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Program reduction is a highly practical, widely demanded technique to help debug language tools, such as

compilers, interpreters and debuggers. Given a program 𝑃 that exhibits a property𝜓 , conceptually, program

reduction iteratively applies various program transformations to generate a vast number of variants from 𝑃

by deleting certain tokens, and returns the minimal variant preserving𝜓 as the result.

A program reduction process inevitably generates duplicate variants, and the number of them can be

significant. Our study reveals that on average 61.8% and 24.3% of the generated variants in two representative

program reducers HDD and Perses, respectively, are duplicates. Checking them against𝜓 is thus redundant

and unnecessary, which wastes time and computation resources. Although it seems that simply caching the

generated variants can avoid redundant property tests, such a trivial method is impractical in the real world

due to the significant memory footprint. Therefore, a memory-efficient caching scheme for program reduction

is in great demand.

This study is the first effort to conduct systematic, extensive analysis of memory-efficient caching schemes

for program reduction. We first propose to use two well-known compression methods, ZIP and SHA, to
compress the generated variants before they are stored in the cache. Furthermore, our keen understanding

on the program reduction process motivates us to propose a novel, domain-specific, both memory and

computation-efficient caching scheme, Refreshable Compact Caching (RCC). Our key insight is two-fold: 1

by leveraging the correlation between variants and the original program 𝑃 , we losslessly encode each variant

into an equivalent, compact, canonical representation; 2 periodically, stale cache entries, which will never be

accessed, are timely removed to minimize the memory footprint over time.
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Our extensive evaluation on 31 real-world C compiler bugs demonstrates that caching schemes help avoid

issuing redundant queries by 61.8% and 24.3% in HDD and Perses, respectively; correspondingly, the runtime

performance is notably boosted by 22.8% and 18.2%. With regard to the memory efficiency, all three methods

use less memory than the state-of-the-art string-based scheme STR. Specifically, ZIP and SHA cut down

the memory footprint by more than 80% and 90% in both Perses and HDD compared to STR; moreover, the

highly-scalable, domain-specific RCC dominates peer schemes, and outperforms the SHA by 96.4% and 91.74%

in HDD and Perses, respectively.
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Additional Key Words and Phrases: program reduction, delta debugging, debugging
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1 INTRODUCTION

Given a program 𝑃 and a property𝜓 that 𝑃 exhibits (e.g., 𝑃 triggers a bug in an interpreter when

the interpreter is executing 𝑃 ), program reduction aims to produce a smaller program 𝑃 ′ that still

exhibits𝜓 by removing tokens irrelevant to𝜓 from 𝑃 [34, 43, 45, 52, 53].

Various program reduction techniques have been proposed and widely used in many applications,

especially in the development of language tools, e.g., compilers, interpreters, debuggers and static

program analyzers [7, 34, 38, 40, 43, 45, 52, 53]. For example, both the GCC and LLVM communities

have explicitly recommended that a bug-triggering test program should be minimized before it is

reported in the bug tracking systems [12, 32]. This is because that a bug-triggering test program in

C needs to have only thirty lines of code on average [42]; whereas in practice, such a test program

collected from real-world programs or generated by automated compiler testing techniques [2, 27–

29, 46, 49, 51] usually has at least several thousand lines of code. Without program reduction, it is

a challenging task for developers to investigate the bug reports. Furthermore, as highlighted by

a recent article in SIGPLAN [11], program reduction facilitates numerous other applications in

software engineering and programming languages, such as optimization [39], fuzzing [36], program

understanding and slicing [3].

Unfortunately, program reduction is computationally expensive and can even take days to finish

reducing a program [26, 51]. Thus, it is beneficial for all potential users to improve the efficiency of

program reduction. Conceptually, program reduction maintains a minimal program min, which
satisfies𝜓 throughout the program reduction process, and initially min is 𝑃 . Program reduction

1 applies different program transformations to generate a vast number of variants from min by

strategically deleting certain tokens, 2 tests each variant on whether or not it still preserves𝜓 ,

and 3 sets the variant preserving𝜓 as min; this process is repeated until min cannot be further

minimized, and min is returned as the final result. In the above process, the procedure of checking

a variant against 𝜓 is referred to as a query to the property in this paper, and queries usually

account for a major portion of the overall time spent by the program reduction [17]. Some existing

program reduction techniques also attempt to avoid generating uninteresting variants to improve

the efficiency of program reduction [17, 19, 34, 43].

To understand the bottleneck of program reduction in terms of efficiency, we dive into the

process and investigate the generated variants. We reveal that on average 61.8% and 24.3% of the

generated variants in HDD [34] and Perses [43] are duplicates in our benchmark, because different

program transformations may generate exactly the same variant by deleting different tokens. In

other words, a significant amount of time is spent checking unnecessary duplicate variants against
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𝜓 . If we cache such variants to avoid the redundancy, the program reduction efficiency is likely to

be improved.

The state-of-the-art caching scheme for program reduction is string-based caching [20], i.e.,
caching variants as strings or sequences of tokens, referred to as STR. However, our study reveals

that such a trivial approach does not scale especially when 𝑃 is large, due to its impractical memory

consumption, which also concerns C-Reduce [37]. A large program 𝑃 , unfortunately, is rather

common in practice; in such cases, program reducers are likely to crash due to Out-of-Memory

Error (OOM). An effective and efficient caching scheme for program reduction is desirable.

In this study, we take the first step to explore memory-efficient caching schemes for program

reduction via compression. Specifically, we first leverage the following two readily available com-

pression techniques to compress the source code of variants and cache the compressed source code

instead of the original, uncompressed source code.

● Zip algorithm is a widely used, lossless data compression technique that reduces the size of

large texts. Before being added to the cache, the string-based representation of each variant

is compressed using the popular, general-purpose ZLIB compression library [10, 13]. This

caching scheme is referred to as ZIP.
● Hashing is yet a popular lossy data compression technique that maps strings of various sizes

to fixed-size values. A hash code is computed from the string-based representation and then

added to the cache; specifically, SHA512 is used in this work [14, 24], due to its strong guarantee

of collision resistance. We refer to this caching scheme as SHA.
However, from our comprehensive evaluations we find that the these two techniques still suffer

from monotonic increase of memory consumption, and scalability issues among different program

reducers. Therefore, after analyzing the characteristics of program reduction algorithms and the

generated variants in depth, we gain the following two key insights.

(1) Every variant is derived from the minimal program min during program reduction by deleting

some tokens. Therefore, the sequence 𝑝𝑣 of tokens in each variant 𝑣 is a subsequence of the
sequence 𝑝min of tokens in min.

(2) As a result, when a program becomes the the new min, any variant 𝑣 in the cache that is not

a subsequence of this min, can be safely removed from cache as 𝑣 will no longer be accessed.

Based on these two insights, we propose a novel, domain-specific, memory and computation-

efficient caching scheme, namely, Refreshable Compact Caching (RCC).
RCC. Based on the first insight, RCC computes a compact encoding for each variant to be added

to the cache. This encoding is a set of slicing intervals in 𝑝min that assembles 𝑝𝑣 . Such a lossless
compression algorithm significantly reduces the memory footprint. When required, the compact

encoding can be rapidly uncompressed back to the original program variant. By leveraging the

second insight, RCC periodically refreshes the cache to avoid memory leaks. Specifically, upon

finding a new min during the program reduction process, RCC identifies and removes the cached

variants that will never be accessed in the rest of the process. Cache refreshing further reduces

the memory footprint by avoiding accumulating cache entries over time, and it thus improves

scalability.

Conceptually, the domain-specific RCC is advantageous in practice compared to general caching

schemes. Unlike ZIP, RCC compresses a variant into an array of integers without encoding each

individual token. In contrast to SHA, RCC is an information-lossless compression algorithm,

enabling the refreshing of cache to avoid the monotonic increase of cache size in program reduction.

We have implemented the proposed caching schemes on top of HDD and Perses, two representa-

tive program reduction algorithms that are being actively studied. Our extensive evaluation on

31 real-world C compiler bugs demonstrates that caching schemes help avoid issuing redundant
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queries by 61.8% and 24.3% in HDD and Perses, respectively. The runtime performance is notably

boosted by 22.8% and 18.2%. As for the memory efficiency, caching scheme ZIP and SHA cut

down the memory footprint by more than 80% and 90% in both HDD and Perses compared to the

baseline STR. Furthermore, the highly-scalable, domain-specific RCC dominates peer schemes,

and it outperforms the second-best SHA by 96.4% and 91.74% in HDD and Perses, respectively. In

most cases, RCC only takes tens of KB in Perses and less than one MB in HDD, which is at least

one order of magnitude smaller than SHA.
Contributions. This paper makes the following contributions.

● We make the first effort to conduct systematic, extensive analysis of memory-efficient caching

schemes for program reduction. We propose three caching schemes that are effective in

improving the memory performance of caching in program reduction. These caching schemes

are agnostic to most program reduction algorithms, and can be easily integrated into various

program reduction tools and combined with other program reduction techniques, benefiting a

great variety of researchers and developers.

● We propose a domain-specific caching scheme for program reduction. By leveraging the

keen knowledge that variants are subsequences of the minimal program, RCC combines the

compact encoding and cache-refresh algorithm to drastically reduce the memory footprint

with great scalability. We formally prove the safety of refreshable cache and confirm with our

evaluation.

● Our comprehensive evaluations on 31 real-world C compiler bugs demonstrate that caching

help avoid issuing redundant queries by 61.8% and boost the runtime by 22.8%. Caching

schemes ZIP and SHA cut down the memory footprint by 84.34% and 99.72% against the

baseline; the domain-specific RCC further outperforms the second-best SHA by 91.74%.

● We have made our implementation, benchmarks, and evaluation scripts publicly available for

reproducibility and replicability at https://github.com/uw-pluverse/perses/tree/master/doc/

RCC.md

2 PRELIMINARIES

2.1 Sequences

This section introduces preliminary knowledge about sequences, since, in the rest of the paper, a

program is represented as a sequence of tokens.

Let Σ be a set of elements. A sequence is an ordered list of elements denoted as 𝑝 = ∐︀𝑡1, 𝑡2,⋯, 𝑡𝑛̃︀,
where 𝑡𝑖 ∈ Σ ∧ (1 ≤ 𝑖 ≤ 𝑛). Notation-wise,

index 𝑝(︀𝑖⌋︀ denotes 𝑡𝑖 , the 𝑖-th element in 𝑝; 𝑖 starts from 1.

size ⋃︀𝑝 ⋃︀ denotes the number 𝑛 of elements in 𝑝 , which is also referred to as the size of 𝑝 .

slice 𝑝(︀𝑖 ∶ 𝑗⌋︀ (𝑖 ≤ 𝑗 ≤ ⋃︀𝑝 ⋃︀ + 1) represents a sequence ∐︀𝑡𝑖 , 𝑡𝑖+1,⋯, 𝑡 𝑗−1̃︀, a continuous slice

of 𝑝 starting from 𝑝(︀𝑖⌋︀ inclusively and ending at 𝑝(︀ 𝑗⌋︀ exclusively.

concatenation given 𝑝1 = ∐︀𝑡
1

1
, 𝑡
1

2
,⋯, 𝑡

1

𝑚̃︀ and 𝑝2 = ∐︀𝑡
2

1
, 𝑡
2

2
,⋯, 𝑡

2

𝑛̃︀, 𝑝1 + 𝑝2 denotes the concatenation

of 𝑝1 and 𝑝2, namely, 𝑝1 + 𝑝2 = ∐︀𝑡
1

1
, 𝑡
1

2
,⋯, 𝑡

1

𝑚, 𝑡
2

1
, 𝑡
2

2
,⋯, 𝑡

2

𝑛̃︀.

equality 𝑝1 = 𝑝2 if ⋃︀𝑝1⋃︀ = ⋃︀𝑝2⋃︀ ∧ ∀𝑖 ∈ (︀1, ⋃︀𝑝1⋃︀⌋︀. 𝑝1(︀𝑖⌋︀ = 𝑝2(︀𝑖⌋︀

Definition 2.1 (Subseqence). A sequence 𝑝1 = ∐︀𝑡1
1
, 𝑡1
2
,⋯, 𝑡1𝑚̃︀ is a subsequence of another

sequence 𝑝2 = ∐︀𝑡21 , 𝑡22 ,⋯, 𝑡2𝑛̃︀ if and only if there exists integers 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚 ≤ 𝑛 where 𝑡1
1
= 𝑡2𝑖1 ,

𝑡1
2
= 𝑡2𝑖2 , ⋯, 𝑡

1

𝑚 = 𝑡2𝑖𝑚 . Notation-wise, this relation is written as 𝑝1 ⊑ 𝑝2.

Example. ∐︀1, 5̃︀ ⊑ ∐︀1, 3, 5̃︀, and ∐︀11, 3, 5̃︀ ⊑ ∐︀11, 3, 5̃︀.
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Definition 2.2 (Proper Subseqence). A sequence 𝑝1 is a proper subsequence of another program
𝑝2 if and only if 𝑝1 ⊑ 𝑝2 ∧ ⋃︀𝑝1⋃︀ < ⋃︀𝑝2⋃︀. Notation-wise, this relation is written as 𝑝1 ⊏ 𝑝2.

Example. ∐︀3̃︀ ⊏ ∐︀1, 3, 5̃︀, and ∐︀1, 5̃︀ ⊏ ∐︀1, 3, 5̃︀.

Lemma 2.1 (Transitivity). Given three sequences 𝑝1, 𝑝2 and 𝑝3, 𝑝1 ⊑ 𝑝2 ∧ 𝑝2 ⊑ 𝑝3 ⇒ 𝑝1 ⊑ 𝑝3;
similarly, 𝑝1 ⊏ 𝑝2 ∧ 𝑝2 ⊏ 𝑝3 ⇒ 𝑝1 ⊏ 𝑝3.

Example. Given that ∐︀1̃︀ ⊏ ∐︀1, 3̃︀, and ∐︀1, 3̃︀ ⊏ ∐︀0, 1, 2, 3̃︀, the transitivity of the proper subsequence

implies ∐︀1̃︀ ⊏ ∐︀0, 1, 2, 3̃︀.

Definition 2.3 (Lexicographic Order). Given two sequences of numbers 𝑝1 and 𝑝2, 𝑝1 < 𝑝2 if
and only if 𝑝1 and 𝑝2 satisfy one of the following conditions.
● ∃𝑖 ∈ (︀1,min (⋃︀𝑝1⋃︀, ⋃︀𝑝2⋃︀)⌋︀. 𝑝1(︀1 ∶ 𝑖⌋︀ = 𝑝2(︀1 ∶ 𝑖⌋︀ ∧ 𝑝1(︀𝑖⌋︀ < 𝑝2(︀𝑖⌋︀
● ⋃︀𝑝1⋃︀ < ⋃︀𝑝2⋃︀ ∧ (𝑝1 = 𝑝2(︀1 ∶ ⋃︀𝑝1⋃︀ + 1⌋︀)

Example 1. ∐︀1, 2, 3̃︀ < ∐︀1, 3, 3̃︀, since the first condition is satisfied. When 𝑖 = 2, 𝑝1(︀1 ∶ 𝑖 = 2⌋︀ =
𝑝2(︀1 ∶ 𝑖 = 2⌋︀ = ∐︀1̃︀, and 𝑝1(︀𝑖 = 2⌋︀ = 2 < 𝑝2(︀𝑖 = 2⌋︀ = 3.

Example 2. ∐︀1, 2̃︀ < ∐︀1, 2, 3̃︀, since the second condition is satisfied. Specifically, ⋃︀𝑝1⋃︀ = 2 < ⋃︀𝑝2⋃︀ = 3
and 𝑝1 = 𝑝2(︀1 ∶ 3⌋︀ = ∐︀1, 2̃︀.

2.2 Program Reduction

In this paper, a program is represented as a sequence of tokens, ∐︀𝑡1, 𝑡2,⋯, 𝑡𝑛̃︀, where 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑛) is
a token. Given a program 𝑃 with a property of interest, P denotes the search space of all the possible

variants derivable from 𝑃 by deleting some tokens, that is, ∀𝑝 ∈ P ∶ 𝑝 ⊑ 𝑃 . Let B = {true, false} and
𝑝 ∈ P, then the property can be defined as a function𝜓(𝑝) ∶ P→ B, where

𝜓(𝑝) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

true if 𝑝 exhibits the property

false otherwise

2.2.1 Deletion-Based Program Transformation. We use T to denote a set of deletion-based

program transformations. Formally, a deletion-based program transformation 𝜏 ∈ T is defined as

a function 𝜏 ∶ P → P, which generates a new program by removing tokens from the non-empty

input program. Mathematically, ⋃︀𝑝 ⋃︀ > 0 ∧ 𝑝 ∈ dom(𝜏)⇒ 𝜏(𝑝) ⊏ 𝑝 , where the domain of 𝜏 , dom(𝜏),
represents the universe of candidate programs that can be accepted as inputs of the transformation

𝜏 and 𝑝 ∈ dom(𝜏) implies that the program transformation 𝜏 is applicable on the program 𝑝 .

In this paper, we focus on deletion-based program transformations, because most state-of-the-art

program reduction algorithms only support this category of program transformations, such as

Delta Debugging (DD) [52], Hierarchical Delta Debugging (HDD) [34], Generalized Tree Reduction

(GTR) [17], Chisel [16], and Perses [43].

One exception is C-Reduce which supports program transformations out of this category [38].

For example, C-Reduce uses Clang [33] to inline function calls to reduce the number of function

definitions, which increases the size of variants. However, the number of such program transforma-

tions is small, and the main program transformations supported in C-Reduce are still deletion-based,

e.g., DD and HDD.

2.2.2 Program Reduction without Cache. Algorithm 1 lists the common, overall workflow of

program reduction. Most language-agnostic program reduction algorithms [16, 17, 34, 40, 43, 52]

follow this workflow, as long as these algorithms transform programs by deleting tokens. For

example, DD, HDD, Perses, and Chisel generate variants by deleting tokens, and all their concrete

workflows can be conceptually generalized to Algorithm 1, though the differences in determining
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1:6 Tian et al.

Algorithm 1: Conceptual Workflow of Program Reduction

Input: 𝑃 : the program to be reduced.

Input:𝜓 ∶ P→ B: the property of interest.

Output: A minimal program min ∈ P s.t.𝜓(min)
1 T: a set of deletion-based program transformations defined in §2.2.1

2 min← 𝑃

3 while true do
4 prev← min
5 for 𝜏 ∈ T do
6 if min ⇑∈ dom(𝜏) then continue
7 𝑝 ← 𝜏(min)
8 if 𝜓(𝑝) then min← 𝑝

9 if ⋃︀prev⋃︀ = ⋃︀min⋃︀ then return min

what tokens to delete are significantly divergent between the aforementioned program reduction

algorithms. T on line 1 denotes an abstract set of deletion-based program transformations described

in §2.2.1. The concrete program transformations in T depend on the concrete program reducer; e.g.,
Perses supports more types of deletion-based program transformations than DD and HDD.

Note that the workflow in Algorithm 1 is widely applicable, even to C-Reduce if we relax T to
include non-deletion-based program transformations supported by C-Reduce.

2.2.3 Program Reduction with String-Based Cache. Algorithm 2 presents a general workflow of

program reduction with a string-based cache (referred to as STR) enabled [20], where each variant

is represented by its source code. The major differences from Algorithm 1 are 1 the introduction

of the variable cache on line 3, 2 the presence test of 𝑝 in cache on line 10, and 3 adding the

program that fails the property test to cache on line 12.

The major drawback with Algorithm 2 is the vast memory footprint induced by cache because

each program in cache is represented with its source code (viz., line 9), and cache is monotonically

growing due to line 12. This problem can be exacerbated when the program to be reduced is

large. For example, to reduce subject clang-27137 with 174,538 tokens in Table 5, STR requires

698.91 MB memory to cache variant programs in Perses; due to differences in supported program

transformations, it incurs a much larger memory footprint in HDD, i.e., 98.67 GB. Such a large mem-

ory overhead on one subject is impractical in the production environment, prohibiting deploying

multiple instances of program reduction in a single machine.

3 A MOTIVATING EXAMPLE

We illustrate how duplicate programs are generated during the program reduction process with

a contrived example in Figure 1. This example includes one original program in Figure 1a, and a

property of interest that the program exits with zero returned. Figure 1b–1j show nine variants

sequentially generated in the program reduction process; note that the program reduction process

is simplified for illustrative purposes from a real program reduction process by Perses by ignoring

the other less interesting generated variants.

Step 0: Initially, the minimal program min is the original input 𝑝0 in Figure 1a, and this program

exits with zero.

Step 1–3: Three variants as shown in Figure 1b, Figure 1c and Figure 1d are generated from min
by removing one or more statements, but none of them is semantically valid w.r.t. the C language

specification and thus not of interest. Note that the program 𝑝3 in Figure 1d is generated for the

first time, and will be repeatedly generated later.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



On the Caching Schemes to Speed Up Program Reduction 1:7

Algorithm 2: Program Reduction with STR
Input: 𝑃 : the program to be reduced.

Input:𝜓 ∶ P→ B: the property of interest.

Output: A minimal program min ∈ P s.t.𝜓(min)
1 T: a set of deletion-based program transformations defined in §2.2.1

2 min← 𝑃

3 cache← ∅
4 while true do
5 prev← min
6 for 𝜏 ∈ T do
7 if min ⇑∈ dom(𝜏) then continue
8 𝑝 ← 𝜏(min)
9 cache_key← a string which is the source code of 𝑝

10 if cache_key ∈ cache then continue // 𝑝 has been tested before.

11 if 𝜓(𝑝) then min← 𝑝

12 else cache = cache ∪ {cache_key} // 𝑝 does not preserve 𝜓, and is thus cached.

13 if ⋃︀prev⋃︀ = ⋃︀min⋃︀ then return min

1 int main() {

2 int a = 0;

3 int b = 9;

4 return a + 0;

5 }

(a) 𝑝0,𝜓(𝑝0) = true

1 int main() {

2

3

4

5 }

(b) 𝑝1, 𝜓(𝑝1) = false

1 int main() {

2

3 int b = 9;

4 return a + 0;

5 }

(c) 𝑝2,𝜓(𝑝2) = false

1 int main() {

2 int a = 0;

3

4

5 }

(d) 𝑝3,𝜓(𝑝3) = false

1 int main() {

2 int a = 0;

3

4 return a + 0;

5 }

(e) 𝑝4,𝜓(𝑝4) = true

1 int main() {

2 int a = 0;

3

4

5 }

(f) 𝑝5,𝜓(𝑝5) = false

1 int main() {

2

3

4 return a + 0;

5 }

(g) 𝑝6,𝜓(𝑝6) = false

1 int main() {

2 int a = 0;

3

4 return 0;

5 }

(h) 𝑝7,𝜓(𝑝7) = true

1 int main() {

2 int a = 0;

3

4

5 }

(i) 𝑝8,𝜓(𝑝8) = false

1 int main() {

2

3

4 return 0;

5 }

(j) 𝑝9,𝜓(𝑝9) = true

Fig. 1. A contrived, illustrative example of a program reduction process. Figure (a) shows the original
program, and the property of interest is that the program returns zero. Figures (b)–(j) are nine variants
sequentially generated during the program reduction process. Figures (d), (f), and (i) with captions in blue
show duplicate variants, and Figures (a), (e), (h) and (j) with captions in lime show the minimal variants
satisfying the property.

Step 4: Another variant 𝑝4 is derived from min, and satisfies the property, and thus 𝑝4 becomes

the new min. Any new variant in the future will be generated from 𝑝4.

Step 5, 6: Two variants 𝑝5 and 𝑝6 are generated from 𝑝4 by deleting one statement, but neither of

them satisfies the property. However, 𝑝5 is duplicate to 𝑝3, and this duplicate incurs an unnecessary

query to the property.

Step 7: The variant 𝑝7 in Figure 1h is generated from 𝑝4 by deleting two tokens a and + from the

return statement return a + 0;. This variant preserves the property and becomes the new min.
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Step 8: From the new minimal program 𝑝7, 𝑝8 as shown in Figure 1i is generated by deleting the

return statement, and this is the third time the same variant is generated. Without caching, this

variant issues another redundant query to the property.

Step 9: The variant 𝑝9 is generated by deleting the variable definition from 𝑝7, and this is the

final result of the program reduction.

In this contrived program reduction run, a program as shown in Figure 1d is generated three

times, and it requires three queries to the property of which two are redundant. As mentioned

in §1, queries to the property account for the majority of the program reduction time. It will be

desirable to eliminate such redundant queries to shorten the program reduction time with memory

efficient caching scheme, the focus of this paper.

3.1 Caching Program Variants in Program Reduction

This section briefly describes how caching helps avoid redundant property queries, and how ZIP,
SHA, and RCC reduces memory footprint compared to Algorithm 2 proposed in literature [20].

STR. Algorithm 2 prevents redundant queries by saving the source code of the variants that do not

satisfy the property in cache. For example, 𝑝3 in Figure 1d is represented as the following string by

the encoding Algorithm 2.

“int main ( ) { int b = 9 ; return a + 0 ; }”

In Java, this string object takes up at least 86 bytes excluding the meta data added by the Java

Virtual Machine, i.e., 86 bytes from the 43 characters (a character in Java is two bytes).

ZIP. To reduce thememory footprint of the trivial string representation, we exploit the popular ZLIB

library [10, 13], a lossless compression algorithm. It effectively compresses the string representation

into a byte array. For example, ZIP compresses 𝑝3 to a byte array of 48 elements.

SHA. We investigate another popular, more aggressive but lossy compression technique, hash

algorithm. Specifically, the hash function SHA-512 produce a 512-bit digest from the string repre-

sentation [14, 24], e.g., SHA hashes 𝑝3 into a 512-bit digest (64 bytes) in Java.

RCC. By leveraging keen insights in program reduction, we propose a domain-specific caching

scheme RCC to efficiently avoid redundant property queries. In RCC, 𝑝3 is ever encoded as a

compact representation, ⎷1, 11, 21, 22⌄, ⎷1, 11, 16, 17⌄ or ⎷1, 11, 14, 15⌄ throughout the program

reduction process.
1

The details of the encoding process will be introduced in §4.3.2. Intuitively, every two integers

in the array correspond to a continuous range of tokens in min. For example, in ⎷1, 11, 21, 22⌄, 1
and 11 refer to min(︀1 ∶ 11⌋︀; 21 and 22 refers to min(︀21 ∶ 22⌋︀. At any time during program reduction,

the cache key of 𝑝3 only occupies 16 bytes (4 ∗ 4, each int in Java is 4-byte), compared to the 86

bytes by STR.
The other key feature of RCC is refreshable caching. RCC is able to determine whether a variant

will never be generated in the future. If yes, such a variant will be removed from cache. For example,

at the time when 𝑝4 in Figure 1e is being generated, cache = {𝑝1, 𝑝2, 𝑝3}; after 𝑝4 is tested to satisfy
the property and set as min, RCC is able to accurately predict that 𝑝2 will never be generated, and

thus removes 𝑝2 from cache, which makes cache = {𝑝1, 𝑝3}.

1
Such a compact representation, named as “interval-based encoding”, is introduced in details in §4.3.2. An interval-based

encoding is a sequence of integers. For readability purpose, we use ⎷𝑡1, 𝑡2,⋯, 𝑡𝑛⌄ to represent an interval-based encoding

and use ∐︀𝑡1, 𝑡2,⋯, 𝑡𝑛̃︀ to represent a sequence.
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3.2 Challenges of Caching Variants during Program Reduction

In practice, caching variants is usually complicated and challenging. Unfortunately, large programs

as input to program reduction are rather common, as these programs are either collected from

real-world software or generated by automated testing techniques [2, 27, 29, 46, 49, 51].

When the initial program 𝑃 is large, the total number of queries usually increases significantly,

and thus the difference in memory footprint between different caching schemes can be amplified.

For example, the subject clang-27137 in Table 5 has 173,538 tokens, HDD issues as much as 720,875

queries. HDD with STR exhausts a memory heap of 44 GB, and eventually crashes with OOM.

With ZIP, HDD successfully finishes the program reduction process, consuming 18.7 GB of memory.

Given the consistent digest size, SHA is sensitive to the number of queries and requires 85.8 MB to

reduce the subject. Exceedingly, RCC demands only 4.4 MB at peak.

4 METHODOLOGIES

This section details the design of the three caching schemes proposed in this paper, namely ZIP,
SHA, and RCC. The main objective is to reduce the memory footprint of the program representation

without noticeable runtime overhead, such that each cache key is compact in size within the cache.

To the best knowledge of the authors, this is the first effort to conduct systematic, extensive analysis

of memory-efficient caching schemes to speed up program reduction.

4.1 Lossless Compression: ZIP

Zip algorithm is a lossless compression technique representative, which effectively compresses

data. ZLIB is a well-known, general-purpose lossless data compression library, which is widely used

across different platforms (e.g., Linux, macOS, and iOS) [10, 13]. The main algorithm, DEFLATE, is

capable of compressing a variety of data with limited system resources. Additionally, there is no

theoretical limitation to the data size being compressed.

ZIP cache scheme compresses the string representation of a variant program into a byte array,

which is then used as the cache key. Note that ZLIB provides controls to computing resources,

and we prefer better compression level for minimal memory footprint rather than the speed of

compression. §5.3 shows that the runtime overhead of the way we use ZLIB is practically negligible.

4.2 Lossy Compression: SHA

Hash algorithm is an irreversible process of converting data into hash values of fixed length (a.k.a.,
digest). The original data cannot be recovered; thus, hash algorithm is a lossy compression technique.

Hash algorithms are widely used in internet security and digital certificates, but we are interested

in applying it to the string representation of a variant program.

We adopted SHA-512 over alternative hash functions for two main reasons. 1 Secure hash

algorithm (SHA) is well supported by available libraries and easy to deploy. 2 SHA512 provides

the strongest guarantee of collision resilience, where different string inputs are less likely to have

the same digest [14, 24]. Note that even the collision chance is slim, if hash collision ever occurs,

it is possible for a program reducer to produce a different program reduction result, which could

be sub-optimal. SHA consistently compresses the string representation of variant programs of

different sizes into a 512-bit digest (64 bytes), which is then used as the cache key.
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Table 1. Examples of Encoding
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( ) { i
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a = 0 ; i
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b = 9 ; r
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t
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n

a + 0 ; }

𝑝1
● ● ● ● ● ●
Encoding = ⎷1, 6, 21, 22⌄

𝑝2
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 7, 12, 22⌄

𝑝3
● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 11, 21, 22⌄

𝑝4
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 11, 16, 22⌄

(a) Encoding w.r.t. 𝑝0
In
de

x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To
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m
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n

( ) { i
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a = 0 ; r
e
t
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r
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a + 0 ; }

𝑝1
● ● ● ● ● ●
Encoding = ⎷1, 6, 16, 17⌄

𝑝3
𝑝5

● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 11, 16, 17⌄

𝑝6
● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 6, 11, 17⌄

𝑝7
● ● ● ● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 12, 14, 17⌄

(b) Encoding w.r.t. 𝑝4
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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( ) { i
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a = 0 ; r
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t
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n

0 ; }

𝑝1
● ● ● ● ● ●
Encoding = ⎷1, 6, 14, 15⌄

𝑝3

𝑝5

𝑝8

● ● ● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 11, 14, 15⌄

𝑝9
● ● ● ● ● ● ● ● ●
Encoding = ⎷1, 6, 11, 15⌄

(c) Encoding w.r.t. 𝑝7

These three tables show the encoding process with respect to base program 𝑝0, 𝑝4, and 𝑝7
respectively. The first row is the indices starting from one, and the second row lists the corre-

sponding tokens of the min programs. A continuous region of bullets with colored background

shows the interval of the compact interval-based encoding. For instance, 𝑝2 in (a) indicates that

a variant, 𝑝2, is derived from 𝑝0 by deleting successive nodes from 7 to 11, and the consecutive

regions, marked with bullets, are encoded with the starting and ending node indices. Therefore,

the encoding of 𝑝2 w.r.t. 𝑝0 is ⎷1, 7, 12, 22⌄.

4.3 Domain-Specific Compression: RCC

Finally, this section describes the design and algorithms of RCC, a novel, domain-specific, memory-

efficient caching scheme for program reduction. RCC includes two key concepts compact encoding
and refreshable caching, both of which are based on the following insights neglected in the literature.2

Insight 1 At any time during program reduction, let min be the minimal program found at that

time (initially, min is 𝑃 ), then any variant 𝑝 that is generated later is a subsequence of min, i.e.,
𝑝 ⊏ min.

Insight 2 For any program 𝑝 , s.t., 𝑝 ⇑⊑ min, 𝑝 will never be generated later by any deletion-based

program transformation.

4.3.1 Overall Workflow with RCC. Algorithm 3 lists the general workflow of program reduction

with RCC. Compared to Algorithm 2, there are two major differences:

Compact Encoding as Cache Key. On line 9 Algorithm 3 calls CompactEncode to convert a pro-
gram 𝑝 to a compact (memory-efficient), equivalent representation as the cache key. CompactEncode
takes as input not only 𝑝 , but also min to compute this cache key, whereas the vanilla program

reduction with string-based cache in Algorithm 2 uses the source code of 𝑝 (a sequence of charac-

ters) as the cache key on line 9. The compact encoding scheme of RCC uses much less memory

than STR, which will be detailed in §4.3.2.

Refreshable Caching. Algorithm 3 refreshes cache on line 13 when a new minimal program is

found. The cache-refresh algorithm identifies programs that will not be generated afterward based

on Theorem 4.2 and removes them from cache to reduce memory footprint. In contrast, the size of

STR in Algorithm 2 monotonically increases, and therefore STR usually consumes a large amount

of memory.

4.3.2 Compact Encoding of Programs.

2
These two insights are equivalent with the insights in §1, but are re-illustrated using the annotation defined by us.
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Algorithm 3: Program Reduction with RCC
Input: 𝑃 : the program to be reduced.

Input:𝜓 ∶ P→ B: the property of interest.

Output: A minimal program min ∈ P s.t.𝜓(min)
1 T: a set of deletion-based program transformations defined in §2.2.1

2 min← 𝑃

3 cache← ∅
4 while true do
5 prev← min
6 for 𝜏 ∈ T do
7 if min ⇑∈ dom(𝜏) then continue
8 𝑝 ← 𝜏(min)
9 cache_key← CompactEncode(min, 𝑝)

10 if cache_key ∈ cache then continue
11 if 𝜓(𝑝) then
12 min← 𝑝

// Refresh cache with the new minimal program.

13 cache← RefreshCache(cache, prev,min)
14 else cache← cache ∪ {cache_key}
15 if ⋃︀prev⋃︀ = ⋃︀min⋃︀ then return min

16 Function RefreshCache(old_cache, prev, min):
Input: old_cache: the cache used previously

Input: prev: the previous min
Input: min: the current/new min

17 cache← ∅
18 for encoding ∈ old_cache do
19 𝑝′ ← CompactDecode(prev, encoding)
20 if 𝑝′ ⇑⊏ min then continue
21 cache← cache ∪ {CompactEncode(min, 𝑝′)}
22 return cache

Definition 4.1 (Interval-Based Encoding). Given theminimal programmin as the base program
and a program 𝑝 , s.t., 𝑝 ⊑ min, a sequence 𝑒 of integers is an interval-based encoding of 𝑝 w.r.t. the
base program min, if and only if 𝑒 satisfies all the following properties,
(1) 𝑒 has an even number of elements
(2) ∀𝑖 ∈ (︀1, ⋃︀𝑒 ⋃︀). 𝑒(︀𝑖⌋︀ < 𝑒(︀𝑖 + 1⌋︀
(3) ∑⋃︀𝑒⋃︀⇑2𝑖=1 min(︀𝑒(︀2𝑖 − 1⌋︀ ∶ 𝑒(︀2𝑖⌋︀⌋︀ = min(︀𝑒(︀1⌋︀ ∶ 𝑒(︀2⌋︀⌋︀ +⋯ +min(︀𝑒(︀⋃︀𝑒 ⋃︀ − 1⌋︀ ∶ 𝑒(︀⋃︀𝑒 ⋃︀⌋︀⌋︀⌋︀ = 𝑝

∑𝑛
𝑖=1 𝑠𝑖 = 𝑠1 + 𝑠2 +⋯ + 𝑠𝑛 represents a sequence by concatenating 𝑠1, 𝑠2,⋯, and 𝑠𝑛 . Please note that

since the interval-based encoding of 𝑝 is a sequence of integers, all the definitions and operations of

sequences mentioned in §2.1 are also applicable to interval-based encoding, including index, size,
slice and so on. For readability purposes, we use ⎷𝑡1, 𝑡2,⋯, 𝑡𝑛⌄ to represent an interval-based

encoding.

Example. As shown in Table 1a, the interval-based encoding of 𝑝1 w.r.t. 𝑝0 is ⎷1, 7, 12, 22⌄.

Definition 4.2 (Padding). Given an interval (︀𝑎,𝑏) where 𝑎 < 𝑏, the function pad(𝑎,𝑏) denotes a
continuous sequence 𝑝 = ∐︀𝑎,𝑎+1,⋯, 𝑏−1̃︀ by padding the interval with the missing numbers. Formally,
𝑎 = 𝑝(︀1⌋︀, 𝑏 − 1 = 𝑝(︀⋃︀𝑝 ⋃︀⌋︀, and ∀𝑖 ∈ (︀1, ⋃︀𝑝 ⋃︀ − 1⌋︀.𝑝(︀𝑖⌋︀ + 1 = 𝑝(︀𝑖 + 1⌋︀.

Example. Given an interval (︀1, 4), pad(1, 4) = ∐︀1, 2, 3̃︀.
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Definition 4.3 (Encoding Expansion). Given an interval-based encoding 𝑒 and 𝑖 ∈ (︀1, ⋃︀𝑒 ⋃︀⇑2⌋︀, the
encoding expansion operator 𝑒𝑥𝑝𝑎𝑛𝑑() applies pad() to every interval (︀𝑒(︀2𝑖 − 1⌋︀, 𝑒(︀2𝑖⌋︀), namely,

𝑒𝑥𝑝𝑎𝑛𝑑(𝑒) =
⋃︀𝑒⋃︀⇑2

∑
𝑖=1

𝑝𝑎𝑑(𝑒(︀2𝑖 − 1⌋︀, 𝑒(︀2𝑖⌋︀) = 𝑝𝑎𝑑(𝑒(︀1⌋︀, 𝑒(︀2⌋︀) +⋯ + 𝑝𝑎𝑑(𝑒(︀⋃︀𝑒 ⋃︀ − 1⌋︀, 𝑒(︀⋃︀𝑒 ⋃︀⌋︀)

Example. Assuming a program has the interval-based encoding 𝑒 = ⎷1, 4, 6, 9⌄, then 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒) =
pad(1, 4) + pad(6, 9) = ∐︀1, 2, 3̃︀ + ∐︀6, 7, 8̃︀ = ∐︀1, 2, 3, 6, 7, 8̃︀.
Definition 4.4 (Canonical Encoding). Given the minimal program min, a program 𝑝 , and an

interval-based encoding 𝑒 of 𝑝 w.r.t. min, 𝑒 is canonical if and only if 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒) is lexicographically
minimum among all interval-based encodings of 𝑝 w.r.t. min, i.e., ⇑∃ 𝑒′ . 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒′) < 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒). Note
that 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒′) < 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒) is the lexicographic order defined in definition 2.3.

Example. Table 1 lists three sets of encodings w.r.t. three different base programs, and Table 1a

shows the compact encoding of four programs w.r.t. 𝑝0. We take 𝑝2 as a concrete example to

illustrate definition 4.1 and definition 4.4. In Table 1a, the canonical interval-based encoding of 𝑝2
is a compact array 𝑒 = ⎷1, 7, 12, 22⌄:
(1) 𝑒 has an even number of elements (i.e., ⋃︀𝑒 ⋃︀ = 4).
(2) the elements in 𝑒 are sorted in ascending order.

(3) the concatenation of 𝑝0(︀𝑒(︀1⌋︀ ∶ 𝑒(︀2⌋︀⌋︀ and 𝑝0(︀𝑒(︀3⌋︀ ∶ 𝑒(︀4⌋︀⌋︀ equals 𝑝2, that is, 𝑝0(︀𝑒(︀1⌋︀ ∶ 𝑒(︀2⌋︀⌋︀ +
𝑝0(︀𝑒(︀3⌋︀ ∶ 𝑒(︀4⌋︀⌋︀ = 𝑝0(︀1 ∶ 7⌋︀ + 𝑝0(︀12 ∶ 22⌋︀ = 𝑝2.

(4) 𝑒 is the canonical encoding by definition 4.4. There is no other interval-based encoding 𝑒′

such that 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒′) lexicographically less than 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒).
Note that 𝑝2 is generated from 𝑝0 by deleting int a = 0; (i.e., deleting 𝑝0(︀6 ∶ 11⌋︀ from
𝑝0), and we can obtain the following origin information: 𝑝2(︀1 ∶ 6⌋︀ from 𝑝0(︀1 ∶ 6⌋︀, and
𝑝2(︀6 ∶ 17⌋︀ from 𝑝0(︀11 ∶ 22⌋︀. This origin information can also be encoded as a compact array

𝑒′′ = ⎷1, 6, 11, 22⌄, which satisfies the interval-based encoding in definition 4.1. However, 𝑒′′

is not the canonical encoding for 𝑝2 because of 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒) < 𝑒𝑥𝑝𝑎𝑛𝑑(𝑒′′).
4.3.3 Evolution of Encoding. We refer to the canonical interval-based encoding as compact
encoding in the rest of the paper. Specifically, the compact encoding of a program 𝑝 is computed

over a base program min. For different base programs, the same program can have different

encodings. For example, in Table 1a the encoding of 𝑝3 w.r.t. 𝑝0 is ⎷1, 11, 21, 22⌄, whereas in Table 1b

its encoding w.r.t. 𝑝4 is ⎷1, 11, 16, 17⌄ and the one w.r.t. 𝑝7 is ⎷1, 11, 14, 15⌄ in Table 1c.

The function CompactEncode in Algorithm 4 computes the compact encoding of 𝑝 w.r.t. min.
Starting from line 5, it iterates through 𝑝 from the head. For each element 𝑝(︀𝑖⌋︀, CompactEncode
locates the first element matching 𝑝(︀𝑖⌋︀ in min from the position min_index on line 6∼line 8.

Please note that CompactEncode has found the start of an interval (i.e., min_index on line 8).

In the following line 9∼line 11, this function searches for the end of the current interval by con-

tinuously advancing both 𝑖 and min_index, until min_index has reached the end of min or

min(︀min_index⌋︀≠𝑝(︀𝑖⌋︀ on line 9; when the loop exits, min_index is the end of the current interval,

and added to the compact encoding on line 12. Note that the parameter 𝑝 of CompactEncode is a

proper subsequence of min, so CompactEncode always returns a valid canonical interval-based

encoding.

The function CompactDecode is straightforward, as it reconstructs the program 𝑝 from its

compact encoding by interpreting definition 4.1, especially the third condition in the definition, i.e.,
∑⋃︀𝑒⋃︀⇑2𝑖=1 min(︀𝑒(︀2𝑖 − 1⌋︀ ∶ 𝑒(︀2𝑖⌋︀⌋︀ = 𝑝 .
Time Complexity. Both algorithms are linear in terms of time complexity. In particular, the time

complexity of CompactEncode is 𝑂(⋃︀𝑝 ⋃︀ + ⋃︀min⋃︀), and CompactDecode is 𝑂(⋃︀𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔⋃︀ + ⋃︀min⋃︀).
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Algorithm 4: Compact Encoding and Decoding

1 Function CompactEncode(min, 𝑝):
Input: min: a program, s.t., 𝑝 ⊏ min
Input: 𝑝 : a program to be encoded

Output: The canonical, compact encoding of 𝑝 w.r.t. min
2 result← (︀⌋︀
3 min_index← 1

4 𝑖 ← 1

5 while 𝑖 <= ⋃︀𝑝 ⋃︀ do
// scan for the start of the next interval.

6 while min(︀min_index⌋︀ ⇑= 𝑝(︀𝑖⌋︀ do
7 min_index← min_index + 1
8 result← result + (︀min_index⌋︀

// scan for the exclusive end of the next interval.

9 while min_index ≤ ⋃︀min⋃︀ ∧min(︀min_index⌋︀ = 𝑝(︀𝑖⌋︀ do
10 min_index← min_index + 1
11 𝑖 ← 𝑖 + 1
12 result← result + (︀min_index⌋︀
13 return result

14 Function CompactDecode(min, encoding):
Input: min: a program
Input: encoding: a canonical, compact encoding of a program 𝑝 w.r.t. min
Output: 𝑝 : the program of which encoding is w.r.t. min

15 𝑝 ← (︀⌋︀
16 for 𝑖 ← 1 to ⋃︀encoding⋃︀⇑2 do
17 start← encoding(︀2 ∗ 𝑖 − 1⌋︀
18 end← encoding(︀2 ∗ 𝑖⌋︀
19 𝑝 ← 𝑝 +min(︀start ∶ end⌋︀
20 return 𝑝

4.3.4 Cache Refresh. Throughout the whole duration of program reduction, there is a con-

tinuously updated minimal program min which satisfies 𝜓 . Initially min is 𝑃 ; the size of min is

monotonically decreasing, because all variants are generated from min (viz., line 8 in Algorithm 3)

and min is updated to the variant satisfying𝜓 on line 12 in Algorithm 3; in the end min is the final

result of program reduction. Based on the procedure above, we have the following property of min.

Lemma 4.1 (Subseqence Relation of Minimal Programs). Let min𝑖 denote the minimal
program at time 𝑡𝑖 , and min𝑗 denote the minimal one at time 𝑡 𝑗 , where min𝑖 ⇑= min𝑗 and 𝑡𝑖 < 𝑡 𝑗 . Then
min𝑗 is a proper subsequence of min𝑖 , i.e., min𝑗 ⊏ min𝑖 .

Proof. In Algorithm 3, each minimal program is derived from its previous minimal program

(viz., line 8 and line 12). Therefore, the history of values of min from min𝑖 to min𝑗 can be represented

as a sequence ℎ = ∐︀min𝑖 ,min𝑖+1,min𝑖+2,⋯,min𝑗 ̃︀, where ∀𝑘 ∈ (︀1, ⋃︀ℎ⋃︀) ∶ ℎ(︀𝑘 + 1⌋︀ ⊏ ℎ(︀𝑘⌋︀. Based on the

transitivity property in lemma 2.1, we can prove min𝑗 ⊏ min𝑖 . □

Example. in the contrived program reduction process in Figure 1, min has four values from the

start of the program reduction till the end, i.e., 𝑝0, 𝑝4, 𝑝7 and 𝑝9. It is trivial to see 𝑝9 ⊏ 𝑝7 ⊏ 𝑝4 ⊏ 𝑝0.
Theorem 4.2 (Safety of Cache Refresh). Let min denote the minimal program at any time

𝑡 during a program reduction process. If 𝑝 ⇑⊏ min, then 𝑝 will never be generated by any program
transformation in T in the remainder of the program reduction process after 𝑡 .
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Proof. Proof by contradiction. Assume 𝑝 can be generated by 𝜏 ∈ T from the minimal program

min′ at time 𝑡 ′ (𝑡 ′ > 𝑡 ), i.e., 𝑝 = 𝜏(min′). As 𝜏 is a program transformation which deletes tokens

from min′, we have 𝑝 ⊏ min′. Based on lemma 4.1, we know min′ ⊏ min. Based on the transitivity

of the subsequence relation in lemma 2.1, we can further conclude 𝑝 ⊏ min, which contradicts the

condition 𝑝 ⇑⊏ min in the theorem. □

Again in Figure 1, right after 𝑝2 is generated and tested not to satisfy the property, 𝑝2 is added to

cache. But when the second min variant 𝑝4 is found, we see that 𝑝2 is not a subsequence of 𝑝4, and

according to Theorem 4.2, we can safely remove 𝑝2 from cache. Moreover, we cannot compute

a compact encoding for 𝑝2 w.r.t. either 𝑝4 or 𝑝7. This is also why in Table 1, 𝑝2 only appears in

Table 1a w.r.t. 𝑝0, but not in the other two tables. Notice that the lossless compression of RCC is the

necessary foundation of the cache-refresh algorithm. Lossy compression such as SHA cannot adopt

such a cache-refreshing algorithm because it is impossible to determine if a variant is a proper

subsequence of other variant a by comparing their hash digests.

5 EVALUATION

We conducted comprehensive evaluations to demonstrate the advantages of the proposed caching

schemes in the following aspects: 1 memory efficiency, 2 effectiveness in speeding up pro-

gram reduction, and 3 generality to work with different program reduction algorithms. We also

conducted ablation experiments to investigate the effect of the two main components of RCC: com-

pact encoding and cache refreshing. Additionally, we investigated two different cache refreshing

mechanisms.

5.1 Experiment Design

5.1.1 Baseline. Our baseline is the string-based caching (STR) algorithm discussed in §2.2.3, the

state of the art proposed in literature [20]. We implemented the proposed caching schemes (ZIP,
SHA, and RCC) on top of Perses [43], the state-of-the-art language-agnostic program reduction

algorithm. To demonstrate the generalizability of RCC, we also implemented RCC on HDD [34],

one of the representative, legendary algorithms in program reduction. The core idea of HDD is

adopted by many subsequent studies [18, 19, 25, 38], including Perses. Compared to HDD, Perses

leverage grammar to avoid generating syntactically invalid program in reduction.

5.1.2 Research Questions. We aim to answer the following research questions in our evaluation.

RQ1 (Memory Efficiency): Which caching scheme demonstrates the best memory efficiency in
program reduction?
We measure and compare the memory footprint of STR, ZIP, SHA, and RCC in HDD and

Perses. Concretely, for each caching scheme, we measure the peak cache size and the average cache

size. The former is the highest amount of memory consumption in the reduction, while the latter

provides a general view of memory consumption over time.

RQ2 (Program Reduction Efficiency): To what extent can caching schemes improve the efficiency
of program reduction?

We run HDD and Perses without caching or with different caching schemes on the benchmark

and measure their wall time and the number of queries. We then particularly compare the program

reduction runs without caching to those with caching in terms of program reduction efficiency (i.e.,
number of queries and reduction time). Moreover, by comparing the number of queries using STR
and RCC, we can also validate the safety of cache refreshing in RCC, i.e., none of the removed

entries in RCC will be generated in the subsequent program reduction process.
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RQ3 (Effect of Compact Encoding and Refreshable Caching):What are the effects of compact
encoding and refreshable caching of RCC in program reduction?
To study compact caching, the lossless, domain specific compression technique in RCC, we

implement CC scheme by disabling cache refreshing in RCC on top of Perses. We then compare

Perses+CC against other schemes to contrast the effect of compact encoding. We implemented

Perses+RSTR by adding cache refreshing to STR, and then plot the memory consumption over

time to observe the memory footprint changes before and after cache refreshing events.

5.1.3 Evaluation Settings.
Benchmark Suite. To reassemble a realistic workload for program reduction algorithms, we

build a C program benchmark consisting of 31 subjects. 20 of them are collected by Perses [43]

from the official bug repositories of GCC and Clang, and they are later used in literature [16, 48, 50].

We further collect 11 from the official bug repositories of GCC and Clang. These 31 programs have

79,941.7 tokens on average, and each of them triggers either a crash or miscompilation bug in at

least one stable compiler release. To the best knowledge of the authors, this is the largest benchmark

suite from real C compiler bug repositories. The sizes of these subjects and the diverse types of

bugs make this benchmark simulate a representative application scenarios of program reductions

in the real world. Table 2 shows the detailed information of each subject in our benchmark suite.

Experiment Environment. To simulate the computation environment of software developers,

all experiments were conducted on cloud virtual machines running Ubuntu 20.04 LTS. Each virtual

machine is configured with AMD EPYC 7763v CPU and 384 GB RAM.

Cache Profiling. We used ObjectExplorer [1] to measure the memory footprint of the cache

object. Since memory profiling is time-consuming and can introduce runtime overhead, we con-

ducted evaluations of memory footprint and time measurement in separate runs.

5.2 RQ1: Memory Efficiency

We study memory efficiency in two aspects. First, we measure the peak memory footprint of

different caching schemes to investigate their worst-case space complexity. Second, we measure

the average cache size to understand the overall memory consumption over time.

5.2.1 Peak Cache Size. We first measured the peak cache size of each caching scheme. Table 3

shows the peak cache size in Kilobytes of different caching schemes in HDD and Perses.

STR. In both HDD and Perses, STR has the largest memory consumption. On average, the

peak cache sizes of HDD+STR and Perses+STR are 18.06 GB and 145.56 MB, respectively. In the

extreme case (i.e., clang-27137), STR consume 98.67 GB memory in HDD and 698.91 MB in Perses.

Such a large memory consumption poses a major concern for developers to adopt it in program

reduction [37].

ZIP and SHA. The peak cache sizes of ZIP and SHA are much smaller than STR. On average, the

peak cache sizes of ZIP in HDD and Perses are 2.95 GB and 24.55 MB, which are 84.34% and 82.99%

smaller than STR, respectively. SHA further reduces the cache size to 27.70 MB and 679.3 KB in

HDD and Perses. This is because ZIP and SHA store a compressed version of program variants,

instead of their string representations.

RCC. RCC demonstrates the best memory efficiency by reducing the peak memory footprint

to 1.01 MB and 50.5 KB in HDD and Perses. On average, compared to the second-best scheme

SHA, the memory consumption of RCC is only 3.29% and 6.12% of the peak cache size of SHA in

HDD and Perses, respectively. The reason is that RCC takes the advantage of compact encoding to

reduce the size of each key in cache, and cache refresh to reduce the number of keys stored in cache.

With such a small peak cache size, the overhead brought by RCC to system memory is negligible.
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Table 2. The Statistics of the Subjects in Our Benchmark Suite. Column Original Size and Reduction
Size shows the number of tokens before and after program reduction. Column Query refers to the number
of property queries in program reduction. Column Time is the time of program reduction measured in
seconds.

Subject Original Size

HDD Perses

Query Time Reduction Size Query Time Reduction Size

clang-18556 27,511 175,197 9,515 439 3,266 4,012 227

clang-18596 44,097 226,832 12,904 425 3,589 4,095 266

clang-19595 31,280 163,032 9,677 230 2,435 3,626 156

clang-20680 48,173 293,610 17,295 379 6,052 6,890 549

clang-21467 28,283 337,278 17,089 432 4,698 5,741 177

clang-21582 38,964 323,280 17,202 1,067 9,005 4,458 649

clang-22337 70,770 262,252 10,998 564 4,906 1,355 268

clang-22382 21,068 276,550 6,566 194 3,019 348 144

clang-22704 184,444 187,773 9,078 81 2,359 992 78

clang-23309 38,647 448,300 22,234 1,035 6,233 1,239 464

clang-23353 30,196 369,063 11,970 143 3,324 439 98

clang-25900 78,960 307,042 10,378 462 3,200 547 239

clang-26350 123,811 352,659 44,698 429 4,008 2,377 195

clang-26760 209,577 200,694 19,096 303 2,765 1,141 116

clang-27137 174,538 715,750 172,058 531 5,823 4,828 180

clang-27747 173,840 95,849 2,914 332 2,077 626 117

clang-31259 48,799 330,658 17,971 590 3,560 1,969 406

gcc-59903 57,581 304,717 13,043 582 5,322 2,441 316

gcc-60116 75,224 302,558 13,455 1,304 6,331 1,798 488

gcc-60452 72,241 383,540 17,689 762 5,323 1,009 342

gcc-61047 17,179 202,335 7,687 556 2,450 753 270

gcc-61383 32,449 290,973 11,710 427 4,814 3,284 272

gcc-61917 85,359 234,941 11,010 232 3,746 816 150

gcc-64990 148,931 276,826 28,527 390 4,145 2,188 240

gcc-65383 43,942 255,402 9,619 234 2,724 782 153

gcc-66186 47,481 273,728 16,376 713 3,925 2,785 328

gcc-66375 65,488 353,404 29,482 856 4,854 3,251 440

gcc-66412 72,241 383,540 17,721 762 5,323 1,002 342

gcc-66691 20,044 301,720 12,597 949 6,937 3,296 587

gcc-70127 154,816 396,903 64,941 669 3,392 2,854 301

gcc-70586 212,259 382,999 72,787 967 5,523 4,846 159

Mean 79,942 303,529 23,816 550 4,359 2,445 281

To understand the scalability of each caching scheme. we further analyzed the correlation between

the peak cache size and two properties of subjects, i.e., the size (i.e., number of tokens) of subjects

and the number of property queries in program reduction. These two properties approximate the

complexity of each subject in program reduction. Figure 2 plots the peak cache size of proposed

caching schemes and the baseline w.r.t. the size and number of queries of each subject in HDD

and Perses, respectively. STR and ZIP demand more memory when the size of input programs

and the number of property queries increase, and thus they are not capable of handling large and

complex subjects for program reduction. As shown in Figures 2c and 2d, the peak cache size of

SHA is proportional to the number of queries, since the number of keys in SHA increases when

the number of property queries increases and each key has the same size in memory. By contrast,

since the number of keys in RCC is regularly reduced by the cache refreshing and each key has

a small variable size, the peak cache size of RCC does not always increase when input program
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Table 3. Peak Cache Size (KB) in HDD and Perses

Subject

HDD Perses

STR ZIP SHA RCC STR ZIP SHA RCC

clang-18556 2,884,142 310,475 16,494 656 32,793 4,509 474 41

clang-18596 6,057,853 648,072 20,743 876 55,051 7,605 565 43

clang-19595 3,778,855 498,398 14,413 780 43,503 6,483 349 27

clang-20680 10,226,005 1,317,369 28,592 1,122 81,345 13,400 1,204 92

clang-21467 8,952,624 1,420,649 30,863 974 58,724 11,026 709 35

clang-21582 9,004,373 1,293,164 30,565 1,311 109,522 19,949 1,511 119

clang-22337 14,589,500 2,322,056 24,181 824 141,930 23,631 787 44

clang-22382 4,168,392 743,016 25,280 709 34,340 6,644 484 60

clang-22704 15,967,138 769,719 16,927 336 259,634 14,171 343 46

clang-23309 15,073,216 2,910,031 42,996 1,191 96,980 20,480 965 60

clang-23353 9,934,809 1,777,326 33,409 688 85,239 15,976 582 99

clang-25900 8,976,320 1,700,111 27,058 627 104,835 18,551 510 34

clang-26350 35,923,321 6,665,960 31,140 1,218 289,411 55,645 591 20

clang-26760 27,386,315 4,182,515 16,662 267 221,971 34,509 430 84

clang-27137 98,674,879 18,762,875 62,193 3,106 698,906 138,850 938 26

clang-27747 1,083,924 173,705 9,188 283 22,151 3,767 323 44

clang-31259 13,161,378 2,009,604 30,050 825 83,825 14,143 493 37

gcc-59903 13,926,538 1,989,642 28,520 834 152,856 24,603 853 22

gcc-60116 8,193,094 1,151,006 28,684 1,302 141,402 22,593 953 33

gcc-60452 22,320,641 3,898,990 36,189 1,208 159,600 28,716 851 25

gcc-61047 2,851,067 585,659 18,526 708 23,959 5,005 403 70

gcc-61383 8,875,442 1,479,231 27,309 881 72,506 13,594 693 59

gcc-61917 15,909,599 1,910,068 20,693 632 125,993 17,633 569 87

gcc-64990 39,219,366 3,886,376 25,217 1,002 278,744 30,772 610 46

gcc-65383 9,982,340 2,038,062 22,617 755 66,015 13,318 397 28

gcc-66186 10,103,904 1,445,763 24,677 1,027 67,396 10,659 549 38

gcc-66375 16,855,199 3,297,347 31,815 1,154 105,141 20,347 648 26

gcc-66412 22,320,641 3,911,712 36,189 1,311 159,600 28,716 851 59

gcc-66691 4,359,484 731,768 27,972 1,327 60,555 11,956 985 78

gcc-70127 42,270,240 6,927,089 34,073 1,819 257,950 42,895 556 52

gcc-70586 56,885,504 10,816,579 35,332 1,490 420,536 81,023 885 29

Mean 18,061,809.7 2,954,010.8 27,695.7 1,007.9 145,561.7 24,553.9 679.3 50.4

Relative Diff. w.r.t. STR 0% 84.34% 99.72% 99.99% 0% 82.99% 99.23% 99.93%

Ratio w.r.t. RCC 18,605.68 2,808.75 30.38 1 4,097.68 714.02 16.35 1

1
Relative Diff. w.r.t. STR : (STR − (︀Caching Scheme⌋︀) ÷ STR × 100%.

2
Ratio w.r.t. RCC : (︀Caching Scheme⌋︀ ÷ RCC.

becomes more complex. As shown in Figure 2, RCC has a much flatter curve than others, and its

cache size barely increases when the input program size scales up (e.g., 10 folds, from 17,179 to

212,259 tokens) and the number of queries increases.

Finding 1.1: Compared to STR, the three caching schemes proposed in this study, i.e., ZIP,
SHA and RCC, are effective to reduce the peak cache size in both HDD and Perses. RCC
has the smallest peak cache size in all 31 subjects, which is 96.4% and 91.74% smaller than

the second-best caching scheme in HDD and Perses.
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Fig. 2. Scalability of Caching Scheme on 31 Subjects in HDD and Perses. Peak cache size (y-axis) is in
log scale.

5.2.2 Average Cache Size. To understand the memory footprint in the entire reduction process,

we further profiled the cache size of each caching scheme over time. Figure 3 visualizes the memory

consumption of caching schemes in Perses over time on gcc-70586 (the subject with the most

tokens, i.e., 212,159). The memory consumption of STR, ZIP and SHA all accumulate over time, as

shown in Figures 3a and 3b. In contrast, Figure 3c shows that the cache size of RCC not only always

retains at a low level, but also does not monotonically increase along with time. This is because

RCC regularly refreshes the cache to remove the program variants that will not be generated in

the subsequent reduction.
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Fig. 3. Memory Consumption over Time on subject gcc-70586.
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Table 4. Average Cache Size (KB) of SHA and RCC in Perses. The number in the parentheses is the ratio
of the average cache size of RCC w.r.t. the average ratio of SHA.

Subject SHA RCC Subject SHA RCC

clang-18556 274.10 9.70 (3.5%) gcc-59903 372.38 8.29 (2.2%)

clang-18596 296.05 11.45 (3.9%) gcc-60116 524.40 14.97 (2.9%)

clang-19595 271.34 11.03 (4.1%) gcc-60452 287.66 5.61 (2.0%)

clang-20680 516.68 12.80 ( 2.5%) gcc-61047 184.39 10.77 (5.8%)

clang-21467 288.62 5.37 (1.9%) gcc-61383 369.21 11.55 (3.1%)

clang-21582 516.68 12.80 (2.5%) gcc-61917 200.12 3.71 (1.9%)

clang-22337 302.93 5.78 (1.9%) gcc-64990 252.94 7.43 (2.9%)

clang-22382 318.63 3.68 (1.2%) gcc-65383 177.39 3.41 (1.9%)

clang-22704 112.33 4.16 (3.7%) gcc-66186 266.50 10.79 (4.0%)

clang-23309 363.22 7.12 (2.0%) gcc-66375 325.71 15.87 (4.9%)

clang-23353 270.58 9.26 (3.4%) gcc-66412 287.96 6.24 (2.2%)

clang-25900 202.17 6.06 (3.0%) gcc-66691 567.13 17.31 (3.1%)

clang-26350 252.16 7.15 (2.8%) gcc-70127 289.27 10.66 (3.7%)

clang-26760 138.70 3.11 (2.2%) gcc-70586 630.92 5.96 (0.9%)

clang-27137 337.49 7.44 (2.2%)

clang-27747 142.11 4.50 (3.2%)

clang-31259 417.61 10.67 (2.6%)

Mean Ratio of RCC w.r.t. SHA: 2.8%

We further measured the average cache sizes of SHA and RCC in Perses, since they have

significant advantages over STR and ZIP. Table 4 shows the results. On average, the average cache

size of RCC is only 50.5 KB while the average cache size of SHA is 679.3 KB. In other words, the

average cache size of RCC is only 2.8% (0.9% ∼ 2.8%) of the one of SHA. Such advantages come

from the two key features of RCC, i.e., compact encoding and cache refresh. The former minimizes

the size of each cache key and the latter reduces the number of keys.

Finding 1.2: Throughout the entire program reduction process, RCC maintains a consis-

tently low memory consumption (≤ 20 KB), which is 96.4% and 91.74% smaller than the

second-best caching scheme in HDD and Perses.

Answer to RQ1: While all proposed caching schemes improve memory efficiency, RCC
outperforms others by at least one magnitude, in terms of both peak cache size and average

cache size.

5.3 RQ2: Program Reduction Efficiency

We evaluated the program reduction efficiency of the proposed caching schemes by measuring the

number of queries and reduction time respectively. Table 5 shows the information on both queries

and reduction time of different caching schemes in HDD and Perses.

5.3.1 Number of Queries. In program reduction, it may take considerable time to execute a

property query and a typical program reduction process can have thousands of queries. Thus, it is

common to use the number of queries to measure the program reduction efficiency [17, 34, 43, 52].

In this section, we aim to study whether the proposed schemes can effectively avoid the redundant

queries in program reductions.
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Table 5. Program Reduction Efficiency Comparison. All time is measured in seconds. Columns STR, ZIP,
SHA, RCC show the reduction time(in seconds) using each cache scheme respectively.

HDD Perses

Subject No Caching Caching No Caching Caching

Query Time Query STR ZIP SHA RCC Query Time Query STR ZIP SHA RCC

clang-18556 175,197 9,515 69,438 7,755 7,925 7,766 7,751 3,266 4,012 2,331 3,934 3,942 3,937 3,927

clang-18596 226,832 12,904 88,618 10,519 10,917 10,530 10,508 3,589 4,095 2,797 3,987 3,997 3,991 3,981

clang-19595 163,032 9,677 60,139 7,987 8,283 7,984 7,969 2,435 3,626 1,805 3,552 3,560 3,554 3,544

clang-20680 293,610 17,295 111,317 14,247 14,871 14,243 14,140 6,052 6,890 4,228 6,235 6,373 6,230 6,193

clang-21467 337,278 17,089 129,033 13,470 14,416 13,515 13,444 4,698 5,741 3,545 5,670 5,677 5,665 5,656

clang-21582 323,280 17,202 127,888 12,671 13,409 12,721 12,644 9,005 4,458 6,745 3,264 3,288 3,269 3,256

clang-22337 262,252 10,998 99,207 8,130 9,597 8,199 8,113 4,906 1,355 3,783 1,192 1,226 1,206 1,190

clang-22382 276,550 6,566 104,047 3,942 4,263 3,950 3,932 3,019 348 2,380 303 307 301 287

clang-22704 187,773 9,078 71,339 7,529 8,097 7,337 7,175 2,359 992 1,811 814 823 812 795

clang-23309 448,300 22,234 183,365 16,196 17,558 16,101 15,846 6,233 1,239 4,602 980 995 979 971

clang-23353 369,063 11,970 140,447 8,414 9,295 8,515 8,298 3,324 439 2,812 401 407 399 389

clang-25900 307,042 10,378 111,939 7,274 8,152 7,233 7,196 3,200 547 2,500 477 493 474 464

clang-26350 352,659 44,698 130,430 41,284 47,433 41,298 40,820 4,008 2,377 3,088 2,127 2,172 2,123 2,105

clang-26760 200,694 19,096 70,292 17,287 20,109 17,286 16,435 2,765 1,141 2,183 1,030 1,059 1,031 1,018

clang-27137 715,750 172,058 260,138 162,080 176,050 162,671 161,709 5,823 4,828 4,911 4,225 4,326 4,217 4,210

clang-27747 95,849 2,914 39,065 1,866 1,971 1,860 1,856 2,077 626 1,660 548 553 545 530

clang-31259 330,658 17,971 125,359 13,702 14,804 13,571 13,417 3,560 1,969 2,418 1,136 1,144 1,130 1,119

gcc-59903 304,717 13,043 118,605 10,203 11,439 9,977 9,857 5,322 2,441 4,180 2,170 2,185 2,132 2,121

gcc-60116 302,558 13,455 119,412 9,741 10,263 9,659 9,651 6,331 1,798 4,556 1,323 1,333 1,316 1,309

gcc-60452 383,540 17,689 153,010 13,602 15,773 13,398 13,372 5,323 1,009 4,178 886 918 894 885

gcc-61047 202,335 7,687 78,590 4,847 5,171 4,869 4,845 2,450 753 1,935 574 588 583 569

gcc-61383 290,973 11,710 113,247 8,771 9,649 8,663 8,594 4,814 3,284 3,475 2,197 2,208 2,195 2,185

gcc-61917 234,941 11,010 88,297 8,638 9,817 8,780 8,596 3,746 816 2,936 723 735 718 713

gcc-64990 276,826 28,527 103,848 25,413 28,596 26,170 25,411 4,145 2,188 3,086 1,925 1,959 1,917 1,908

gcc-65383 255,402 9,619 96,839 7,015 8,087 7,165 6,967 2,724 782 2,002 650 665 643 635

gcc-66186 273,728 16,376 101,388 12,733 13,328 12,595 12,541 3,925 2,785 2,666 1,892 1,891 1,881 1,865

gcc-66375 353,404 29,482 133,296 24,126 25,993 24,130 23,770 4,854 3,251 3,137 1,926 1,947 1,930 1,922

gcc-66412 383,540 17,721 153,010 13,698 15,988 13,715 13,534 5,323 1,002 4,177 886 915 894 883

gcc-66691 301,720 12,597 116,175 8,934 9,276 8,922 8,895 6,937 3,296 4,640 2,042 2,048 2,039 2,029

gcc-70127 396,903 64,941 143,553 58,323 63,526 57,810 57,648 3,392 2,854 2,771 2,153 2,180 2,147 2,135

gcc-70586 382,999 72,787 149,319 67,642 73,292 65,952 65,937 5,523 4,846 4,451 3,757 3,812 3,745 3,733

Mean 303,529 23,816 115,827 20,259 22,173 20,212 20,038 4,359 2,445 3,284 2,032 2,056 2,029 2,017

As aforementioned, program reducers like HDD and Perses issue redundant queries. As per

numbers in Table 5, caching effectively reduces the number of queries issued in HDD by 61.8%

from 303,529 (column 2) to 115,827 (column 4). Meanwhile, Perses with caching only issues 3,284

(column 15) queries while Perses along issues 4,359 (column 11). In conclusion, caching is effective

in reducing the number of queries in HDD and Perses.

Notice that with STR, ZIP, SHA or RCC, HDD and RCC always issue the same number of

queries, as shown in Table 5; this consistency reveals the correctness of each scheme. It is worth

noting that RCC will not cause extra queries even though it refreshes the cache periodically. This

result confirms the safety of cache refreshing in RCC, i.e., the removed programs will not be

generated in the remaining program reduction process, formally proved in §4.3.4.

Finding 2.1: On average, caching can avoid 61.8% and 24.3% of property queries in HDD

and Perses, respectively.
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5.3.2 Reduction Time. Table 5 shows the runtime of program reduction with each caching scheme

and without caching. We focus on the discussion from the following two perspectives.

With RCC v.s. Without Caching. Comparing to program reduction without caching, RCC
reduces the time by 22.8% in HDD and 18.2% in Perses. Specifically, the average program reduction

runtime in HDD without caching is approximately 6.6 hours (23,816 seconds in column 3, Table 5),

while RCC shortens the average reduction time to around 5.6 hours (20,038 seconds). In the best

cases, RCC shortens the reduction time by 40.1% and 43.2% in HDD and Perses, respectively. Such

an improvement in efficiency facilitates the debugging process and saves the time and computation

resources for software developers.

We believe that such a speed-up is significant from four perspectives. First, many researches

in compiler testing, such as CSmith [51], YARPGen [31] and EMI [26, 27, 41], identified hundreds

or thousands of bugs in C compilers. Given the large number of input programs to be reduced,

saving around 20% of the time in program reduction can greatly facilitate the workflow of testing

and debugging. Second, in industry, program reduction is one of the daily routines of automated

testing. Developers rely on program reduction to reduce interesting programs found by automated

test techniques such as fuzzing. Reducing the time in program reduction up to 43.2% can improve

the productivity of software developers. Moreover, program reduction also has broad applications

in other domains [11], such as program optimization [39] and program understanding [3], meaning

that users in these fields can also benefit from the increased efficiency in program reduction.

Lastly, shorter runtime is preferred in society, aligning with the principles of green and sustainable

computing.

RCC v.s. Others. In HDD, RCC, SHA and STR have similar performance in terms of runtime.

RCC has the shortest runtime which is 1.07% faster than HDD+SHA. We notice that ZIP runtime

performance is slower than others in HDD and we conjecture that the compression process of ZIP
is more time-consuming than others. In Perses, the performance of all four caching schemes are

statistically comparable with each other, but RCC still surpasses the baseline method SHA by a

small fraction (1.05%). Such results demonstrate the efficiency of RCC in encoding and refreshing.

Please note that although STR does not spend time in encoding, comparison between strings usually

take more time than one between the compact encoding of RCC, since the string representation of

a program usually has a larger size than compact encoding.

Finding 2.2: All caching schemes shorten the runtime to a similar extent, except ZIP in

HDD. Perses is slightly faster than the others by around 1%.

Answer to RQ2: Caching schemes can effectively avoid redundant queries, by 61.8% in

HDD and 24.3% in Perses, and shorten the reduction time up to 40.1% and 43.2%, respectively.

Perses outperforms the others by around 1% in terms of runtime.

5.4 RQ3: Effects of Compact Encoding and Cache Refreshing

To understand the individual effect of compact encoding and refreshable caching in RCC, we
conducted the following ablation study.

Compact Encoding. We constructed a variant caching scheme, CC, in Perses and measured its

peak cache size during the program reduction process (column 2 in Table 6). Perses+CC is a variant

of Perses+STR by replacing the string-based encoding with the compact encoding proposed by us.

It can also be viewed as a variant of Perses+RCC by disabling the cache refreshing. The programs
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Fig. 4. Memory Consumption over Time on subject gcc-70586. Figure 4a compares on memory con-
sumption over Time on subject gcc-70586. Figures 4b and 4c show a zoomed-in view of Perses+RSTR,
Perses+RCC and Perses+CC.

added into the cache will never be removed, and the encoding of each program is always computed

w.r.t. the input program.

Compact encoding leads to a minimal peak cache size. Figure 4a shows the memory consumption

of Perses+CC is only a fraction of Perses+STR. Perses+CC significantly reduces the memory

footprint (99.5% averagely). However, as shown in Figure 4c, without cache refreshing, the memory

footprint of Perses+CC accumulates over time and increases to 2 MB eventually. In other words,

the Compact Encoding is an effective compression technique that can reduce the size of cache,

while it cannot prevent the increase of the cache size over time.

Refreshable Caching. Similarly, we constructed a variant caching scheme, Perses+RSTR (see

column 3 in Table 6) by adding cache refreshing capability to Perses+STR. Instead of storing the

string of the source code as the cache key to the cache, we choose to add the list of program tokens,

so that Perses+RSTR can restore these variants from the cache keys and perform cache refreshing

effectively.

Figure 4a illustrates the effect of cache refreshing by comparing Perses+RSTR with Perses+STR.
As unnecessary entries in the cache are removed when new min programs are found, Perses+RSTR
effectively reduces the peak cache size by 93.8% on average when compared to Perses+STR. In
summary, refreshable cache ensures that the cache contains only the necessary elements during

the program reduction process, resulting in relatively small memory footprint. However, since the

entry of RSTR is in the form of strings, instead of compact encoding, the entire cache size is much

larger than RCC, especially at the beginning of program reduction process.

Answer to RQ3: Both compact encoding and cache refreshing are effective in improving

memory efficiency. Compact encoding minimizes the memory footprint of each cache

key, and cache refreshing removes stale cache keys in time to further minimize the whole

memory footprint of the cache.

6 DISCUSSION

6.1 Caching for Delta Debugging

We also studied the impact of caching on DD. However, DD is not as good at reducing structured

inputs, e.g., programs, as HDD and Perses; it issues more queries and takes much more time to

reduce a benchmark subject. Due to time limits, we could only finish a similar experiment on one

small subject, gcc-71626 (6,133 tokens). Table 7 shows the statistics.
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Table 6. Peak Cache Size (KB) of CC and RSTR

Peak Cache Size in Perses

Subject STR RSTR CC RCC

clang-18556 32,793 5,138 754 41

clang-18596 55,051 18,384 1,044 43

clang-19595 43,503 10,981 495 27

clang-20680 81,345 22,107 3,052 92

clang-21467 58,724 15,784 1,320 35

clang-21582 109,522 20,305 4,001 119

clang-22337 141,930 52,142 1,686 44

clang-22382 34,340 257 708 60

clang-22704 259,634 63 520 46

clang-23309 96,980 2,231 2,164 60

clang-23353 85,239 112 734 99

clang-25900 104,835 623 713 34

clang-26350 289,411 1,987 1,293 20

clang-26760 221,971 122 672 84

clang-27137 698,906 100,835 2,643 26

clang-27747 22,151 153 456 44

clang-31259 83,825 1,578 756 37

gcc-59903 152,856 3,387 1,776 22

gcc-60116 141,402 2,400 2,025 33

gcc-60452 159,600 54,621 1,838 25

gcc-61047 23,959 4,362 588 70

gcc-61383 72,506 718 1,345 59

gcc-61917 125,993 229 1,086 87

gcc-64990 278,744 4,077 1,303 46

gcc-65383 66,015 220 523 28

gcc-66186 67,396 1,066 944 38

gcc-66375 105,141 1,950 1,250 26

gcc-66412 159,600 58,656 1,838 59

gcc-66691 60,555 7,065 2,478 78

gcc-70127 257,950 918 929 52

gcc-70586 420,536 26,211 2,068 29

Mean 145,562 13,506 1,387 50

Relative Diff. w.r.t. STR 0.00% 89.583% 98.543% 99.932%

Ratio w.r.t. RCC 4,097.7 381.1 33.2 1.0

1
Relative Diff. w.r.t. STR : (STR − (︀Caching Scheme⌋︀) ÷ STR × 100%.

2
Ratio w.r.t. RCC : (︀Caching Scheme⌋︀ ÷ RCC.

Without caching, DD issues more than five millions queries and takes 29.7 hours to find the

1-minimal output. With RCC, DD only issued 1.5 millions queries, which is 73.0% improvement.

The overall time is significantly reduced to around 9.8 hours, which is 67.1% faster. Further, RCC
outmatches STR in DD in terms of time and memory footprint. Compared to STR (17.6 GB),

RCC takes only 208 KB. This result further demonstrates that RCC is a general approach for

deletion-based program reduction algorithms.

6.2 Sized-Based Refreshing

An alternative cache-refresh algorithm for RCC is to record the size of each variant program

and remove any programs of which the sizes are equal to or larger than min from cache. This is
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Table 7. Comparison of STR and RCC on DD.

DD DD+STR DD+RCC

Query 5,477,887 1,480,695 1,480,695

Time (s) 106,857 35,296 35,167

Cache Size (KB) N/A 17,641,803 208

because the program reduction process starting from min will not generate any variant programs

that are larger in size than min. We refer to this alternative as size-based refreshing and name the

implementation as RCCsize. Algorithm 5 details the sized-based refreshing in RCCsize. On line 5,

RCCsize compares the size of program 𝑝 with the size of min and only keeps the programs of which

the sizes are smaller than than min.

Algorithm 5: Size-Based Refreshing in RCCsize

1 Function SizeBasedRefreshCache(old_cache, prev, min):
Input: old_cache: the cache used previously

Input: prev: the previous min
Input: min: the current/new min

2 cache← ∅
3 for encoding ∈ old_cache do
4 𝑝′ ← CompactDecode(prev, encoding)
5 if ⋃︀𝑝′⋃︀ ≥ ⋃︀min⋃︀ then continue
6 cache← cache ∪ {CompactEncode(min, 𝑝′)}
7 return cache

Conceptually, the cache entries evicted by RCC are a superset of those by RCCsize, because

⋃︀𝑝′⋃︀ ≥ ⋃︀min⋃︀ is just one of the multiple sufficient conditions for 𝑝′ ⇑⊏ min. Specifically, RCC removes

the variant program entries from cache that cannot be derived from min in the rest of the program

reduction process; this process removes not only all the programs that have equal or larger size

than min, but also any programs that have smaller sizes than min and are not proper subsequences

of min.
To demonstrate the benefit of RCC over RCCsize, Figure 5 shows the memory footprint and

the cache entry count on subject clang-26760 in HDD and Perses. In terms of memory footprint,

the gap between RCC and RCCsize widens over time, especially towards the end of the program

reduction process. As for the cache key count, RCC constantly has noticeably fewer cache key

entries than RCCsize throughout the process in both HDD and Perses. RCC removes more cache

key entries and only has approximately 40% fewer entries than RCCsize in HDD. Furthermore,

size-based refreshing appears less effective in removing cache key entries when the size of min is

small, since the cache key entry count soars near the end of the process in both HDD and Perses.

6.3 Limitation and Future Work

6.3.1 Targeted Program Reduction Algorithms. The proposed caching schemes are agnostic to

most program reduction algorithms. The majority of these algorithms employ solely deletion-based

program transformations [16, 17, 34, 43, 52], which are well-supported by RCC. Language-specific
algorithms such as, C-Reduce [37], Jax [47] and JShrink [4], may contain non-deletion-based

transformations, which are usually specific to certain languages like C or Java. In RCC, if a non-
deletion-based transformation generates a variant, the variant can be processed as a cache miss
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Fig. 5. Comparison between RCC and RCCsize in terms of Memory Footprint (Line) and Cache Key Count
(Area) over Time on subject clang-26760.

due to no available encoding, resulting in a property test. However, this cache miss does not affect

the correctness of the reduction process.

Note that the cache-miss scenario due to non-deletion-based transformation is still rare. For

example, in C-Reduce, the majority of its program transformations are still language-agnostic

deletion-based, and only a minor fraction of its program transformations are non-deletion-based.

We investigated the program reduction process using C-Reduce on clang-22704, and we found that

8807 out of 8963 (98.3%) transformations are generic and deletion-based; 156 transformations (1.7%)

leverage C-specific knowledge, and quite a few of them are still deletion-based. Therefore, though

RCC currently does not support non-deletion-based transformations, the amount of redundant

queries caused by non-deletion-based transformations are likely to be marginal. As followup work,

we are making efforts to accommodate such non-deletion-based transformations.

6.3.2 Benchmark Suite. The subjects used in our benchmark suite may not cover all possible

programming languages and various bugs for program reduction. We followed the previous studies

in program reduction [25, 38, 43, 50, 53] and used the same benchmark in Perses [43]. Moreover,

we collected 11 more from the official GCC and LLVM bug repositories. In total, our benchmark

suite contains 31 C compiler bugs, which consists of programs that have the common size of

automatically generated files via fuzzing techniques such as CSmith [51] and EMI [26]. These bugs

cover both medium-scale and large-scale compiler bugs. To our best knowledge, this is the largest

benchmark suite from real C compiler bug repositories.

6.3.3 Language-agnostic Caching Scheme. Furthermore, the proposed caching schemes have no

assumption on the language of the program to be reduced and does not have any language-specific

optimizations. Even though we used the C/C++ programs in the evaluation, ZIP, SHA and RCC
are general caching schemes that can be used in the program reduction of other programming

languages.

6.3.4 Threats to Validity. A possible threat to validity is the implementation of RCC. To mitigate

this threat, we took two measures. First, we used intensive assertions and wrote test cases to

validate the correctness of computation steps in RCC, especially encoding and decoding. Second,

the implementation was reviewed by multiple authors to avoid possible mistakes.
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Another threat is the measurement of memory efficiency (i.e., cache size) and program reduction

efficiency (i.e., time and number of queries). For cache size, we adopted a third-party library to

measure the size of each caching scheme. Specially, the cache size includes the size of object that

stores cache entries and the size of all cache entries. The objects other than these objects in JVM,

such as the objects created for memory profiling, are explicitly excluded. As for time, all experiments

were conducted in a separate cloud virtual machine multiple times to avoid possible fluctuations

due to background tasks. For fair evaluations, we disabled assertions when measuring the time of

each caching scheme. In terms of the number of queries, we checked the number of queries across

different caching schemes and we did not find any case where the numbers of queries vary in

different caching schemes. Both the implementation and evaluation scripts are publicly available for

reproducibility and replicability at https://github.com/uw-pluverse/perses/tree/master/doc/RCC.md

7 RELATED WORK

We survey three lines of the closely related work.

7.1 Caching in Program Reduction

Hodován et al. [20] is the first literature on program reduction that formally presented the idea of

test outcome caching. Based on the observation that the different configuration yields the same

variant from time to time during the process, it leveraged the string-based caching approach to store

the pairs of the current best programs and their corresponding test outcomes. Similarly, C-Reduce,

a highly customized program reduction tool for C/C++, employed a simple string-based cache

approach at the level of passes to store the entire current best program [38].

As we discussed and evaluated in previous sections, STR scheme has larger overheads and poor

scalability. In contrast, ZIP and SHA are memory-efficient; especially, RCC presents a fresh way

for efficient caching while offering enormous scaling potential.

7.2 General Caching Algorithms

Caching is widely applied to software systems [5, 6, 30], e.g., caching contents in networks for

better user experience. In general, an application stores either prefethced data or pre-computed

results into a cache to facilitate the execution. To be cost-effective and to enable efficient use of

data, caches must be relatively small [15]. The general caching algorithm leverages the locality of

references, because temporal and spatial locality hint the likelihood of data to be accessed next.

When the cache is full, the algorithm must choose which items to discard to make room for new

ones; cache eviction algorithms aim to keep the cache a constant, compact size. Classical algorithms

include LRU [21, 35] and MRU [8, 9].

In the setting of program reduction, locality of references does not work well because temporal

locality rarely shows in program reduction. Furthermore, given the negligible memory overhead

of RCC, a program reduction algorithm equipped with RCC does not need the classical cache

eviction algorithms such as LRU and MRU to mitigate memory overhead.

7.3 Optimization for Program Reduction

There have been a great number of the program reduction techniques [4, 17, 19, 25, 43–45, 48, 52, 53].

Besides the cache, researchers also proposed other methods to improve the performance of program

reduction in diverse ways. For example, Hodován et al. [20] proposed two optimization techniques

as the pre-processing, including vertical tree squeezing and unresolvable tokens hiding, in order to

speed up program reduction. Kalhauge et al. introduced J-Reduce for Java bytecode reduction [22],

and recently they further reduced bytecode via propositional logic [23].
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All proposed caching schemes belong to the same category of performance optimization of

program reduction. They provides a memory-efficient cache for program reduction, which is

orthogonal to other optimization techniques.

8 CONCLUSION

This paper is the first effort to conduct systematic, extensive analysis of memory-efficient caching

schemes for program reduction. We introduce three effective schemes; two exploit readily available

compression libraries, namely ZIP and SHA. We also present a novel, domain-specific caching

scheme RCC to empower the program reduction by compact encoding and refreshable caching.

Our extensive evaluation on 31 real-world C compiler bugs demonstrates that caching schemes

help avoid issuing redundant queries by 61.8% and boost the runtime performance by 22.8%. For

memory efficiency, caching schemes ZIP and SHA cut down the memory overhead by 84.34% and

99.72%, compared to the state-of-the-art STR; furthermore, the highly-scalable, domain-specific

RCC dominates peer schemes, and outperforms the second-best SHA by remarkably 96.4%. As

generic, language-agnostic caching schemes, ZIP, SHA and RCC are readily applicable to program

reduction techniques and facilitate program reduction algorithms.

The implementation of all caching schemes is publicly available at https://github.com/uw-

pluverse/perses/tree/master/doc/RCC.md. Moreover, RCC has been enabled by default in Perses,

because of its efficiency and advantageously low memory footprint compared to the others.
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