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Networked Embedded Devices (NEDs) are increasingly targeted by cyberattacks, mainly due to their

widespread use in our daily lives. Vulnerabilities in NEDs are the root causes of these cyberattacks. Although

deployed NEDs go through thorough code audits, there can still be considerable exploitable vulnerabilities.

Existing mitigation measures like code encryption and obfuscation adopted by vendors can resist static

analysis on deployed NEDs, but are ineffective against protocol fuzzing. Attackers can easily apply protocol

fuzzing to discover vulnerabilities and compromise deployed NEDs. Unfortunately, prior anti-fuzzing

techniques are impractical as they significantly slow down NEDs, hampering NED availability.

To address this issue, we propose Armor—the first anti-fuzzing technique specifically designed for

NEDs. First, we design three adversarial primitives–delay, fake coverage, and forged exception–to break

the fundamental mechanisms on which fuzzing relies to effectively find vulnerabilities. Second, based

on our observation that inputs from normal users consistent with the protocol specification and certain

program paths are rarely executed with normal inputs, we design static and dynamic strategies to decide

whether to activate the adversarial primitives. Extensive evaluations show that Armor incurs negligible time

overhead and effectively reduces the code coverage (e.g., line coverage by 22%-61%) for fuzzing, significantly

outperforming the state of the art.
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1 INTRODUCTION

The widespread utilization of networked embedded devices (NEDs), such as WiFi routers, pro-

grammable logic controllers (PLCs), and robots, has undeniably revolutionized the efficiency
and convenience of our daily lives. These NEDs have played an important role in facilitating
the emergence of intelligent applications such as the Internet of Things (IoT), the Industrial
Internet, and the Intelligent Connected Vehicle. However, this progress has also brought increased
susceptibility to NEDs from cyberattacks [56]. These cyberattacks targeting NEDs can result in
severe consequences, ranging from stealing sensitive information disrupting critical services, and
in some cases, even directly destroying the physical devices or the environment [26, 35]. The
primary cause of these cyberattacks can often be attributed to inherent vulnerabilities present in
NEDs. Indeed, research indicates that approximately 70% of embedded devices possess exploitable
vulnerabilities [55]. Consequently, it is critical for developers to prioritize vulnerability detection
and mitigation during the implementation phase of NEDs.

Fuzzing is an exceptionally efficacious technique employed for the identification of security
vulnerabilities, whereby it subjects the system under test (SUT) to unexpected and unpredictable
input data [1, 63, 68]. In the specific context of NEDs, protocol fuzzing has gained prominence as
a prevalent methodology for the evaluation of firmware security, with notable implementations
including BooFuzz [6], PCFuzzer [43], and AFLNET [57]. The goal of protocol fuzzing is to test
communication interfaces of NEDs by generating a sequence of inputs, such as malformed packets
or unexpected data values. Protocol fuzzing is distinguished by its ability to be fully automated
and independent of access to source code. These characteristics make protocol fuzzing a scalable
and efficient method for detecting vulnerabilities in NEDs [43].

However, fuzzing is a double-edged sword, and in particular, protocol fuzzing has significantly
reduced the difficulty of finding vulnerabilities in deployed NEDs. Any malicious attacker can
conveniently employ protocol fuzzing on an accessible NED to compromise the device through
the exploitation of discerned vulnerabilities. To address this issue, vendors have implemented
various approaches, encompassing vulnerability detection and mitigation techniques, to prevent
attackers from exploiting vulnerabilities. While vulnerability detection during development is
critical, it cannot completely eliminate all vulnerabilities in NEDs. Moreover, the rectification of
vulnerabilities after device deployment frequently often proves to be unfeasible and delayed. Em-
pirical evidence substantiates this claim, revealing a prevalence of vulnerabilities within deployed
NEDs, which surpasses the count encountered in conventional Information Technology (IT)

devices [64]. Consequently, vulnerability mitigation techniques are preferred. Nevertheless, the
implementation of mitigation techniques is limited due to the performance overhead of NEDs.
Currently, vendors predominantly rely upon techniques such as code encryption and obfuscation
to thwart static program analysis, while remaining vulnerable to dynamic analysis methodologies.
This makes attackers favor low-cost protocol fuzzing instead of static analysis methods to
discover vulnerabilities in NEDs. Thus, it becomes imperative to institute countermeasures
against protocol fuzzing to protect the security of deployed NEDs.

Adversarial fuzzing techniques (i.e., anti-fuzzing), ANTIFuzz [25] and FUZZIFICATION [29],
have been proposed to disrupt the operational efficiency and effectiveness of fuzzing in traditional
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software, including command or file parsing programs. However, previous techniques cannot be
applied to NEDs against protocol fuzzing. The reason is that previous anti-fuzzing techniques
primarily rely on intentionally slowing down the execution of SUTs by incorporating delays
into the code of SUTs, particularly in the code snippets responsible for input reading or parsing.
These techniques are designed for SUTs that read and process input infrequently, so the slow-
down remains negligible compared to the overall execution time of SUTs. However, they incur
significant time overhead to NEDs which frequently read and write data (e.g., 1733x slowdown
in our evaluation in Section 6.3.1). This consequential time overhead detrimentally impacts the
availability and usability of deployed NEDs.

To design an effective anti-fuzzing technique for protocol fuzzing of NEDs, it is crucial to meet
the following four requirements.

Efficacy It should significantly improve the complexity and difficulty encountered by protocol
fuzzers in their quest to uncover vulnerabilities within NEDs.

Availability It should incur negligible time overhead to avoid affecting normal use of the pro-
tected NEDs.

Generality It should be generally applicable to various protocol fuzzing techniques, but not spe-
cific to a single protocol fuzzer.

Security It should not introduce new attack points or security weaknesses that could allow at-
tackers to exploit and compromise the security of NEDs.

Simultaneously satisfying the above requirements is challenging (details in Section 2.3). This
challenge stems from several intricacies. Firstly, the inherent randomness characteristic of fuzzing
makes it difficult to identify specific features for effective countermeasures. Moreover, the fuzzer
can dynamically generate test cases based on SUT feedback to cover more code. Secondly, the
implementation of anti-fuzzing measures typically necessitates the incorporation of additional
code and functionality. This means improved resource utilization, including device-sensitive
time and space overhead. Thirdly, the landscape of fuzzer algorithms is marked by diversity
and perpetual evolution, rendering the development of dedicated countermeasures tailored to
each specific fuzzer impractical. Lastly, certain countermeasures that exhibit effectiveness may
inadvertently introduce potential security risks. For instance, the adoption of measures such as
imitating anti-debugging measures to terminate the program when subjected to fuzzing may
inadvertently serve as potential security risks. This susceptibility arises as attackers could exploit
this measure to execute denial-of-service (DoS) attacks on NEDs, where services operate as
daemon processes, necessitating device restart for recovery. To the best of our knowledge, there
is no prior technique that meets all four requirements.

Armor. This paper proposes the first anti-fuzzing technique named Armor, which is specifically
designed to protect NEDs from protocol fuzzing. Concretely, we first design three adversarial
primitives, which are delay, fake coverage, and forged exception. These primitives are specifi-
cally designed to counter the fundamental mechanisms that fuzzing relies on, which are high
throughput of test execution, feedback-guided test case generation, and effective detection of
exceptions in SUTs (details in Section 2.1). To avoid being exploited to attack NEDs, the adversarial
primitives are specifically designed to limit their effects within a single network communication
session without affecting the daemon communication process itself. Moreover, to ensure that
the countermeasures do not affect the normal use of the protected NEDs, we design static and
dynamic strategies to guide the use of adversarial primitives. The static strategy checks whether
the message conforms to the protocol specification at the establishment phase of a session. If
not, the static strategy enables adversarial primitives for the session to misguide fuzzing. On
the other hand, the dynamic strategy inserts adversarial primitives in the code regions that
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are infrequently executed by normal use of NEDs. The dynamic strategy can complement the
static strategy against advanced protocol fuzzers that leverage protocol-specific knowledge to
help test sessions complete initial verification. Strategies are designed based on the observation
(details in Section 2.3) that test cases generated during fuzzing usually violate the specification
of the communication protocol and always execute the cold paths that normal inputs hardly ever
execute. Overall, Armor provides a comprehensive and effective solution to protect NEDs from
protocol fuzzing while minimizing the impact on their normal use.

We conducted extensive evaluations of Armor. Based on four commonly used NED network
protocols (Modbus-TCP [41], IEC 60870-5-104 [39], MQTT [50], and IEC 61850-MMS [40]), we
evaluated the adversarial effectiveness of Armor against eight mainstream protocol fuzzers that
cover all working principles (AFL [1], AFL++ [2], AFLNET [57], BooFuzz [6], KittyFuzzer [23],
Peach [22], PCFuzzer [43] and SNIPUZZ [21]). The results show that Armor incurred negligible
time overhead and effectively decreased the lines of code covered by fuzzing by 22%–61%, the
number of discovered vulnerabilities by 57%–89%, and the throughput of fuzzers by more than
60% when compared to the original (unprotected) program. Furthermore, when compared with
the state-of-the-art anti-fuzzing techniques ANTIFuzz [25] and FUZZIFICATION [29], Armor per-
formed better in terms of reducing code coverage and time overhead.

Contributions. We make the following contributions.

— We explored the challenges of applying the anti-fuzzing in NEDs, and designed mitigation
techniques to reduce the likelihood of attackers discovering vulnerabilities in deployed NEDs
through protocol fuzzing.

— We implemented the first technique Armor to protect NEDs from protocol fuzzing. We
designed three adversarial primitives, i.e., delay, fake coverage and forged exception, to
counter the fundamental mechanisms of fuzzers in a general manner. Moreover, we designed
static and dynamic strategies to arrange the adversarial primitives effectively and efficiently
against protocol fuzzers.

— We evaluated Armor on four popular protocols used in NEDs and eight mainstream protocol
fuzzers. The results demonstrate that Armor effectively reduces the line coverage of fuzzing
by 22%–61% and the number of discovered vulnerabilities by 57%–89% with negligible time
overhead.

2 BACKGROUND AND MOTIVATION

This section provides an overview of protocol fuzzing and its fundamental mechanisms. We also
introduce prior anti-fuzzing techniques and explain our motivation and observations for designing
Armor.

2.1 Protocol Fuzzing Techniques

Fuzzing is an automated software testing technique that generates a large number of test cases by
either mutating existing test cases (known as seeds) [1, 43], or by generating new ones based on
predefined templates [6, 23]. They all strive to generate various expected and unexpected inputs
to rigorously test the SUT. Fuzzing technique involves running the SUT with the test cases and
monitoring its runtime behaviors to collect feedback, such as code coverage and outputs, which
guides the testing process and detects the manifestation of bugs. Protocol fuzzing is a special type
of fuzzing technique that targets the testing of communication interfaces. Protocol fuzzing can be
categorized based on how and where the firmware of NEDs is executed.

Emulation-Based Fuzzing. Fuzzing is executed through the emulation of device firmware
within an emulator. In this category, the fuzzer, such as the AFL family [1, 57, 73], obtains code
coverage information from the emulator to guide the fuzzing process. Nonetheless, the successful
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configuration of firmware within an emulator demands significant manual labor. At times, this task
proves to be impossible due to the absence of essential software or hardware dependencies within
the emulation environment. As a result, the application of this fuzzing technique on real NEDs is
limited.

Device-Based Fuzzing. In this category, the test cases generated by a fuzzer are sent to the actual
device through a network [6, 43]. This method is general and can be easily applied to various NEDs.
However, it can only perform black-box testing due to the difficulty in collecting code coverage on
devices. Black-box testing is usually less effective than coverage-guided testing [47]. To overcome
this limitation, protocol fuzzers [21, 43] leverage the response messages from the device as a sub-
optimal replacement of code coverage to guide the fuzzing process.

Despite the differences, the two categories complement each other in practice, and share the
same fundamental mechanisms for effectively finding vulnerabilities, listed as below.

— High Throughput: The efficacy of fuzzing largely depends on the quantity of test cases that
can be executed within a given time budget. Consequently, the attainment of a high through-
put rate is crucial to optimize the probability of discovering vulnerabilities.

— Feedback-Guided Test Case Generation: Advanced fuzzers use feedback from the SUT to
guide the generation of test cases. Feedback such as code coverage and response messages
can help diversify the test cases generated to explore different behaviors of the SUT, leading
to the discovery of previously unknown vulnerabilities.

— Effective Detection of Exceptions: Fuzzers rely on detecting abnormal states of the SUT
to determine whether a test case triggers a vulnerability. This includes crashes and error
semaphores, which must be monitored with a low false positive rate to ensure the effective-
ness of the fuzzer. A low false positive rate is important to increase the trustworthiness and
efficiency of the fuzzing process.

2.2 Prior Anti-Fuzzing Techniques

During the software development process, vendors typically employ various software testing tech-
niques to find and eliminate bugs in programs. However, the deployed software usually still con-
tains bugs that can be exploited by attackers hiding among users, just as Edsger Dijkstra said
“Program testing can be used very effectively to show the presence of bugs but never to show their
absence” [7]. To protect deployed software from vulnerabilities discovered by malicious fuzzing
from potential attackers, anti-fuzzing techniques have been proposed. Vall-Nut [38] proposed three
types of neutralizing schemes for queue explosion, seed attenuation and feedback contamination
specifically for AFL fuzzer. ANTIFuzz [25] and FUZZIFICATION [29] techniques provided gen-
eral anti-fuzzing solutions by adding delays and fake code paths to the input-checking and error-
processing code regions. The target of protection of the above techniques is traditional software,
such as command-line or file analysis programs. When these techniques are used to resist protocol
fuzzing, they cannot be practically applied in NEDs. Table 1 provides a qualitative comparison of
previous anti-fuzzing techniques for resisting protocol fuzzing in NEDs in terms of the following
four dimensions.

— Efficacy: The above techniques resist traditional software fuzzing and thus do not take
fuzzing test state into account. Traditional software fuzzing which completes a round of
testing as soon as the input is obtained (e.g.. a command or a file). However, the protocol
fuzzing involves the transfer of the session state machine, i.e., message ordering affects the
parsing of the next message by the NED. Therefore, testers use prior knowledge to guide the
test state with the correct message before the test case is sent, so that different code snippets
have the opportunity to be tested, making the above techniques inefficacious [43].
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Table 1. Comparison of Resisting Protocol Fuzzing Capabilities in NEDs

Solutions Efficacy Availability Generality Security

Vall-Nut

ANTIFuzz

FUZZIFICATION

Armor

, and represent support, partial support and no support, respectively.

— Availability: ANTIFuzz and FUZZIFICATION indiscriminately introduce supplementary
codes into the input-checking sections to resist fuzzing. Therefore, they require significant
execution overhead, particularly affecting the code paths responsible for input reading and
parsing. When implemented in NEDs, characterized by frequent data read and write oper-
ations, these anti-fuzzing techniques precipitate a substantial deceleration in the execution
pace of NEDs. This, in turn, significantly curtails the responsiveness of NEDs to normal user
interactions, ultimately undermining the device availability.

— Generality: The mitigation strategies outlined by Vall-Nut pertain exclusively to the AFL
fuzzing algorithm. Although there are many fuzzers based on AFL, there are also other
fuzzers with different algorithms. As we mentioned in Section 2.1, there are various pro-
tocol fuzzers. Therefore, developing countermeasures specifically for specific fuzzers is not
effective in mitigating the fuzzing risks encountered by NEDs.

— Security: The unacceptable processing overhead introduced by ANTIFuzz and
FUZZIFICATION in normal communication consumes computing resources of NEDs,
which can be exploited by attackers to launch resource consumption attacks. Moreover,
FUZZIFICATION avoids detecting alerts by terminating the program when a fuzzer detects
alerts without throwing exceptions. However, in NEDs, the service exists as a daemon
process, and if a service terminates, the device needs to be restarted to recover. Attackers
can use fuzzer or its results to launch denial of service attacks on the device.

2.3 Motivation

Similar to traditional software, deployed NEDs also have vulnerabilities, and the situation is
even more serious. On the one hand, resource limitations of NEDs and the lack of an update
mechanism make it difficult to update software of NEDs, and the patching of vulnerabilities is not
as timely and easy as traditional software [27, 54]. On the other hand, NED software development
needs to consider more aspects, including not only API interface, data structure, compiler, but
also hardware dependencies of peripheral drivers and integrated circuits. Therefore, there is a
greater chance of bugs being created during the development of the firmware [30, 49]. To protect
the security of deployed NEDs, vendors strip debug information and symbol tables from the
released program, and use encoding, encryption, and obfuscation to thwart attackers. However,
prior mitigation methodologies are only useful against static analysis techniques and have no
countermeasure effect for protocol fuzzing. As a result, attackers tend to opt for low-cost protocol
fuzzing to test deployed NEDs for exploitable vulnerabilities.

To effectively practically protect NEDs from protocol fuzzing, we need to satisfy efficacy, avail-
ability, generality and security at the same time, as listed in Table 1. This task is non-trivial and
mainly has the following challenges. 1 The first is to design a general confrontation technique
that can counter the wide variety of off-the-shelf fuzzers and their different algorithms, including
mutation and seed screening algorithms. This requires a deep understanding of the fundamental
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mechanisms of fuzzers and the ability to develop strategies that can effectively counter them.
2 The second is to ensure that anti-fuzzing techniques do not introduce excessive time overhead,

which could affect the availability of NEDs during communication. This is especially important
since additional checking code needs to be inserted into the original program, which can increase
the execution time. 3 The third challenge is that measures used to resist fuzzing may also
introduce new attack points that can be exploited by attackers. For example, intercepting the
abnormal exit signal of a protected program can cause the program to exit gracefully, avoiding
abnormal monitoring. However, this can also be exploited to conduct denial of service attacks on
NEDs. 4 Furthermore, protocol fuzzing involves multiple interactive tests in one session (not a
single input but multiple ones to complete a round of testing), so attackers can combine different
message sequences to assist the transition of the communication state machine to complete
communication program test. This makes it possible for fixed countermeasures such as checking
the legitimacy of certain messages to be bypassed, and the effectiveness of the independent
confrontation mechanism for each test case is reduced.

The design of Armor is based on the following observations. A network protocol specification
defines the agreement on how messages should be transmitted between devices in a network, in-
cluding the format of the messages, and how and when the messages should be sent and received
in a session. In principle, this specification is not violated during normal communication. How-
ever, fuzzers attempt to generate diverse inputs to intensively test the SUT, and thus the fuzzer-
generated inputs usually inconsistent with the protocol specification. For example, a handshake
message is not sent at the very beginning of a session, or the magic byte in the message is in-
correct. Therefore, most fuzzer-generated inputs cannot successfully establish a session, or they
execute cold paths that normal communication processes rarely do. Based on the observations
combined with the fundamental mechanisms of protocol fuzzers in Section 2.1, we propose Armor
mainly consisting of specifically designed adversarial primitives and adversarial strategies. The de-
signed adversarial primitives, i.e., delay, fake coverage and forged exception, are used to disrupt the
fuzzing process. The static strategy and dynamic strategy are used to arrange the adversarial primi-
tives according to the protocol specification and the cold path respectively, so as to decide whether
to battle with the current session during the operation of NEDs. More details are in Section 4.

3 OVERVIEW OF ARMOR

This section introduces the application scenario and the threat model of Armor to understand its
scope and capabilities. Moreover, the basic working principles are explained based on Armor’s
overall workflow.

3.1 Application Scenario

Armor is carefully designed to fortify NEDs against protocol fuzzing. The threat model shown
in Figure 1 illustrates Armor’s application scenarios and its ability to thwart malicious fuzzers.
Specifically, the goal of Armor is to prevent attackers among users from using fuzzing to find
vulnerabilities in NEDs by protecting the binaries executed on devices released to users. First
of all, the protected device itself has the ability to resist fuzzing, so it is difficult to find bugs by
directly applying fuzzing to the protected device. However, attack and defense are a process of
evolving confrontation. Attackers in the real world can invest more resources and manual efforts
to help carry out fuzzing, such as disassembly, emulation, and debugging. Note that increasing
the attacker’s analysis overhead and attack costs is also an effective defense measure [3, 33].
Moreover, combining anti-debugging, obfuscation, encryption and other protection measures can
alleviate the above situation and further increase the cost of attacks (see Section 7 for detailed
discussion). Therefore, it is at least slower, more difficult, less likely, and labor-intensive for
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Fig. 1. Threat model.

untrusted users (hidden attackers) to discover vulnerabilities than when trusted testers fuzz on
unprotected devices.

3.2 Overall Workflow

Based on the fundamental mechanisms of protocol fuzzers in Section 2.1 combined with the obser-
vations in Section 2.3, we design Armor as follows. At the beginning of the session establishment
or in the cold path, Armor performs data checking to identify any data that is inconsistent with the
protocol specification or executes the cold path. If such data is detected, Armor puts the current
session into adversarial mode, which includes slowing down program execution speed to reduce
fuzzer throughput, providing the fuzzer with fake test code coverage to misguide it into generating
invalid subsequent inputs, and throwing forged exceptions to interfere with fuzzer results. This
process ensures that the fuzzer diligently tests the adversarial code.

The workflow of Armor is shown in Figure 2 and Algorithm 1. We leverage the protocol library’s
testsuites to obtain execution profiles of the library. Then static and dynamic strategies are imple-
mented in the library according to the protocol specifications and profiles to determine whether
to launch the adversarial primitives. In this way, the client or server developed based on the pro-
tected protocol library has the ability to resist protocol fuzzing. Armor’s three main functions are
further explained below.

1 Profile Generator. We generate code-level frequency profiles for the protocol library. The
profiles are then used to identify the cold path for injecting the adversarial primitives. The
cold path is defined as the program path that is hardly or even never executed during normal
communication. To reduce the reliance on manual operations for identifying the cold path,
we use instrumentation technique with library testsuites to generate execution profiles for
guidance. Specifically, commercial development projects often come with testsuites that cover
code testing for functions in normal usage. We instrument and compile the code of the testsuites
and corresponding library. Then we get the normal execution profiles of the library code by
executing different testsuites. A profile contains code content and its execution times, which are
provided to the strategy scheduler for analysis and use.

2 Primitive Generator. We propose three adversarial primitives: delay, fake coverage, and forged

exception to counter the fundamental mechanisms of protocol fuzzing. This ensures that Armor
does not fail due to the emergence of new fuzzing techniques. To prevent the primitives from being
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Fig. 2. Workflow of Armor.

ALGORITHM 1: Design of Armor.

Input: Library: Source code of library

Testsuites: Source code of testsuites

Program: Source code of client or server

Output: Protected binary

Data: arg: The received input data to process

// Adversarial primitive generation

1 delay(arg)← Encryption calculation based on arg

2 fake coverage(arg)← Call fake function or send fake response based on arg

3 forged exception(arg)← Randomly generate forged exceptions, arg is used to generate data

dependencies

// Static strategy implementation

4 protected receiver← Insert consistency checks and primitives in message receiver function of Library

// Dynamic strategy implementation

5 profiles← Compile, instrument and execute based on Library and Testsuites

6 cold paths← Basic blocks not executed in profiles

7 protected cold paths← Insert counters and primitives in cold paths of Library

8 Protected binary← Compile Program with the protected Library

9 return Protected binary

easily removed, we design the primitives as callable functions that operate by receiving arguments
(i.e., arg in Algorithm 1). In this way, primitives have data and control dependencies with the
code in the original program. Specifically, the delay primitive slows down program execution by
performing intensive computations on arguments. The fake coverage primitive gives new feedback
each time based on arguments, such as code coverage and response messages. The forged exception
primitive emits non-reproducible exceptions that increase the false positive rate of the fuzzer. We
provide these adversarial primitives to the strategy scheduler for use. These adversarial primitives
are detailed in Section 4.1.

3 Strategy Scheduler. The static and dynamic strategies work together to decide the initiation of
adversarial primitives. The static strategy performs specification consistency checks in the session
establishment function to decide whether to apply adversarial primitives. For example, regular
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fields such as the constant magic bytes, fixed headers, and sequentially increasing sequence
numbers in the protocol specification are checked. When checking for inconsistency, the input
and subsequent inputs in the session are processed in adversarial mode. To prevent advanced
attackers with protocol knowledge from helping the test complete session establishment, we
design the dynamic strategy. According to the generated profiles the dynamic strategy inserts
adversarial primitives and counters in cold paths for progressively enhanced adversarial. This at-
tempts to minimize the impact of Armor on normal usage. The intuition is that normal users using
legitimate clients or servers tend to provide valid inputs to NEDs, while fuzzers are more likely to
trigger cold paths with invalid (malformed) inputs to NEDs. The adversarial strategies are detailed
in Section 4.2.

4 PRIMITIVE AND STRATEGY DESIGN

The purpose of the adversarial primitives is to counter the fundamental mechanism of fuzzers and
render their effectiveness futile. Nonetheless, to mitigate the potential adverse impact on normal
users of NEDs, the adversarial strategy entails the systematic scheduling of adversarial primitives
to determine their impact. This section provides a detailed exposition of the design aspects per-
taining to adversarial primitives and adversarial strategies.

4.1 Adversarial Primitives

We design three adversarial primitives, namely delay, fake coverage, and forged exception
to counter the three fundamental mechanisms of effective fuzzing, namely high throughput,
feedback-guided test case generation, and effective detection of exceptions. This approach allows
us to effectively combat fuzzing tests and ensures that our method remains effective even in the
face of new fuzzers. To prevent attackers from easily removing the adversarial primitives, we
design primitives with data and control dependencies between the primitives and the original
code. The design details are as follows.

4.1.1 Delay Primitive. We first design delay primitive to break the high throughput mechanism
of effective fuzzing. While using the Sleep function as the delay primitive is a possible solution, it
can be easily detected and removed by attackers through reverse engineering. To avoid this, we
utilize the implementation of encryption algorithms as the delay primitive, which is also time-
consuming and can serve the purpose of delaying execution. Specifically, the design of the primi-
tive involves wrapping the encryption algorithm in a loop, allowing us to control the specific delay
time by modifying the loop times. Moreover, we use the received input as arg in the encryption
algorithm to tightly couple the primitive to the original code of the protected program. This makes
it extremely difficult for attackers to remove the delay primitive, ensuring its effectiveness. For se-
curity, we mainly compose the heavyweight computational tasks used to create the delay primitive
of simple computations and repeatedly audited code such as encryption and hash calculation.

4.1.2 Fake Coverage Primitive. We design the fake coverage primitive to reduce the effective-
ness of coverage-guided fuzzers in exploring the code space of the protected binary. Advanced
fuzzers pick seeds by measuring the coverage of executing code in the emulation environment or
the response message from NEDs. This primitive provides fake coverage feedback to inputs that
do not have new coverage, causing fuzzers to consider these invalid inputs as seeds. This makes
fuzzers prioritize the mutation of these seeds and waste significant time and computing resources
exploring the primitive, resulting in meaningless fuzzing. To achieve this, we design two fake cov-
erage primitives that target code coverage and response message coverage, respectively.

For fake code coverage primitive, the primitive prepares a large number of simple non-
vulnerable functions (i.e., fake functions) and form a call table. Upon receiving input, the primitive
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calculates the input’s hash and selects a subset of fake functions based on this hash, which is
then called in a specific order. This approach increases the data and control dependencies of the
primitive with the original code, making it difficult for attackers to remove it. Furthermore, it
prevents anomalies from being detected by fuzzers such as AFL, which can filter out unqualified
seeds that produce different code coverage despite having the same content. Consequently, the
primitive continuously generates new code coverage, including lines, functions, and branches, as
newly generated inputs trigger the primitive.

For fake response coverage primitive, we construct a response message conforming to the
protocol specification, but with some fields filled with random content. This intuition comes
from the fact that black-box protocol fuzzers [21, 43] typically measure the response messages of
test cases to infer whether the program has executed a new code path. If the device generates a
new response message, the fuzzer continues testing with mutations based on the corresponding
test case. By randomly filling some fields with content, the fuzzer that measures the response
message can be tricked into selecting invalid seeds for testing. To ensure that the inserted
code is associated with the original code, the primitive performs operations on inputs, such as
comparisons. Furthermore, to avoid impacting normal users, the primitive is only triggered if the
input violates the protocol specification (i.e., static strategy).

4.1.3 Forged Exception Primitive. We design the forged exception primitive to interfere with
fuzzing results by creating false positives. Hiding all abnormal behavior is an impractical solution
because of the complex test environment and the variety of monitoring methods in NEDs. More-
over, some vulnerabilities directly lead to program crash and are discovered. So we design forged
exceptions instead of hiding anomalies to interfere with the test result. The rationale behind this is
that the forged exceptions can give attackers confidence to continue testing, and also waste their
time in reproducing and debugging false results. The previous approach [25] involved terminating
the program to create a forged exception, but this approach is not suitable for NEDs that use a dae-
mon process. If the program exits unexpectedly, it needs to restart the device to resume operation.
To avoid being used by attackers to launch denial-of-service attacks on NEDs, we design forged
exception primitive that only causes the current session to end rather than causes the program to
terminate. Specifically, we forge four identical SYN messages to obtain the correct session sequence
number, and then forge a RST message to end the session without killing the process. At the same
time, we forge an exception at this point by adding a long delay. In this way, both TCP-based and
UDP-based protocols can perform exception interference. Similar to the previous primitives, the
inserted code is associated with the original code through operations such as comparisons on the
input.

4.2 Adversarial Strategies

To effectively counter fuzzing while ensuring program availability, we propose static and dynamic
strategies. These strategies provide guidance on where to implement and when to initiate adversar-
ial primitives. The design intuition is that fuzzing usually generates test cases that violate protocol
specifications, including syntax and semantics. Moreover, these malformed test cases tend to exe-
cute cold paths, which are code regions that would rarely be executed by normal inputs. Building
on this observation, we design static and dynamic strategies to combat fuzzing, which are detailed
below.

4.2.1 Static Strategy. In the static strategy, we begin by examining whether the input received
during session establishment is from users or fuzzers. When the input is detected as being
generated by fuzzers, we apply adversarial primitives. Advanced fuzzers make an effort to
generate varied inputs to rigorously test the SUT, often leading to inputs or input sequences
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Fig. 3. Modbus-TCP application protocol header.

that violate the protocol specification. For example, the magic byte may be improperly assigned
without calculation, or the sequence numbers may be arranged in an incorrect order. Therefore,
we determine whether the input is from fuzzers by examining the fixed offset of the message
or the fixed sequence of messages. The header field of the Modbus-TCP protocol is shown in
Figure 3. The Modbus-TCP protocol specification [41] stipulates that the protocol identifier is two
bytes of 0x00. We can add checks for bytes with input offsets 2 and 3 at the message receiving
function (_modbus_tcp_recv) in the library. When the content of these two bytes violates the
specification, the adversarial primitives take part in the processing of input and subsequent input
in the session. This strategy is generally sufficient for most fuzzers without expert guidance since
the testing process can be misguided by adversarial primitives to perform invalid tests at the
beginning of fuzzing. For state-based protocol fuzzers that utilize legitimate messages to guide
session processes initially, the dynamic strategy detailed below can combat them.

4.2.2 Dynamic Strategy. In the dynamic strategy, we check whether the protected program
executes to cold paths, and then apply adversarial primitives when the cold paths are executed.
Specifically, to identify cold paths, we use the instrumentation technique and run all accompany-
ing testsuites to generate profiles that record the number of code executions. Code lines in the
library that have zero execution are considered cold paths. For example, some exception handling
snippets often belong to cold paths, because normal messages from the client or server that
comply with the protocol specification will not cause processing exceptions. Then, we apply the
adversarial primitives to cold paths, but unlike the static strategy, the effect of the primitives is
gradually enhanced. We do this for two reasons. First, protocol fuzzing tests often require multiple
interactions within a single session, and gradual enhancement of adversarial primitives proves
more effective in such scenarios. Second, most of the test cases from the fuzzers do not satisfy the
protocol specification and have a higher probability of executing to cold paths. However, normal
inputs may occasionally execute on cold paths due to network quality. Therefore, we cannot
directly apply heavyweight primitives on cold paths, which may prevent normal communication.
To this end, we gradually increase the effect of the adversarial primitives based on the number
of times the cold path is executed in a session. The intuition is that the more times the cold
path is executed in a session, the higher the probability that the input to the current session is
generated by fuzzers. We do this by adjusting the delay time and the probability of activating
forged exceptions, using the calculation equation Result = w ∗ counter ∗ initial_value , wherew is
the weight, counter refers to the times of traversing the cold paths in a session, and initial_value
denotes the initial delay time or activation probability of forged exceptions.

5 IMPLEMENTATION

We implemented the prototype of Armor using Python and C. The implementation details of
the modules of Armor are as follows. The profile generator module was implemented using the
Clang/LLVM compiler. We instrumented the source code to obtain information about the execu-
tion frequencies of library files when run with testsuites. For the primitive generation module, we
used the ANTIFuzz framework [25] and made modifications to support the generation of the fake
response coverage primitive and forged exception primitive. The strategy scheduler module was
implemented in Python, including the static and dynamic strategies. The static strategy deploys
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Table 2. Details of Evaluated Protocols

Protocol Library version SUT

Modbus-TCP 3.1.6 random-test-server

IEC 60870-5-104 2.3.0 simple-server

MQTT 2.0.11 mosquitto-broker

IEC 61850-MMS 1.5.0 server_example_basic_io

primitives at message receiving functions in the library. The dynamic strategy deploys primitives
based on the generated profiles. Once the strategies have been deployed, we can compile the source
code of the client or server to be protected, resulting in a program with the ability to resist pro-
tocol fuzzing. Moreover, Armor allows for parameter configuration to better meet the needs of
developers. The configuration file can be modified to adjust parameters such as the delay time, the
number of fake paths, and the throwing probability of forged exceptions, as well as the content of
static strategy checks and the weighting of dynamic strategy.

6 EVALUATION

We designed the evaluations of Armor to answer the four research questions below:

RQ1: Efficacy and generality of Armor against protocol fuzzing.
RQ2: Availability of NEDs after applying Armor.
RQ3: Security of NEDs after applying Armor.
RQ4: Effect of Armor parameters on protection and overhead.

6.1 Evaluation Setup

Evaluated Protocols. As shown in Table 2, we use four protocols widely used in NED work
scenarios for Armor evaluation. The servers in the library testsuites corresponding to each
protocol are our test objects. Modbus-TCP [41] is a standard communication protocol for
connecting industrial electronic devices. IEC 60870-5-104 [39] is an international standard for
data exchange between control stations and substations in electrical power systems. MQTT [50]
is designed for connections with remote locations that have devices with resource constraints or
limited network bandwidth. IEC 61850-MMS [40] has been successfully used in many commercial
software products and embedded device in smart substation. These four protocols are widely
used in security analysis studies of NEDs [10, 16, 34, 45, 59, 72, 74].

Evaluation Metrics and Baselines. To answer the proposed research questions, we select differ-
ent metrics and baselines as follows.

— RQ1: To illustrate efficacy and generality of Armor, we selected eight typical protocol

fuzzers: 1 AFL [1], emulation-based fuzzer guided by code coverage, works with the desock
module of Preeny [58] in QEMU mode (since the source code of software in commercial
NEDs is usually not available, we use QEMU mode to test). We also chose 2 AFL++ [2]
in QEMU mode, an improved version of AFL, and 3 AFLNET [57], which is specialized
for protocol fuzzing. 4 BooFuzz [6], 5 KittyFuzzer [23], and 6 Peach [22] are generation-
based protocol fuzzer. 7 PCFuzzer [43] and 8 SNIPUZZ [21] are mutation-based protocol
fuzzer. We used the following metrics to evaluation: ❶ code coverage and ❷ the number
of discovered vulnerabilities by following the fuzzing evaluation recommendations [32],
and also used ❸ throughput which is a measurement for fuzzers [73]. We chose three
baselines for comparison: the unprotected original program and programs protected by
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the state-of-the-art anti-fuzzing techniques, i.e., ANTIFuzz [25] and FUZZIFICATION [29].
We do not compare with Vall-Nut [38] because it is not open source.

— RQ2: To illustrate availability of the protected binary, we employed time overhead and
program size overhead as quantifiable metrics. These metrics allow us to assess the
practical accessibility of the protected binary. Similar to RQ1, we selected the unprotected
original program, as well as the programs secured by ANTIFuzz and FUZZIFICATION
techniques, as baseline references for comparison.

— RQ3: To illustrate that there is no new security risk after applying Armor, we analyzed other
session states of the protected binary under fuzzing and used the alert information recorded
by fuzzers to verify the vulnerability of the protected binary. The evaluation metrics

include that the impact of Armor is limited to the fuzzing session, and forged exceptions
cannot be reproduced. We chose ANTIFuzz which also has exception interference function
as the baseline.

— RQ4: To illustrate the impact of Armor’s parameters on its effectiveness in providing protec-
tion and the associated overhead costs, we conducted a series of comparative experiments.
These experiments entailed the exploration of diverse settings for Armor’s parameters,
encompassing factors such as delay time, the count of fake paths, the probability of forged
exceptions, and the weight of dynamic strategy. To assess the outcomes of these experiments,
we used the number of discovered bugs, time overhead, and size overhead as metrics.

Armor Configuration. Armor is designed to be used by developers. who can configure its param-
eters based on the attributes of the protocol used by the protected program, such as interaction
frequency and real-time requirements. For the purposes of evaluation, the protocols tested in this
evaluation were all configured with the following parameters: the initial delay time of 1 second, the
generation of 3,000 fake paths, the forged exceptions triggering frequency of 1/30, and the weight
parameter values of the delay primitive and forged exception primitive in the dynamic strategy
are 1 and 0.1, respectively. These values were determined through conservative experimentation
with the evaluated protocols.

Hardware. Our experiments were performed on a Linux workstation with an Intel Core i7-8750H
CPU and 64G RAM.

6.2 Efficacy and Generality of Armor

6.2.1 Reducing Code Coverage. We used the real code coverage of the SUT to evaluate efficacy
of Armor. Real code coverage refers to the original code of the protected program, excluding the
code of the primitives, because our strategy is to induce the fuzzer to waste time in testing code
of the primitives. To obtain real code coverage for fuzzers, we employed the instrumentation tech-
nique when compiling the source code to binary. Note that instrumentation information is not
included in the compiled binary to be released.

We leveraged three popular code coverage metrics for evaluation: line coverage, function
coverage, and branch coverage. Figure 4 shows the code coverage results in Modbus-TCP,
IEC 60870-5-104, MQTT, and IEC 61850-MMS servers. Here we took the average results of three
24-hour fuzzing rounds. From the results, we find that the fine-grained code coverage (i.e., line
coverage and branch coverage) of the protected binary of Armor is significantly reduced. For ex-
ample, the line coverage is 22%–61% lower than the original binary. Compared with ANTIFuzz and
FUZZIFICATION, Armor reduces the line coverage by 3.7%–44.4%. Note that we also conducted
longer fuzzing lasting 72 hours, but no noticeable change in code coverage was observed. This is
because the fuzzers have been misled to make them difficult to generate valid test cases. To further
illustrate the difference of test cases generated for protected and unprotected programs, we used
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Fig. 4. Test code coverage of original and protected programs by different protocol fuzzers. Lower code cov-

erage means a lower likelihood of finding vulnerabilities. The ordinates represent different code coverages,

and the abscissas represent different fuzzers.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 108. Publication date: April 2024.



108:16 P. Liu et al.

Table 3. Significance of Evaluations of Fuzzer Pairs using P-value from the Mann-Whitney U-Test

AFL AFL++ AFLNET BooFuzz KittyFuzzer Peach PCFuzzer SNIPUZZ

Modbus-TCP 5*10−4 5*10−4 8*10−5 2*10−3 4*10−3 3*10−3 1*10−4 5*10−4

IEC 60870-5-104 9*10−5 2*10−4 3*10−5 6*10−3 9*10−3 8*10−3 5*10−5 3*10−4

MQTT 8*10−4 9*10−5 2*10−5 5*10−3 8*10−3 5*10−3 2*10−3 7*10−3

IEC 61850-MMS 5*10−4 5*10−4 6*10−5 2*10−3 5*10−3 5*10−3 2*10−4 7*10−4

Table 4. Number of Vulnerabilities Found

AFL AFL++ AFLNET BooFuzz KittyFuzzer Peach PCFuzzer SNIPUZZ

Orig. Armor Orig. Armor Orig. Armor Orig. Armor Orig. Armor Orig. Armor Orig. Armor Orig. Armor

Modbus-TCP 17 3 17 4 15 2 5 1 8 1 8 1 9 2 11 2

IEC 60870-5-104 18 2 18 2 17 3 7 2 5 1 6 1 9 2 9 3

MQTT 18 4 18 4 18 3 7 3 7 1 9 2 10 3 7 1

IEC 61850-MMS 16 3 16 3 17 3 8 3 8 2 10 2 10 2 11 2

the Mann Whitney U test to determine statistical significance [32, 38], which provides a measure
of the degree to which a pair of sets differ. A p-value smaller than 0.05 means the difference
between the two sets is statistically significant. Table 3 shows that all the p-values between the
protected program and the original program are smaller than 0.05. This indicates that Armor can
significantly reduce the code coverage of the protocol fuzzers from the statistics perspective.

6.2.2 Hindering Vulnerability Finding. We evaluated the impact of Armor on vulnerability find-
ing by measuring the number of vulnerabilities discovered by fuzzers on both the protected
and original binaries. We did not compare our results with binaries protected by ANTIFuzz and
FUZZIFICATION due to their heavy adversarial techniques that cause the protected binaries to
deviate from normal execution, which breaches the availability requirement of anti-fuzzing for
NEDs. Even normal messages may cause the session to be terminated due to timeout.

To evaluate Armor’s ability to hinder vulnerability finding, we randomly inserted 20 real crashes
into the evaluated program, as vulnerabilities are mainly introduced into the program due to sec-
ondary development of the protocol library by developers. We conducted three rounds of 72-hour
fuzzing to ensure consistency in the evaluation. Fuzzers recorded all exceptions, including those
generated by the forged exception primitive, but after verification, we found that forged excep-
tions cannot be reproduced. Therefore, we only counted the number of real unique vulnerabilities
found by the fuzzers. Table 4 shows that Armor reduces the number of discovered vulnerabilities
by 57%–89% compared to the original binaries. This reduction is primarily due to the reduced code
coverage of fuzzer tests induced by our protection strategy.

6.2.3 Reducing Throughput. We measure the ability of Armor to reduce throughput, which is
the rate at which test cases are executed during fuzzing. Slowing down the program under fuzzing
causes the attacker to spend more time completing the same number of test cases. To evaluate
this, we compare the throughput of all fuzzers when applied to both the protected binary and the
original binary. We calculate the ratio of average value of instantaneous throughput and present
the results in Table 5. The results show that Armor reduces the throughput of all fuzzers by more
than 60%. To further intuitively illustrate Armor’s effectiveness in deferring potential attackers,
the time overhead of sending the same test cases (10,000) is shown in Table 6. A potential attacker
would need to spend at least 2.5x longer to complete the same number of test cases. The reduc-
tion in throughput can be attributed to two factors. On the one hand, the adversarial primitive
implemented in Armor slows down the execution rate of the protected program under fuzzing.
On the other hand, the adversarial primitive increases the computational complexity of the fuzzer
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Table 5. The Degree of Decrease in Fuzzing throughput, Calculated by (orig-Armor)/orig

AFL AFL++ AFLNET BooFuzz KittyFuzzer Peach PCFuzzer SNIPUZZ

Modbus-TCP 98% 97% 99% 75% 71% 72% 63% 62%

IEC 60870-5-104 66% 66% 69% 64% 63% 66% 62% 60%

MQTT 72% 70% 78% 65% 66% 65% 61% 61%

IEC 61850-MMS 69% 68% 69% 64% 66% 66% 68% 60%

Table 6. Time Overhead for Sending the Same Number of Test Cases, Calculated by Armor/orig

AFL AFL++ AFLNET BooFuzz KittyFuzzer Peach PCFuzzer SNIPUZZ

Modbus-TCP 49.1x 44x 83.3x 4.1x 3.6x 3.6x 3.7x 2.8x

IEC 60870-5-104 3.4x 3.2x 3.6x 2.9x 3.9x 3x 2.7x 2.5x

MQTT 3.6x 3.3x 4.2x 2.7x 2.9x 2.9x 2.7x 2.7x

IEC 61850-MMS 3.3x 3.2x 3.4x 2.8x 2.9x 2.9x 3.1x 2.5x

itself. While ANTIFuzz and FUZZIFICATION reduce throughput even more than Armor, their
heavyweight adversarial techniques violate the availability requirement of anti-fuzzing for NEDs,
making both techniques unsuitable for protecting NEDs.

Answer to RQ1: Armor has been shown to be effective against eight mainstream protocol
fuzzers, demonstrating its efficacy and generality. In comparison with the original program,
Armor reduces line coverage by 22%-61%, outperforming ANTIFuzz and FUZZIFICATION.
Furthermore, Armor decreases the number of discovered vulnerabilities by 57%–89% and
reduces fuzzing throughput by over 60%.

6.3 Availability of NEDs

6.3.1 Time Overhead. For embedded devices, anti-fuzzing techniques should not affect normal
communication. To assess this aspect, we conducted evaluations by monitoring the message
processing time exhibited by the binary protected with the anti-fuzzing technique. We compared
this observed processing time with that of the original binary. Figure 5 shows the average time
spent per message for ten trials. The communication time fluctuates slightly (millisecond level)
due to network and hardware quality, so the ten rounds of trials are represented in the form of
box plots. The evaluation shows that the time overhead of applying Armor is negligible, and the
times of Armor-protected binaries (e.g., Modbus-TCP) are even smaller than the worst-case times
of the original binaries due to communication fluctuations. These mean that Armor does not
affect normal communication for NEDs. This is a crucial requirement for anti-fuzzing techniques
applied to NEDs because they must maintain availability during normal operation. In contrast,
the time overhead of applying ANTIFuzz and FUZZIFICATION is significant, ranging from
50–160 milliseconds per message, which can result in a large increase in the time required for
normal communication due to frequent message interactions. For example, the binary protected
by ANTIFuzz took 156,000 milliseconds to complete the entire test in Modbus random test server,
which was 1733X slower than the original binary. The large time overhead of ANTIFuzz and
FUZZIFICATION is due to the fact that they take countermeasures for each input, resulting in a
significant increase in processing time for programs that communicate frequently.
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Fig. 5. Time spent per message.

6.3.2 Size Overhead. Considering the limited memory resources of embedded devices, it is im-
portant to ensure that the size of the protected binary remains within manageable bounds. In
response to this concern, we conducted a detailed analysis of the supplementary code generated
by Armor. The size overhead incurred by the current Armor configuration is almost constant
at approximately 4.6MB. The factor that affects the size overhead is mainly the number of fake
paths (see Section 6.5 for details). In comparison, the additional code generated by ANTIFuzz and
FUZZIFICATION stood at around 25MB and 2MB, respectively. While Armor does entail a slightly
greater size overhead compared to FUZZIFICATION, our investigation suggests that these over-
heads remain well within acceptable limits. This is founded on the consideration that prevalent
NED firmware typically falls within the size range of 30MB to 150MB. Moreover, the memory ca-
pacity of devices tasked with storing firmware typically ranges from 256MB to 512MB. Therefore,
the size overhead incurred by Armor is deemed negligible for NEDs.

Answer to RQ2: The application of Armor does not compromise the availability of NEDs.
In comparison to the original program, the implementation of advanced anti-fuzzing tech-
niques such as ANTIFuzz and FUZZIFICATION result in time overheads that are at least
600 times greater, whereas Armor incurs almost no time overhead. Furthermore, the size
overhead associated with Armor is deemed acceptable.

6.4 Security of NEDs

To ensure the security of NEDs, any added functionality from anti-fuzzing techniques must not
introduce potential risks for attacks. Therefore, it is important to limit the effect of adversarial
primitives to the session under fuzzing. If these primitives can affect the communication program
itself by causing the program to terminate, fail to establish a connection, or interrupt other ses-
sions, the primitives can be exploited as attack methods. To address this, we conducted an analysis
to ensure that the effect of primitives is limited to the session under fuzzing and does not impact
other sessions. Specifically, we established a session with a running server program and performed
fuzzing while simultaneously establishing another session with the same server for normal com-
munication. As shown in Table 7, our results demonstrate that none of the normal sessions for the
four protocols were affected by the fuzzing session. Therefore, we confirm that the effect of the
three primitives is confined to the session under fuzzing and does not impact the program itself, en-
suring the security of NEDs. In contrast, programs protected by ANTIFuzz and FUZZIFICATION
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Table 7. Whether Normal Communication Sessions are Affected

ANTIFuzz FUZZIFICATION Armor

Unacceptable delay ✓ ✓ ✕

Denial of service ✕ ✓ ✕

as evaluated in Section 6.3.1 above cannot even communicate normally. Moreover, when fuzzing is
running, the program protected by ANTIFuzz terminates the process to create an exception, which
adversaries can exploit to launch a denial of service attack against deployed NEDs.

We further evaluate the results of the fuzzing, because Armor additionally introduces forged
exceptions. For actual exceptions, Armor reduces the number and likelihood of finding bugs as
shown in Section 6.2.2. For forged exceptions, they cannot have any effect on the program itself.
We analyzed the fuzzing outcomes caused by forged exceptions, as well as actual exceptions. While
actual exceptions triggered segmentation faults and stack overflows, the verification data causing
forged exceptions did not result in program faults or overflows. Therefore, we conclude that these
forged exceptions cannot be reproduced, and forged exception primitives do not become new at-
tack points for NEDs. Forged exceptions only interfere with test results and waste attacker analysis
time.

Answer to RQ3: The functionality of Armor is security and its impact is limited to a
single network communication session without affecting the program. Therefore, it is
not feasible for attackers to exploit the features of Armor to initiate an attack against the
protected NEDs.

6.5 Effect of Parameters

We measure the effect of different parameter settings of Armor on the protection effectiveness
and overhead cost of adversarial fuzzing. This provides developers with guidance in selecting
parameters based on their preference between protection level and overhead. Specifically, we
analyze the impact of the five parameters, including the delay time, the number of fake paths, the
probability of forged exceptions, and the two weights of dynamic strategy. To evaluate protection
effectiveness, we employ the metric of the number of real bugs detected by fuzzers during a
72-hour time frame. Our assessment involves the utilization of well-performing fuzzers from the
categories of coverage feedback-based, template generation-based, and response feedback-based
fuzzers in Section 6.2, namely AFLNET, Peach, and SNIPUZZ, respectively. For the assessment
of overhead cost, we consider both time overhead and size overhead as metrics. We make
variations to one parameter at a time while keeping the remaining parameters aligned with
the configuration outlined in Section 6.1. Figure 6 presents the evaluation results based on
Modbus-TCP. For the other three protocols IEC 60870-5-104, MQTT and IEC 61850-MMS, the
impact of parameters exhibit similar trends as Modbus-TCP. We analyze the results in detail
as follows.

Figure 6(a): As the delay time increases, the throughput of the fuzzer decreases, resulting in a
decrease in the number of bugs found by the fuzzer. Moreover, delay time has a significant
impact on time overhead but has little impact on size overhead.

Figure 6(b): The increase in the number of fake paths leads to a decrease in the number of
bugs discovered by the fuzzer based on coverage feedback. But it has little impact on other
types of fuzzers. Furthermore, the program size overhead is sensitive to the number of fake
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Fig. 6. The impact of Armor parameters on protection effectiveness and overhead costs based on

Modbus-TCP.

paths, but the time overhead is not sensitive and fluctuates within a small range (about 0.01
milliseconds).

Figure 6(c): The probability of forged exceptions only affect the number of forged exceptions
in the test results, thereby wasting bug verification time. There is little impact on the
real number of bugs, time overhead, and size overhead. It is worth mentioning that if the
probability is greater than or equal to 1, each malformed message will trigger session abort.

Figure 6(d): The overall trend of the weight of the delay time in the dynamic strategy is similar
to the delay time in Figure 6(a). The difference is that the time overhead caused by weight
value is significantly reduced. However, high weight value also have side effects, which can
aggravate the impact of abnormal message on sessions due to communication quality or
operational errors.

Figure 6(e): The weight of forged exception in the dynamic strategy has no obvious impact on
the number of bugs and overhead, which is similar to Figure 6(c). The high weight value
may result in frequently aborted sessions due to malformed messages.
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Answer to RQ4: The parameter configuration of Armor has varying degrees of impact
on protection effectiveness and overhead costs. Parameter adjustments are made based on
specific overhead tolerance and the trend of influence of each parameter.

7 DISCUSSION

To gain a deeper comprehension of Armor’s scope and capabilities, the following section discusses
the purpose of offensive and defensive confrontations and the limitations of Armor.

7.1 Purpose of Anti-fuzzing

The purpose of Armor is not to hide all vulnerabilities from potential attackers, but rather to in-
crease the cost of discovering vulnerabilities through fuzzing, which is in line with other attack
mitigation measures. For instance, vendors often utilize reverse-engineering mitigation measures
like code obfuscation and encryption to prevent attackers from performing static analysis on re-
leased software. However, attackers can still crack and analyze the released software through de-
obfuscation techniques [46], brute force cracking [31], and information leakage [69]. Moreover,
to prevent dynamic analysis such as debugging, dynamic instrumentation, and virtual execution,
vendors usually use detection flags [67], self-detection [42], runtime checks [4], and so on, to com-
bat them. However, these countermeasures can also be bypassed through techniques such as code
patching [17] and rewriting [8]. Similarly, vulnerability exploitation mitigation measures such as
Address Space Layout Randomization (ASLR), No-EXecute (NX), and Canary are designed
to prevent further exploitation of vulnerabilities once discovered. However, attackers can circum-
vent or disable these mitigation measures through side channels [19, 28] or design flaws [9]. Like
these mitigation measures, Armor cannot provide complete defense against attacks, but rather de-
fends by increasing the attack’s cost. Additionally, vendors and trusted third parties, who conduct
fuzzing on unprotected devices, have a greater chance of discovering and patching vulnerabilities
in a timely manner than attackers who test on the protected devices.

7.2 Anti-anti-fuzzing

The game of attack and defense has always been an ongoing concern in the realm of cybersecurity.
As fuzzing techniques continue to evolve, corresponding anti-fuzzing techniques must also be de-
veloped. With this in mind, we designed Armor to anticipate potential future against anti-fuzzing
techniques (i.e., anti-anti-fuzzing). First, attackers can attempt to reverse engineer the protected
binary to remove the adversarial code. To this end, the adversarial primitives of Armor have data
and control dependencies with the original code of the target program, making it challenging for
attackers to remove them. Moreover, we can use code obfuscation and encryption to further pro-
tect binaries from reverse engineering. Second, attackers can invest more effort or even manually
design new effective test cases. However, creating effective test cases is a non-trivial task that re-
quires a deep understanding of the binary and sophisticated program analysis techniques. In this
case, Armor breaks the highly automated nature of fuzzing and increases the cost of attack.

7.3 Performance Overhead

Like other attack mitigation measures, such as ASLR, Armor enhances the security of NEDs at the
cost of performance overhead. Compared to traditional computer software, performance overhead,
particularly execution time overhead, can have a greater impact on NEDs since they are used in sce-
narios such as industrial control and smart cars, where high real-time requirements exist. As noted
in Section 6.3, we have observed that Armor incurs almost no additional time overhead compared
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to the original program, which is also superior to the state-of-the-art work ANTIFuzz [25] and
FUZZIFICATION [29]. The program size overhead of Armor is inevitable. However, the resulting
size overhead is acceptable in NEDs, and we provide configurable parameters for the generation
of primitives, with the number of fake paths being the primary factor affecting the size overhead.
Based on actual needs, developers can make an informed decision regarding the best trade-off
between security and performance. Furthermore, Armor implements protection strategies in the
library, which makes applications or executable binaries developed based on the library have the
ability to resist protocol fuzzing. Armor’s ideas can also be migrated to the full program through
case-by-case instrumentation and code analysis. This will also bring about improvements in pro-
tection effectiveness and performance overhead.

8 RELATED WORK

In this section, we present an overview of related work, including anti-fuzzing techniques, protocol
fuzzing techniques, and other anti-analysis techniques for vulnerability analysis.

8.1 Anti-Fuzzing Techniques

As the number of vulnerabilities discovered through fuzzing continues to increase, researchers
have begun exploring anti-fuzzing techniques. One such technique, proposed by Edholm and
Goransson [18], involves concealing the feedback signal when the software behaves abnormally,
thereby preventing the fuzzer from monitoring the abnormality. However, there are various ways
to detect anomalies, such as through binary dynamic instrumentation, virtual machine debugging
information, and program output messages. Moreover, not all anomalies can be concealed, such as
program output messages and program crash exits [43]. Therefore, this anti-fuzzing method is eas-
ily bypassed by attackers. To reduce the speed of program execution and resist fuzzing, ANTIFuzz
[25] and FUZZIFICATION [29] insert additional delay and false code on the path of input reading
and parsing. However, these methods are only applicable to programs that read data infrequently
and can cause availability issues when applied to NEDs. Vall-Nut [38] designed neutralizing mecha-
nisms to undermine the effectiveness of fuzzing by studying the seed evaluator and mutator of AFL.
However, this method is only valid for the AFL family of fuzzers and not for other types of fuzzers
such as black-box fuzzers. Armor, on the other hand, combines adversarial primitives and strate-
gies to achieve efficacy, availability, generality, and security against protocol fuzzing for NEDs.

8.2 Protocol Fuzzing Techniques

Protocol fuzzing does not require access to the source code and can be fully automated, making it a
highly efficient and scalable approach to vulnerability detection in NEDs. Protocol fuzzing can be
categorized into emulation-based fuzzing and device-based fuzzing according to how and where
the firmware of NEDs is executed.

For emulation-based fuzzing, analysts emulate the firmware on the host and then perform
fuzzing. Firmware can be obtained from official websites, device debugging interfaces, or traffic
during automatic device updates. Firmadyne [12] successfully emulated 9,486 firmwares of the
NED by replacing the kernel. FirmAFL [73] implemented full-system emulation-based firmware
fuzzing based on Firmadyne. Moreover, P2IM [20], HALucinator [14], μAFL [37] and Fuzzware [61]
established a more complete peripheral interaction model to enhance the success rate and fidelity
of firmware emulation. However, the manual effort and hardware requirements associated with
full-system emulation limit the applicability of this approach. Therefore, partial emulation [51, 71]
offers a method for forwarding peripheral API requests to the actual device to complete firmware
fuzzing tests. Furthermore, in a well-performing firmware emulation environment, we can mi-
grate applications of advanced gray-box protocol fuzzers [5, 36, 44, 52] by replacing source code
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instrumentation with binary instrumentation. While emulation-based fuzzing offers code test cov-
erage information and convenient anomaly monitoring and judgment, it requires significant man-
ual effort and can sometimes be infeasible due to missing software or hardware dependencies
required by the firmware that are absent in the emulation environment.

For device-based fuzzing, analysts directly connect to the communication interface of the SUT
and send test cases to complete fuzzing. Generative fuzzers such as Peach [22], BooFuzz [6],
and KittyFuzzer [23] allow users to define templates according to protocol specifications, which
include message fields and corresponding mutation methods for generating test cases. This
approach is suitable for public protocols with protocol specifications. For proprietary protocols,
IoTFuzzer [13] and DIANE [60] proposed to analyze the communication software corresponding
to the NED to generate test cases. When the communication software is unanalyzable, analysts
can test the NED by using normal communication traffic as seeds and mutating them to generate
test cases [24, 53]. Furthermore, to improve the problem of low test efficiency due to the lack of
guidance information for direct testing on NEDs, SNIPUZZ [21] and PCFuzzer [43] proposed a
method of evaluating response messages to guide seed screening. CHATAFL [48] proposed using
the large language model to analyze protocol specifications to help seed generation and mutation.
Although device-based fuzzing is more convenient than emulation-based fuzzing, device-based
fuzzing requires the purchase of real devices for analysis. Moreover, the program execution
information obtained by the device-based fuzzing is scarce, which results in lower test efficiency
compared to emulation-based fuzzing.

8.3 Anti-analysis Techniques

As we mentioned in Section 7, vendors commonly employ reverse engineering mitigation tech-
niques and vulnerability exploit mitigation techniques to enhance the security of their devices. In
addition, some anti-analysis techniques have been proposed to prevent the analysis of programs.
Symbolic execution, which is frequently used in vulnerability analysis [15, 66], is a program anal-
ysis technique that uses abstract symbols instead of precise values as program input variables to
obtain the abstract output of each path. Anti-symbolic-execution techniques [62, 65, 70] design
encryption or linear obfuscation operate on conditional branches to make the collected constraint
information unsolved. Taint analysis is another program analysis technique that monitors the flow
of taint information within a program to detect whether external input can influence key program
operations. Anti-taint-analysis techniques [11] disrupt the tracking of tainted data by adding indi-
rection call, implicit flow and time sensitivity.

9 CONCLUSION

In this paper, we present a novel adversarial fuzzing technique, named Armor, that aims to protect
NEDs from protocol fuzzing attacks. The proposed approach employs three adversarial primitives,
namely delay, fake coverage, and forged exception, to disrupt the fundamental mechanisms of
fuzzing, including high throughput, coverage guidance, and efficient detection of exceptions.
Based on our observation that normal user inputs adhere to the protocol specification and that
there exist cold paths in the program that are seldom executed by normal inputs, we design static
and dynamic strategies to decide the insertion location and initialization of adversarial primitives.
Our proposed technique effectively resists protocol fuzzing without affecting normal usage, as
demonstrated by our extensive evaluations. We show that Armor incurs negligible time overhead
and reduces the line coverage for fuzzing by 22%-61% and the number of vulnerabilities found
by 57%-89% when compared to the original unprotected program. Furthermore, our approach
outperforms the state-of-the-art anti-fuzzing techniques, such as ANTIFuzz and FUZZIFICATION,
which can introduce up to 600 times the time overhead and compromise device availability.
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