we have designed two sets of experiments, con-
ducted in two different environments. First, we experimented with both our C and Java implemen-
tations on a single commodity desktop. This set of experiments focuses on evaluating the instru-
mentation effort and the user-side runtime overhead incurred by instrumentation code. Second,
we ran our distributed implementation on a cluster that simulates real-world usage of statistical
debugging of Java programs in SIR repository. The goal is to understand important performance
factors such as network traffic and latency; these factors are impossible to measure on a single
machine.

6.2.1 Results on Single PC. All the experiments done in this subsection were run on a machine
that has an Intel Core i5 3.30 GHz CPU and 16 GB main memory, running 64-bit Ubuntu 16.04.
Through these experiments, we would like to answer the following four research questions:

• Q1: Compared to the traditional CBI approach where all predicates are instrumented and
tracked, how many predicates does our abstraction refinement-based bug isolation

(ARBI) approach need to instrument and track?
• Q2: How well does our approach perform for different types of predicates?
• Q3: What is the user-side overhead of our approach? How does it compare to the overhead

of CBI, with and without sampling [38]?
• Q4: How does ARBI compare to adaptive bug isolation (ABI) [10]?

Q1: Predicates Instrumented. We used the traditional CBI as the baseline (that instruments
all predicates) and ran it with the entire test suite for each program. For our technique, we
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Fig. 11. Percentage and detailed number of predicates instrumented compared with 100% full instrumenta-

tion in CBI [38]. The y-axis indicates the percentage, while the number of predicates with one decimal are

shown on top of each bar.

first obtained abstract suspiciousness information and then performed iterative refinements by
running the same test suite for each iteration until termination. During the process, we measured
the percentage of predicates instrumented to obtain the same top k predictors. We assume the
test suite is large enough with sufficient failing test cases to make both CBI and ARBI reach the
fixed points (i.e., statistically meaningful results).

Figure 11 shows the percentages of predicates instrumented by our approach to find the top k
predictors for each program (averaged across all faulty versions), with k being 1, 5, and 10. Note
that the baseline always instruments 100% of predicates. Our approach yields an overall 77.6%
reduction in the number of predicates instrumented, without requiring any manual effort. We
observe that our approach performs better for larger programs, especially for Defects4J subjects.
In particular, for the subjects including lang, chart, math, time, and mockito, more than 90% of
predicates were pruned away.

Q2: Effectiveness on Different Predicate Types. We ran ARBI over the entire test suite by
instrumenting one of the three types of predicates (branches, returns, scalar-pairs) at each time. We
compared the numbers of refinement steps needed by each type of predicate to reach termination.

Table 3 shows, for each program, the average number of iterations required (Column “Iter”)
to find the top five predicates and the average percentage of predicates instrumented (“Pred(%)”)
across multiple faulty versions of the program.

Clearly, our approach can effectively prune the predicate space for all the three types. Never-
theless, the effectiveness of our approach for different types of predicates does not differ much.
In some large programs, such as ant and derby, the number of iterations needed for scalar-pair
predicates is much smaller than that for the other types. This is potentially because scalar-pair
predicates are much more dense than the other types of predicates. If such a predicate is highly
correlated with a bug, then it can quickly distinguish itself by gaining high suspiciousness.

Q3: User-side Overhead. To answer this question, we compared the running time of each pro-
gram instrumented under ARBI and under CBI with three different sampling rates: 1/1, 1/100, and
1/10, 000; 1/1 means no sampling.
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Table 3. Average Numbers of Iterations Needed for Each Type of Predicate to Find the Top Five Predicates,

as Well as Average Percentages of Predicates Instrumented during the Process

Branch Return Scalar-pair

Subject Iter Pred(%) Iter Pred(%) Iter Pred(%)

space 80.06 69.05 58.35 70.22 58.09 45.54
sed 50.75 67.72 40.00 62.84 37.25 60.49
gzip 32.69 47.20 17.23 36.75 24.54 32.24
grep 40.80 52.55 17.60 39.47 18.60 36.03
bash 239.00 27.96 225.67 23.38 238.17 31.38

nanoxml 49.09 49.23 36.18 51.33 12.95 61.16
siena 29.00 24.22 16.00 14.73 25.00 35.70
ant 490.75 21.87 385.75 20.63 190.75 12.30
derby 4,425.33 41.45 1,890.67 19.66 1,436.67 21.43

lang 6.60 0.98 5.74 1.33 4.98 1.31
chart 45.64 1.75 24.52 1.18 17.32 0.69
math 18.74 1.39 16.16 1.12 17.74 1.37
time 65.22 8.26 63.65 4.59 42.70 8.44
mockito 62.89 18.50 45.57 14.78 23.54 13.23
closure 341.98 10.58 282.53 9.43 127.45 7.34

GeoMean – 29.51 – 24.76 – 24.58

Recall that our ARBI is iteration-based and each iteration instruments predicates in only one
function. In practice, the program instrumented in different iterations would likely be executed
at different user machines, and thus each user only needs to pay the overhead of heavy predicate
instrumentation in one function. To assess this overhead, we measured the average execution time
of the instrumented program across iterations (phase 2), as well as the time spent on phase 1 for
executing the program with only function entries instrumented.

To precisely measure running time, we ran each faulty version of each program four times and
took the average of the execution times of the last three runs. Our results are shown in Table 4.
The overhead is measured as the ratio between the execution time of the instrumented run and
original run without any instrumentation. Phase 1 and phase 2 under “ARBI” report, respectively,
the overhead of the function-entry instrumentation in phase 1 and the average overhead of the
predicate instrumentation in phase 2 across iterations. The numbers reported in this table may
look different from those reported in References [38] and [59] for several common programs used,
because we considered three types of predicates in our evaluation, while References [38] and [59]
evaluated performance only with branch predicates instrumented.

Overall, our iterative refinement (Column “Phase 2”) suffers a much lower overhead than sam-
pling even with the lowest 1/10,000 rate. This is especially the case for C programs, because C
programs usually have a relatively smaller number of functions than Java programs, and thus
the number of predicates within each function in C is often much larger than that of Java, as
shown as Table 2. For Java programs such as derby, lang, and math, the overhead of Phase 1 is
higher than that of Phase 2, but still lower than that of CBI with 1/10,000 sampling rate. However,
for other subjects such as nanoxml, siena, mockito, and closure, the overhead of Phase 1 is even
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Table 4. User-side Slowdown in Times (×)

CBI ARBI

Subject 1/1 1/100 1/10, 000 Phase 1 Phase 2

space 1.78 1.76 1.69 1.13 1.07
sed 4.89 3.76 3.53 1.22 1.43
gzip 3.56 2.49 2.33 1.05 1.05
grep 11.82 8.66 7.92 1.14 1.31
bash 1.31 1.28 1.25 1.01 1.01

nanoxml 1.63 1.45 1.43 2.23 1.21
siena 1.02 1.26 1.10 1.41 1.001
ant 6.06 1.28 0.69 1.03 1.004
derby 5.73 2.09 1.60 1.13 1.03

lang 130.12 7.78 5.58 4.69 1.44
chart 184.05 19.84 16.55 27.99 1.19
math 756.20 79.47 33.39 30.33 11.03
time 140.21 15.08 11.23 28.48 1.28
mockito 5.80 5.48 5.37 8.65 1.23
closure 5.66 3.64 3.41 7.69 1.19

higher than that of fully instrumented CBI with 1/1 sampling rate. This is because there exist a
number of “empty” methods in which no branch/return/scalar-pair predicate resides.

Q4: Quality Comparison with ABI. ABI [10] prunes the predicate space using heuristics. In Ref-
erence [10], the authors proposed two ABI analyses: a forward analysis that traverses forward the
control dependence graph (CDG) from the main entry of the program and a backward analysis
that traverses backward the CDG from the buggy point. At every control branch, the suspicious-
ness of the related branch predicates is used to determine the path to explore. Both approaches may
likely run very long if wrong guidance is given by the heuristics. Hence, ABI requires the developer
to determine when to terminate, making it difficult for us to come up with a fair comparison with
ARBI. To answer question Q4, we design an experiment that compares the Importance12 value of
the top predicate found between ABI and ARBI as their predicate instrumentation progresses. We
adopt Importance as the metric during the comparison, since it is the default metric used by ABI.

Figure 12 plots three curves for the program space, one for ARBI and two for ABI. Each curve
represents how the Importance value of the top predicate changes as more iterations are exe-
cuted and more predicates get instrumented. For ABI, we consider two heuristics, T-Test and
Importance, as they are the top-performing heuristics according to Reference [10]. We ran the
ABI forward analysis with T-Test and its backward analysis with Importance. These heuristics
determine which control flow path to explore at each branching point.

This figure clearly shows that ARBI can quickly reach a much higher Importance value (beyond
0.8), while the two ABI approaches constantly stay below 0.6. Since heuristics do not provide

12Importance is a statistical metric that takes into account the sensitivity (meaning how much the entity accounts for

failing runs) and specificity (meaning how less the entity is correlated to passing runs) for a given predicate. Please refer

to Reference [38] for details.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 36. Pub. date: March 2023.



36:30 Z. Zuo et al.

Fig. 12. Top Importance value comparisons for program space between ARBI and two state-of-art ABI ap-

proaches. The forward analysis uses T-Test as the heuristic, and the backward analysis uses Importance as

the heuristic.

guarantees, they may likely give wrong guidance, making an ABI analysis choose to explore paths
that have nothing to do with the bug.

6.2.2 Results on Distributed Environment. Our distributed environment is a local 12-node clus-
ter, each node with two Intel Xeon E5 2.60 GHz CPUs and 32 GB RAM, running CentOS 6.6; nodes
are connected by an InfiniBand network. We explore the following question:

• Q5: How much data transferred over the network can be saved by ARBI compared to CBI,
and how much is the network latency?

Different from the experiments on a single PC where both CBI and ARBI ran the entire test suite
for each benchmark, here, we employed the fixed-point-based strategy as discussed in Section 6.1—
we kept feeding randomly selected test cases to the instrumented program in each iteration until
their results became stable. This is because the goal of this set of experiments is to simulate a
real-world usage scenario in which tests are run at many different users and no profiles collected
are exactly the same. A technique that can quickly reach the fixed point needs to collect less
profiles and thus has lower communication overhead and debugging latency. Since we would like
to compare the size of data transferred over the network before reaching the fixed points between
different approaches, running the whole test suite in each iteration would defeat this purpose.

To answer Q5, we measured the total size of data transferred over the network. We would also
like to understand the latency of ABI. However, since ABI cannot terminate automatically, manual
inspection is needed in every iteration, making it incomparable with CBI and ARBI, which are
completely automated. Work from Reference [10] evaluates ABI using known bugs as “oracles.”
While we can also use oracles, we decided not to in the experiments, because oracles do not exist
in real settings and yet the goal of this experiment is to understand ARBI’s real-world impact.

Q5: Network Traffic and Latency. Table 5 compares the numbers of profiles (runs) needed and
the total sizes of data transferred over the network for each Java program for CBI under the 1/100
sampling rate and ARBI. 1/100 was used to sample predicates, because much existing work [38, 59]
has reported that this rate achieves a balance between the number of profiles needed (i.e., latency)
and the user-side overhead. Column Trace reports the numbers and total sizes of profiles collected
(i.e., “upstream” data that flows from slaves to the master), while Column Binary reports the size of
“downstream” data flowing from the master to slaves. The upstream and downstream data consist
primarily of traces and recompiled class files, respectively.

Compared to CBI, ARBI requires 40.3% less profiles (runs). When taking into account the size of
profiles, our savings become huge—the amount of data transferred over the network by ARBI is on
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Table 5. Data Transferred over the Network for CBI under the 1/100 Sampling Rate and

ARBI; Reduction Reports ARBI’s Reduction in the Total Data Size (i.e., Trace + Binary)

Trace (#/MB) Binary (MB)

CBI ARBI CBI ARBI Reduction

Subject Num. Size Num. Size Size Size Total Size

nanoxml 5,640 32.5 2,520 0.8 0.3 0.4 96.3%
siena 13,602 321.3 5,773 1.9 0.3 0.4 99.3%
ant 12,516 3,144.7 10,782 5.6 6.2 6.1 99.6%
derby 9,288 15,350.4 6,078 12.1 53.2 43.9 99.6%

average 1.3% of that by CBI. This is because CBI instruments all predicates, while ARBI instruments
only predicates in one function at a time. Hence, a profile collected by ARBI is orders-of-magnitude
smaller than that collected by CBI. Note that we can configure ARBI to produce more amount of
data per profile in exchange of fewer profiles (runs) by refining more than one function in one run,
as discussed in Section 7.

We did not measure the network latency, because it would vary a lot depending on network
types and configurations. We believe ARBI will have much smaller network latency than CBI in
practical settings, where users and the developers are in different networks.

6.2.3 Threats to Validity. Threats to external validity arise when the results of the experiment
are unable to be generalized to other situations. In this experiment, we evaluated the performance
benefit of using our two-phase statistical debugging approach on simulated environments, and
thus we are unable to definitively state that our findings will hold for programs in general. For
example, the single machine environment is not where the technique is intended to be used. While
the distributed environment is based on multiple machines, it uses a very fast network, which a
real-world deployment usually does not have.

However, we are confident that these results are indicative of the real-world impacts of our ap-
proach. First, we only used the single machine to evaluate how many predicates get instrumented
and the user-side instrumentation overhead. Our results should not depend on the execution en-
vironment and thus would not change much when our approach is used in a real setting. Second,
although the distributed environment uses a fast network, we reported both the total number
and the total size of traces needed to complete the debugging process. These numbers would not
change in a real setting. In a slower network, much more significant latency reduction should be
expected, as communication and data transfer is often a bottleneck.

Another potential concern is the limited number of tests used to simulate real user inputs. The
statistical soundness of a debugging technique relies on the assumption that there are sufficient
failure and success runs collected from users, and they achieve sufficient code coverage. While our
test suites are reasonably large and they were generated to cover different behaviors of the pro-
gram, we cannot guarantee that they are sufficient. Hence, the fixed points reached in our iterative
process may potentially be “local” fixed points and thus the correlation between our function/pred-
icate ranking and their true suspiciousness may be spurious.

However, we are reasonably confident that our fixed points reflect truly stable results, because
our validation that runs each debugging task for each program 100 times shows that more than 80
times ARBI and CBI produced the exact same top predictors. For the remaining times, the predic-
tors reported were slightly different but still had large overlaps.

Threats to construct validity arise when the metrics used for evaluation do not accurately cap-
ture the concepts that they are meant to evaluate. Our experiments measured the costs involved
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in running instrumented programs and performing the debugging process in terms of computa-
tional time and trace numbers/sizes. Although our results give an indication of the degree of such
costs, our implementation can be greatly optimized in both regards. For example, our tracing in-
formation is verbose and our implementation is not optimized. However, this limitation does not
affect the overall result, as this same implementation was used for both treatment techniques; i.e.,
the direction and magnitude of the difference between the results should not significantly change
when these factors are optimized.

7 DISCUSSION

This section discusses several important issues that concern the soundness and practicality of the
proposed technique.

7.1 Statistical Soundness

It is important to understand whether and under what condition the mathematical guarantees of
our debugging process hold. In theory, for the abstract suspiciousness to be a sound abstraction
of the concrete suspiciousness, the coarse-grained phase and each refinement must execute on
exactly the same set of test cases. Therefore, in an in-house debugging scenario (Section 5) for a
deterministic system, our approach is 100% mathematically sound.

However, in the cooperative debugging scenario where test cases executed at different phases
may be different, our approach cannot achieve mathematical soundness. To mitigate this prob-
lem, our approach currently relies on a large number of profiles to ensure the stability of results,
like many other statistical approaches, as discussed in Section 6.1. That is, we assume that, with
sufficient profiles, the Ochiai values and hence the ranking among functions and predicates will
become stable. This assumption matches with our empirical results—the diagnosis results from
our approach are valid in a random distributed setting (Section 6.2.2).

A promising direction worth exploring in the future is to turn the mathematical properties stated
in Section 3.2 into statistical properties. For example, we can incorporate confidence intervals in our
metric design and turn suspiciousness scores into random variables. In this way, suspiciousness
comparisons (e.g., whether the I value of a predicate is greater than aC value of a function) become
hypothesis tests and their results carry statistical meanings.

7.2 Multi-level Abstractions

In this article, we only consider two levels of instrumentation in a program. However, our tech-
nique is not restricted to these two particular levels (i.e., function-level and predicate-level) and
can be easily extended to consider other types of program entities, such as basic blocks, classes,
and components.

For example, if a program has a very large code base and a great number of functions, then the
cost and overhead at function-level instrumentation may be too high, e.g., the subjects in Defects4J
whose overheads are shown in Table 4. In this case, we may consider class as a new level of ab-
straction. We exploit the class-level information to prune away unnecessary instrumentation of
functions at the first place. Only a portion of functions in the whole program are thus instrumented
at the function-level.

As another example, if a program has large functions (e.g., big C programs without a modular
design), then the execution information of this function may not be a sufficiently precise approx-
imation to the information of enclosed predicates. Moreover, the user-side overhead for running
even one function with instrumented predicates may not be acceptable. In this case, we can add
basic blocks as a new abstraction layer to not only improve the pruning effectiveness but also re-
duce the overhead. Before predicate instrumentation, we first examine and prune basic blocks. The
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refinement process has a nested structure: the refinement of basic blocks would be nested within
the refinement of functions. The algorithm for a general n-level abstraction refinement can be eas-
ily derived by recursively invoking the current algorithm that refines on a two-level abstraction
hierarchy.

7.3 Multi-version Deployment & Multi-function Instrumentation

For production-run debugging (discussed in Section 6), our technique as an iterative approach
needs to run the multi-iteration refinement process. Like all sampling-based debugging or itera-
tive debugging techniques [6, 10, 29, 37], our technique reduces the user-side overhead of running
a heavily instrumented program, but increases the latency of collecting debugging information.
This tradeoff is widely considered to be worthwhile by previous work, considering the stringent
user-side overhead requirement. Since there are a large number of end-users, we can simulta-
neously deploy programs with different instrumentations to different users for execution. As a
result, the iterative process can be “parallelized,” thereby reducing the waiting time for profiles.
Specifically, we can remove top n functions from Φ at a time, refine them to obtain n versions
of instrumented programs—each version with one function refined—and deploy them to different
user sites. Consequently, developers can quickly collect execution profiles.

The number of functions to be refined in each iteration essentially defines a tradeoff framework—
more functions-per-iteration means fewer iterations, but more overhead, less predicate pruning,
and more total debugging cost. Under the tradeoff framework, one extreme corresponds to the two-
pass design adopted by the in-house debugging (discussed in Section 5) where all the prospective
functions are refined within one iteration (i.e., the pruning pass). Another extreme is to expand one
function at a time (same as what we discussed in Section 6), because reducing user-side overhead
is the primary goal. In fact, we can flexibly tune the tradeoff and refine multiple functions (i.e.,
instrumenting predicates in multiple functions) at each iteration to reduce the number of iterations
in production-run debugging.

7.4 Applicability

Our technique works for all types of predicates and all types of statistical metrics, as long as the
statistical debugging approaches only distinguish whether a predicate has been observed at least
once or never in a run. In other words, our technique would fail if debugging relies on the exact

number of times a predicate is observed in each run—no mathematical relation can be established
between the parameters of I and C , and thus C is no longer valid.

Besides statistical debugging, our technique also has the potential to be applied to a wider class
of program analysis tasks that requires code instrumentation, e.g., time-travel debugging, grey-box
fuzzing, and automated program repair.

8 RELATED WORK

While there exists a large body of existing work, this section focuses on the discussion of work
that is most closely related to our technique.

8.1 Statistical Debugging

Statistical debugging13 [53, 66, 74] is a family of approaches that isolate a single suspicious
element as the root cause of failure by identifying the discriminative behavior between passing
and failing execution profiles. There are two essential issues to consider in statistical debugging:

13Some also call it spectrum-based fault localization or statistical fault localization. We treat them equally in this article.
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type of program entity capturing program execution behavior and discriminative metric utilized
to quantify the suspiciousness of program entities.

Various types of program entities have been adopted to capture the execution information, e.g.,
the statement coverage [1, 33], basic blocks [15] or functions [20] executed, def-use pairs [58], data
predicates [38, 40] tracked, and interleaving patterns [29]. Meanwhile, a great variety of statistical
discriminative metrics are adopted to quantify the correlation between program entities and bug
causes [4, 33, 41, 45, 64].

Tarantula [33, 34] and Ochiai [1, 4] both use statement coverage information to represent the
execution behavior and assess the suspiciousness of each statement based on their proposed suspi-
ciousness measures. Nainar et al. [9] introduced complex predicates composed of atomic predicates
from Reference [38] using logical operators (such as conjunction and disjunction). Gore et al. [23]
also extended Reference [38] by introducing the notion of elastic predicates such that statistical bug
isolation can be tailored to a specific class of software involving floating-point computations and
continuous stochastic distributions. Furthermore, several researchers applied causal inference to
reduce the control and data flow dependence confounding biases [44, 52] in statement-level [12, 13]
and also failure flow confounding bias in predicate-level [24] statistical bug isolation. Recently,
Jiang et al. [27] and Zou et al. [74] studied the combinations of multiple approaches and proposed
the unified model, which significantly outperforms any individual technique.

To better support debugging, more information than sole buggy statement or root cause is re-
quired. Hsu et al. [26] coined the term bug signature, which comprises multiple elements providing
bug context information, and adopted sequence mining algorithm to discover longest sequences
in a set of failing executions as bug signatures. Cheng et al. [15] mined the discriminative control
flow graph patterns from both passing and failing executions as bug signatures. To enhance the
predictive power of bug signatures, Sun and Khoo [61] proposed predicated bug signature mining,
where both data predicates and control flow information are utilized. In addition, Jiang and Su [28]
proposed context-aware statistical debugging by first identifying suspicious bug predictors via fea-
ture selection, then grouping correlated predictors, and finally building faulty control flow paths
linking predictors to provide contextual information for debugging.

The problem with these statistical debugging approaches (statistical bug isolation [1, 4, 23, 33, 34,
38] and bug signature mining [15, 61]) is that they consider every program statement to be poten-
tially relevant to the bug, and thus instrument the entire program to obtain the full-scale execution
information for debugging. In fact, most program code works well. Such full-scale instrumentation
costs dearly in terms of wastage of execution time, storage space, CPU and memory usage. This ar-
ticle presents a selective instrumentation technique where only the suspicious program elements
are instrumented, ignoring irrelevant ones, thus achieving more efficient debugging. Our tech-
nique is general enough so it is applicable to most of the above statistical debugging approaches
that satisfy the requirements discussed in Section 7.4.

8.2 Cooperative Bug Isolation for Field Failures

Most software deployed remains buggy in spite of extensive in-house testing and debugging. These
failures that occur after deployment on user machines are called field failures [18, 30]. To debug
these field failures, developers are required to reproduce them in the lab according to the bug re-
ports and then perform the same process as in-house debugging. However, in practice, it is hard
for developers to reproduce field failures (especially client-side failures) in the lab due to the dif-
ferent environments, configurations, and/or nondeterminism. In References [38, 39], Liblit et al.
proposed a different execution data collection scheme for debugging field failures. They deployed
the instrumented program to users and collected user’s execution profiles for debugging with
user’s approval. They term this approach cooperative bug isolation [39]. To ensure the sufficiently
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low runtime overhead, sparse random sampling [5, 37] is adopted where only a sparse and random
subset of predicates are sampled to record their execution information while the instrumented pro-
gram is running. This sampling technique amortizes the monitoring cost to a considerable number
of end-users so each user suffers a relatively low time overhead. Nevertheless, from the perspec-
tive of developers, the total monitoring overhead and the total size of execution data collected and
analyzed remain unchanged. In this sense, the cooperative approach still suffers the same problem
as mentioned earlier that: Plenty of unnecessary execution data is collected, and it consumes many
resources such as network bandwidth, storage space, CPU time, and so on.

As an extension of cooperative bug isolation, iterative (cooperative) bug isolation approaches [10,
16] have been proposed to ensure minimal effort spent by both end-users and developers. These ap-
proaches perform the instrumentation and statistical analysis in an iterative manner. Specifically,
Chilimbi et al. [16] monitored a set of functions, branches, and paths to analyze whether these are
strong predictors of the failure at each iteration. If so, then they terminated the iterative process
by returning these strong predictors. Otherwise, they expanded the search via a static analysis to
monitor other parts of code closely interacting with the weak predictors. Similarly, based on the lo-
cality principle, Arumuga et al. [10] proposed an adaptive monitoring strategy that monitors a few
predicates at each iteration and adaptively adjusts the instrumentation plan to include predicates
close to the highly suspicious predicate currently explored.

However, there are two main drawbacks of iterative approaches. First, both iterative ap-
proaches [10, 16] make use of the principle of locality to guide their search for bugs; this prin-
ciple, however, is not always effective in localizing bugs, as experiments have found [10]. Second,
both iterative approaches require developers to manually check the predictors reported at each
iteration until the bug cause is found. As claimed in Reference [51], developers are reluctant to go
through a list of predictors, not to mention the need to repetitively perform this check at every
iteration. Here, we proposed an automated predicate-space pruning technique for statistical de-
bugging, which can greatly reduce the number of predicates that need to be profiled and analyzed,
while never missing top-ranked failure predictors with mathematical guarantees.

8.3 Other Automated Debugging Approaches

Program slicing [42, 62, 72] is a commonly used technique for debugging. Zeller et al. proposed
delta debugging to isolate the failure-inducing difference in source code [68], inputs [69], and pro-
gram states [19] between one failing and one passing run. Techniques have been proposed to
improve delta debugging by combining it with dynamic slicing [25] and by better selecting the
pair of passing run and failing run [55, 56]. Similarly to delta debugging for program states, Zhang
et al. [71] forcibly switched the branch predicate’s outcome in a failing run and localize the bug
by examining the predicates whose switching produces correct result.

Mutation-based fault localization [43, 48] exploits the information of mutation analysis and
computes the suspiciousness score for each statement. If the mutation to a statement affects the
failing runs frequently, while the passing runs rarely, then it is potentially suspicious.

Information retrieval-based debugging approaches have been recently studied [57, 63, 70, 73].
Instead of analyzing the runtime execution trace, these approaches take a bug report as input and
apply the information retrieval techniques to pinpoint a list of relevant source files to the bug.
There are also studies [11, 14, 65, 67] that leverage machine learning techniques to locate bugs
effectively.

Moreover, several debugging techniques focus on finding concurrency bugs in multi-threaded
programs. Falcon [49] and its follow-up work Unicorn [50] are pattern-based dynamic analysis
techniques for fault localization in concurrent programs. They combine pattern identification with
statistical suspiciousness ranking of memory access patterns.
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9 CONCLUSION

We devise a novel, systematic abstraction refinement-based technique performing selective instru-
mentation to enhance the efficiency of statistical debugging. At the abstract level, functions are
instrumented to capture abstract suspiciousness information, which will be then exploited to guide
the refinement of predicate instrumentation. Different from the existing approaches, our technique
provides a mathematically rigorous guarantee of debugging effectiveness without the need of any
developers’ intervention. We apply our technique to two statistical debugging scenarios: in-house
and production-run debugging. The results indicate that our technique significantly enhances the
efficiency of statistical debugging, making a step forward to painless debugging.
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