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This article proposes LATTE, the first static binary taint analysis that is powered by a large language model
(LLM). LATTE is superior to the state of the art (e.g., Emtaint, Arbiter, Karonte) in three aspects. First,
LATTE is fully automated while prior static binary taint analyzers need rely on human expertise to manually
customize taint propagation rules and vulnerability inspection rules. Second, LATTE is significantly effective
in vulnerability detection, demonstrated by our comprehensive evaluations. For example, LATTE has found 37
new bugs in real-world firmware, which the baselines failed to find. Moreover, 10 of them have been assigned
CVE numbers. Lastly, LATTE incurs remarkably low engineering cost, making it a cost-efficient and scalable
solution for security researchers and practitioners. We strongly believe that LATTE opens up a new direction
to harness the recent advance in LLMs to improve vulnerability analysis for binary programs.
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1 Introduction
For decades, software testing has remained the dominant method for software quality assurance,
primarily due to its cost-effectiveness. However, as Dijkstra emphasized [19], software testing can
only reveal the presence of bugs, not their absence. Consequently, it is not uncommon to encounter
bugs in released binaries [78, 88]. Certain bugs can be particularly critical and may be exploited as
vulnerabilities to initiate cyberattacks, e.g., unauthorized access to systems, stealing sensitive data,
and disrupting normal system operations [4, 41].

To reduce the impact of vulnerabilities in released binaries such as firmware of embedded devices
[12, 13, 74, 103] and commercial software applications [7, 33, 67, 88], third-party security audits
emerged as an indispensable force. These audits, conducted by entities without access to the source
code, apply various post-development analysis [13, 52, 71, 102] and testing techniques [12, 74,
88, 103] on the binaries.Thus, though analysis and testing are usually applied on source code, analyzing
and testing binaries is also an indispensable, complementary technique to ensure software reliability
and security.
Static Binary Taint Analysis. Among these analysis and testing techniques [12, 13, 103], static
binary taint analysis (referred to as taint analysis for brevity in this article) stands out as an effective
approach for vulnerability inspection. It can directly analyze binaries with several advantages,
including high test code coverage, independence from the concrete execution environment, and
the ability to discover previously unknown exploitable vulnerabilities [12, 74, 88].

The standard taint analysis workflow comprises three steps. 1 Identifying Taint Sources: Taint
sources are typically functions that receive external data. These external data can be manipulated by
attackers. For example, the function recv reads data through a socket, getenv retrieves information
from an environment variable, and fgets loads data from a file. 2 Propagating Taint Labels: Initially,
the external data received through taint sources are labeled tainted. Then the analysis traces the
flow of the tainted data through the program; it propagates the taint labels along data dependencies,
such as assignments, computations, and function calls, to discover how the tainted data spread
throughout the program. Meanwhile, if a memory region with a taint label is overwritten with
untainted data or the region is sanitized with certain checks, then the taint label is removed
from that memory region. 3 Identifying and Inspecting Sinks: Sinks are potential points in the
program where tainted data might be misused or lead to security vulnerabilities. They are usually
sensitive operations including manipulating strings (e.g., strcpy, strcat), executing commands
(e.g., system, execl), and formatted outputting (e.g., printf, fprintf).
Limitations of Taint Analysis. Taint analysis remains a partially automated process, demanding
considerable human effort for its execution. The effectiveness of this analysis heavily relies on the
accuracy and quality of rules governing taint source, taint label propagation, and sink inspection.
In particular, using taint analysis for vulnerability detection not only involves the effective propa-
gation of taints but also requires setting up as complete taint checking rules as possible to reduce
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False Positives (FPs) and False Negatives (FNs). Regrettably, designing these rules necessitates
meticulous manual crafting, resulting in a non-trivial and error-prone task. Previous techniques
[11, 12, 31, 45, 74, 88] have relied on human expertise to manually define these rules, thereby
introducing the risk of FPs or FNs in the analysis results due to potential rule errors and absences
[10, 45]. For instance, determining taint sources involves identifying functions that receive external
data, and establishing the initial taint labels requires the specification of these functions. Addi-
tionally, the sanitization checks that transform tainted data into safe data in propagation rules are
diverse and specific to function semantics. Furthermore, the inspection rules also vary based on
the types of vulnerabilities and sinks involved (further details in Section 3).
Insights. The limitation of taint analysis primarily arises from the requirement of an in-depth
understanding of the semantics of the code and the vulnerability pattern. Extension of rules has
historically imposed a significant burden on humans when applying taint analysis to different
binaries or vulnerabilities [11, 52, 88]. To overcome this limitation, we firmly believe that Large
Language Models (LLMs) can provide valuable assistance, benefiting from their recent advances
in code understanding, including code generation [66, 96, 99] and code summarization [3, 82]. LLMs
have advantages in code-related tasks by providing context awareness, semantic understanding,
and natural language interaction. While LLMs have their advantages, it is essential to note that
they are not a silver bullet. Therefore, in this article, we embark on the first study for vulnerability
discovery that explores the synergistic combination of the ability of LLM in code understanding
and the concept of taint analysis. This will improve the automation and accuracy of taint-style
vulnerability inspections.
Challenge of Using LLMs. There are unexplored challenges in applying LLMs for vulnerability
inspection in binaries. 1 Prompt engineering: Prompts play a crucial role in instructing LLMs
to generate responses, and their design significantly influences the performance of LLMs. In the
context of vulnerability analysis, well-constructed prompts must include the code snippets to be
analyzed and a clear description of the analysis tasks. However, current LLMs have their limitations:
Providing all the code snippets related to potential vulnerabilities at once or directly instructing
vulnerability analysis often leads to unsatisfactory results. Therefore, it is preferable to break
down the relevant code snippets and vulnerability analysis tasks, and prompt LLMs to perform
step-by-step analysis. Furthermore, the prompt engineering process should be designed to be
general, without requiring human intervention whenever the program or vulnerability analysis
task changes. 2 Encoding of code context: To conduct accurate vulnerability analysis, having
adequate code context, including function call stacks, data dependencies, and control flow, is
crucial to determine whether a piece of code is vulnerable. However, most LLMs currently accept
only a limited amount of context, striking a balance between computational costs and response
quality. For example, the state-of-the-art LLM GPT-4.0 supports contexts consisting of just 32,000
tokens (approximately 24,000 words) for both prompts and responses [64]. Consequently, when
dealing with real binaries, encoding the code context to meet this size constraint of LLMs becomes
necessary. Analyzing the entire binary directly is often impractical, as the decompiled code itself
usually surpasses this size limitation.
LLM-Powered Binary Taint Analyzer (LATTE). We propose LATTE, the first technique to
inspect vulnerabilities in released binaries by combining the power of LLMs and the concept
of taint analysis. It conquers the practical limitations of taint analysis by harnessing the ability
of LLMs in code understanding to automate and streamline the manual components of taint
analysis, and addresses the challenges of using LLMs with dedicated static analysis and prompt
engineering.The key idea of LATTE is to construct Prompt Sequences (PSs) driven by code slicing.
Concretely,
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(1) Initially, we preprocess the binary to recover the code structure, by performing analysis such
as disassembly and decompilation.

(2) Based on the preprocessing results, we use LLMs to identify sinks and then determine
potentially Vulnerable Destinations (VDs), i.e., call sites of security sensitive functions
(sinks). These VDs will need to be inspected.

(3) With the identified VDs, we perform backward intraprocedural and interprocedural data
dependency slicing to establish function Call Chains (CCs) starting from the VDs.

(4) We consider function CCs involving external input data as Dangerous Flows (DFs). To
this end, we first use LLMs to identify sources that pass externally controllable data into the
program and then identify such CCs that include sources.

(5) Based on the DFs, we use functions as units and combine them with program analysis tasks,
such as flow analysis, alias analysis, and taint analysis, to form PSs. These PSs are generated
to converse with LLMs, completing the vulnerability inspection.

Evaluations. Our comprehensive evaluations demonstrate that LATTE significantly outperforms
the state-of-the-art binary taint analyzers. Specifically, We first evaluated LATTE based on the
taint-style vulnerability test subjects (compiled and stripped) in the standard dataset Juliet Test
Suite [23]. The accuracy and F1 of LATTE vulnerability checking exceeds Emtaint [12] and Arbiter
[88] on every vulnerability type. Moreover, LATTE achieved 100% correct coverage for identifying
sinks and sources in the test subject target scenario. For test subjects labeled with containing
vulnerabilities, LATTE successfully extracted more than 95% of the correct DFs that covered the
paths triggering potential vulnerabilities. Furthermore, we assessed the effectiveness of LATTE in
real-world binaries using the embedded device firmware dataset provided by Karonte [74]. LATTE
detected a total of 119 unique bugs, including 37 previously unknown bugs (10 CVE numbers have
been given due to high threat), which outperforms the state of the art [12, 74, 88].
Contributions. We make the following major contributions:

—We propose LATTE, the first technique to leverage LLMs to power static binary taint analysis.
LATTE addresses the limitations of prior taint analysis. Prior taint analyzers heavily rely
on human expertise to define rules for propagating taint labels and inspecting sinks and
customize rules for different binaries and vulnerability types, whereas LATTE harnesses the
ability of LLMs in code understanding to fully automate taint analysis.

—LATTE presents a novel solution to address the practical challenges of using LLMs, with
dedicated multiple-step static analyses and automated prompt engineering to effectively elicit
LLMs to generate accurate analysis responses.

—Comprehensive evaluations demonstrate the effectiveness of LATTE. Compared to the state of
the art, LATTE achieved higher accuracy and F1 score on the standard dataset, and on the
firmware dataset, LATTE found 117 unique bugs (including 37 previously unknown bugs with
10 awarded CVE numbers), at least 21 more than the baselines.

2 Background
2.1 Taint-Style Vulnerability
As an effective software testing technique, taint analysis is often used for binary vulnerability
detection [10–12, 31, 45, 73, 74]. Taint analysis can effectively find vulnerabilities caused by external
inputs, commonly referred to as taint-style vulnerabilities [98]. Nevertheless, previous binary
taint techniques [10–12, 31, 45, 73, 74] use different names to denote types of vulnerabilities they
support. To facilitate comparison of different techniques in a unified, standard way, we categorize
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Fig. 1. Example of the class CWE-78.

Table 1. Mapping between Taint-Style Vulnerability Types and CWE, Comparison of Binary
Taint Analyzer Capabilities

Vulnerability Type Binary Taint Analyzer
Saluki [31] Dtaint [11] Karonte [74] SATC [10] FBI [45] Arbiter [88] Emtaint [12] LATTE

CWE-78 OS Command Injection Ø Ø Ø Ø Øa Ø Ø
CWE-120 Classic Buffer Overflow Ø Ø Ø Ø Øa Ø Ø
CWE-134 Controlled Format String Ø Ø Ø Ø
CWE-190 Integer Overflow or Wraparound Ø Ø
CWE-606 Unchecked Loop Condition Ø Ø

“Ø” means that the corresponding taint analyzer supports the corresponding vulnerability type.
aindicates that the taint analyzer Arbiter does not provide the corresponding inspection rules and additional engineering effort is required.

the vulnerability types supported by previous binary taint analyzers according to the Common
Weakness Enumeration (CWE) [55].

CWE is a community-developed list of software weakness types used to classify security vulner-
abilities [54]. CWE is a tree-like relationship between weaknesses at different levels of abstraction,
which can be divided into pillars, classes, bases, and variants. As shown in Figure 1, the pillar (P)
is the weaknesses described in the most abstract way. The class (C) is still abstract and usually
independent of any particular language or technology. The basic (B) is used to present more specific
types of weaknesses. The variant (V) is described at a low level of details, usually restricted to a
specific language or technology.

To ensure that vulnerability types do not overlap, we classify taint-style vulnerability types
according to the following principles. 1 Vulnerability types are mapped to the CWE’s basic level,
which is used to present specific types of weaknesses. If basic level does not exist, then the variant
level is used. 2 Classification is based on the cause the vulnerability is triggered, regardless of
the reason for the introduction of tainted data. Otherwise a vulnerability would have multiple
labels. For example, if a command injection vulnerability (CWE-78) is caused by unchecked input
data, it will be classified as CWE-78, not CWE-76 (Improper Neutralization of Equivalent Special
Elements). 3 Classification is based on the first reason the vulnerability is triggered. For instance,
if there is an integer overflow vulnerability (CWE-190) in the operation of input data, and the
subsequent use of the operation result leads to a buffer overflow (CWE-680: Integer Overflow to
Buffer Overflow), we still classify it as CWE-190.

Table 1 lists five CWE vulnerability types, which cover the vulnerability types supported by the
previous binary taint analyzer. Previous techniques rely on human expertise or heuristics to define
taint analysis rules including taint sources, sanitizers, and sinks, to propagate and inspect tainted
data to discover taint-style vulnerabilities in binaries. While theoretically it is possible to apply a
well-implemented taint engine and sound rules to inspect all types of vulnerabilities in any binary,
this is not realistic.1

1A taint engine is orthogonal to taint rules. A taint engine is the tool that actually performs taint analysis, detecting potential
security vulnerabilities by tracking dataflows. Taint rules are a set of principles and logic that guide the work of the taint
engine, defining which data are tainted and how to track and process these data.
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First, implementing a taint engine demands substantial engineering effort, particularly for
analyzing binary code. Binaries often lack information on symbols and data types, and can vary
significantly due to differences in architecture, compilers, and optimization options. Even in de-
compiled code, much semantic and structural information is lost or ambiguous. Consequently,
these previous techniques typically have to make certain assumptions to develop new taint engines
[11, 12, 31, 74, 88].

Second, defining sound taint source, sanitization, and sink rules for existing taint engines is also
a complex engineering task. Methods such as function abstraction and machine learning can assist
in setting relevant rules for new vulnerability types and libraries [10, 45, 46]. However, to improve
the accuracy of vulnerability analysis and reduce the workload of post-analysis, the complexity
of the rules and the demand for automatically verifying vulnerabilities inevitably increase. For
example, to reduce FPs, certain taint engines [12, 74] perform vulnerability inspections at the sinks
of strcpy, strncpy, and memcpy by comparing the length of the taint source and the size of the
destination buffer; these rules increase the analysis complexity and workload, and demand more
insights from expert experience.

2.2 LLM
An LLM consists of billions of parameters and is trained on billions of samples to be highly general.
Downstream tasks can be accomplished using LLMs through either prompt engineering [17, 38,
42, 97] or fine-tuning [18]. In the context of prompt engineering, the downstream task is directly
provided as a natural language description to the LLM, prompting the LLM to generate a response
to complete the task. Unlike fine-tuning, which involves retraining the LLM with additional data,
prompt engineering does not necessitate extra training data and avoids the high computational
resource costs. Moreover, the LLM has been trained on extensive corpora and possess the ability to
execute specific tasks with prompt engineering [6, 32, 43, 51, 97]. Therefore, we chose the prompt
engineering method to conduct our research.

Prompt engineering is a critical process that involves constructing prompts to elicit desired
responses from LLMs. It plays a direct role in influencing the performance of LLMs across various
tasks. With deliberated prompt engineering, LLMs have demonstrated excellent code understanding
capabilities onmany code-related tasks, such as code generation [66, 96, 99] and code summarization
[3, 82]. These successes inspired us to explore extending the power of LLMs into the field of
vulnerability analysis.

3 Motivation
Benefiting from the rich code information and community resources, the development of source
code vulnerability static analysis tools has far surpassed that of binary static analysis tools [5, 20, 27].
Compared with source code, in binary, even decompiled pseudocode, there is still a lack of clear
functions, classes, variable names, and comments, which makes it difficult to understand specific
functions. Table 1 demonstrates that each prior binary taint technique only supports a limited set
of taint-style vulnerability types. This limitation arises from the difficulty in manually defining
comprehensive propagation and inspection rules for taint analysis. Efforts such as SATC [10] and
FBI [45] have attempted to optimize Karonte’s [74] rules using human expertise and heuristics,
resulting in reduced FNs and FPs. However, due to the complexity and variety of taint analysis,
the manual-dependent nature still hinders the overall performance of these binary taint analyzers.
As shown in Figure 2, we take the integer overflow vulnerability in a Decompiled Binary (DB)
program as an example to intuitively illustrate the following concrete problems of designing and
implementing effective binary taint analyzer.
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Fig. 2. Example of vulnerabilities in decompiled code (comments are added to aid understanding). When the
user input from stdin is 126, the expected result on line 17 is 128 (the actual result is −128). Because the char
type is signed, its range is [−128, 127]. When the result exceeds this range, an integer overflow occurs.

3.1 Problem 1. Determining Taint Sources and Initial Taint Labels
Manually identifying taint sources, which receive external input in a binary, is a laborious process,
because not only standard C/C++ functions (such as recv, fscanf, fgets) but also third-party
functions (e.g., SSL_read and BIO_read in OpenSSL) can receive external data. More importantly,
determining the initial taint labels for the return values and parameters of the taint sources requires
deep understanding of the semantics of the taint sources. For example, only with the semantics of
fscanf can we determine the third parameter &a of fscanf (line 4) to be tainted, as &a stores the
external input retrieved by fscanf; the first and second parameters should not be labeled as tainted.
Note that it is even more challenging to determine initial taint labels for third-party functions
than standard C/C++ functions because the former usually do not have documentation whereas
the latter are at least documented in the C/C++ language standard. Mislabeling often leads to the
incorrect propagation of taint information throughout the program under analysis.

3.2 Problem 2: Defining Rules to Propagate Taint Labels
Initial taint labels are propagated throughout the program with assignments (e.g., b = a on line 5),
calculations (e.g., e = b+1 on line 8), and other language constructs, which can be automatically
identified through data dependency analysis. The process of propagating taint labels involves
not only propagation but also sanitization. In addition to the sanitization performed by directly
assigning or copying safe (i.e., untainted) data to tainted memory region (e.g., a = 1 on line 7),
there are also sanitization situations related to semantics. For example, checking the content of b
on line 10 excludes the possibility of overflow of c = b + 1 on line 14. Due to the considerable
engineering effort caused by the diversity of sanitization situations and the correlation of code
semantics, previous work [12, 45, 74] ignores the setting of complex sanitization, which leads to
considerable FPs, as discussed in [12, 49, 87].
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3.3 Problem 3: Formulating Inspection Rules for Various Sinks and Vulnerabilities
Taint analysis can discover dataflow sensitive vulnerabilities caused by external inputs, including
various types of vulnerabilities listed in Table 1. These vulnerabilities can be triggered by different
sinks in various ways, leading to a complex many-to-many relationship between vulnerability types
and sinks. For each pair of a vulnerability type and a sink, it is often necessary to manually formulate
a customized inspection rule. The process starts with identifying sinks, which can include not only
standard C/C++ functions like printf and system but also third-party functions from various
libraries like BIO_printf in OpenSSL [28]. When taint analysis is applied to a new binary that is
linked with different libraries, human effort is indispensable to identify the sinks, because sink
identification involves comprehending the behavior of functions in the binary. After determining
sinks, inspection rules need to be formulated according to the potential vulnerability types.

For example, to inspect whether the printf call on line 9 in Figure 2 can trigger a CWE-134
vulnerability, we need to check whether the first argument (i.e., “%d”) of printf is tainted; to
inspect whether the call can trigger a CWE-190 vulnerability based on the first argument %d,
we first need to check whether the second argument (i.e., (ulong)e) of printf is tainted; if yes,
we need to further check whether the calculation process of this argument overflows. It is not
scalable or practical to depend solely on human expertise and efforts to understand sink functions
and vulnerability types, and manually formulate accurate and comprehensive inspection rules
[12, 74, 88].

3.4 Advantages of LLMs in Vulnerability Inspection
The aforementioned specific implementation of the taint analysis often requires manual efforts
combined together with human expertise of vulnerability analysis to establish taint rules. Compre-
hensive taint rules can reduce the workload of postprocessing analysis results, but also increase the
complexity of the rules and the cost of analysis. For example, if the length of the tainted string with
the null-terminator meets the requirements of the destination buffer of strcpy, the tainted string
will not cause a buffer overflow vulnerability. Traditional taint analysis tracks the flow of taint
labels from sources to sinks, so postprocessing to verify alerts is critical, such as bounds checking
and value analysis.

Fortunately, LLMs inherently have the ability of human-like semantic understanding of code,
unlike static or automated tools that rely on predefined patterns and rules. Certain software
engineering tasks, such as code generation based on natural language descriptions [66, 96, 99] and
code summarization [3, 82], have demonstrated the superb ability of LLMs to understand code.

To intuitively illustrate the benefits of LLM-assisted vulnerability inspection, we show the
vulnerability analysis results produced by GPT-4.0 for the following three code snippets with this
Prompt Template (PT):

Use <function> as the taint source and mark the <parameter> parameter with the taint label
for taint propagation. Determine whether the program has vulnerabilities. Pay attention to the
buffer size and library function definition. If there is a vulnerability, please explain it according
to the CWE type.

where the pair (<function>, <parameter>) is replaced with (fgets, first) or (recv, second)
accordingly.
Code Snippet without Vulnerabilities. The program in Figure 3 does not have any vulnerability
and GPT-4 correctly produces the following analysis result:

In the provided code snippet, using fgets as the taint source and marking the first parameter with
the taint label for taint propagation, the primary concern revolves around how data is handled and
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Fig. 3. A DB program that has no vulnerability.

Fig. 4. A DB program, similar to Figure 3, uses fgets to receive user input (comments are added to aid
understanding). It has a buffer overflow vulnerability. The reason for this program to have a buffer overflow
vulnerability is that the buffer that fgets receives input is 60 bytes long, and strcpy may exceed the buffer
b of the destination when copying.

copied between buffers. However, the specific use of fgets and strcpy in this context does not
inherently introduce a classic buffer overflow vulnerability as might be seen with other functions
like gets or unchecked uses of strcpy.

Vulnerable Code Snippet with fgets. The program in Figure 4 is similar to Figure 3, but has a
buffer overflow vulnerability. The following shows the correct analysis result by GPT-4:

In this updated code snippet, there is a clear vulnerability due to the use of strcpy to copy data
from a larger buffer a (60 bytes) to a smaller buffer b (50 bytes) without checking the size of the
input. This scenario introduces a classic buffer overflow vulnerability, which can be classified
under CWE-120: Buffer Copy without Checking Size of Input (Classic Buffer Overflow).

Vulnerable Code Snippet with recv. The program in Figure 5 is similar to Figure 3, but uses recv
to receive user input. The following shows the correct analysis result by GPT-4:

In the provided code snippet, the recv function is used as the taint source, and the second
parameter (a) is marked with the taint label for taint propagation. This setup introduces a
potential vulnerability when the data received are copied from buffer a to buffer b using strcpy,
without checking the size of the data being copied. This scenario can lead to a buffer overflow
vulnerability, specifically classified under CWE-120: Buffer Copy without Checking Size of Input
(Classic Buffer Overflow).

Based on the three analysis results provided by GPT-4, it is evident that LLMs can understand
and leverage deep semantic information about the code and the functions the code calls, to perform
vulnerability checks. Therefore, LLMs have significant potential to automate certain aspects of
taint analysis, a topic that will be further elaborated in the remainder of this article.
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83:10 P. Liu et al.

Fig. 5. A vulnerable DB program that is the same as Figure 3 except using recv to receive user input instead
of fgets (comments are added to aid understanding). The reason for this program to have a buffer overflow
vulnerability is that recv does not guarantee a null-terminator, a subtle behavioral difference from fgets.

4 Overview of LATTE
We propose LATTE, a novel approach that leverages the code understanding capabilities of LLMs
to assist in taint analysis for identifying potential vulnerabilities in binaries. This approach raises
the key ResearchQuestion (RQ): How can we practically and effectively prepare prompts to guide
LLMs in performing vulnerability inspection? Effective prompts must provide LLMs with sufficient
code context and clear analysis instructions. However, achieving this requires overcoming two
main challenges.
Challenge 1: Large Code Size and Complexity vs. Limited Token Context of LLMs. The size and
complexity of binary code make it impractical to directly feed an entire binary program to LLMs for
analysis. LLMs have limits on the number of tokens and the amount of context they can process.
When these limits are exceeded, LLMs may lose track of previously analyzed information, affecting
subsequent code analysis. Even without these input limitations, effectively inspecting vulnerabilities
across the entire codebase of a real-world software project remains a daunting challenge.
Solution to Challenge 1. Incorporating the principles of taint analysis, we extract DFs for LLMs
to analyze. By slicing the program, we reduce the analysis complexity for LLMs. This method
employs taint analysis principles to conduct dependency analysis on dangerous data related to the
program’s external input. However, unlike traditional taint analysis, we do not perform sanitization
and vulnerability inspections; instead, we focus solely on extracting DFs. A DF is defined as a slice
of functions involved in data dependencies between the external data input function and potential
destinations that could lead to vulnerabilities (see Sections 5.1 and 5.2). Through this process, multiple
DFs can be extracted from the program, forming a superset of potential vulnerabilities.This approach
partitions the analysis space for LLMs, reducing the overhead of complex taint analysis algorithms
and minimizing the risk of FNs. The extracted DFs provide LLMs with relevant and contextually
concise input, enhancing the accuracy and efficiency of vulnerability analysis.
Challenge 2: Obscurity of Vulnerability Discovery vs. Generality of Instructions for LLMs. Vulnera-
bility discovery inherently involves exploring the unknown. Instructing LLMs to perform similarity
analysis based on known vulnerabilities limits the ability of LLMs to detect unknown vulnerabili-
ties. Additionally, it is impractical to provide examples of all possible vulnerability patterns in the
prompt and use few-shot learning for analysis [16]. The instructions for vulnerability checking
described in the prompt should remain general, requiring no additional effort when the code or
vulnerability types change.
Solution to Challenge 2. Inspired by the idea of manual code auditing that usually splits a vulnera-
bility analysis task into multiple smaller sub-tasks, we instruct LLMs to analyze the DF step by step
in a similar manner. When manually auditing code, we often use functions as units to gradually
understand the entire program. In addition, manual audits often determine whether vulnerabilities
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LLM-Powered Static Binary Taint Analysis 83:11

Fig. 6. Workflow of LATTE.

exist in a general way by understanding the definition of functions and the processing flow of
data, rather than finding similarities through specific vulnerability examples. Therefore, taking the
functions in the DF as units, we construct a comprehensive PS corresponding to the DF, which
specifies the data source to carry out dataflow tracing and vulnerability inspection (see Section 5.3).
This PS allows LLMs to complete the vulnerability analysis of the DF in the form of a conversation.
Consequently, LLMs can explore and discover vulnerabilities more effectively, even in scenarios
with different binaries or vulnerability types.

4.1 Workflow of LATTE
LATTE utilizes the idea of code slicing and task splitting to build prompts to instruct LLMs for
vulnerability inspection. The overall workflow of LATTE is depicted in Figure 6, primarily com-
prising three modules. First, we preprocess the input binary using disassembly and decompilation
techniques. This module provides the recovered code structures for further analysis. In the second
module, we slice the DFs of the decompiled program, extracting relevant code snippets involving
data dependencies between external inputs and VDs. For each DF, we generate the corresponding
PS that instructs the LLM. Then, the third module uses the generated PS to engage in a conversation
with the LLM to step-by-step guide the DF analysis for discovering vulnerabilities.

The code slicing and prompt construction module serve as the core of LATTE. We further explain
the three phases of this module.
Phase 1: Function CC Extraction. In this phase, we begin by identifying VDs (i.e., call sites of sinks)
within the binary. To achieve this, we utilize the LLM to analyze each external function to identify
sinks and their related parameters, which may potentially trigger vulnerabilities. We consider the
calls to these sinks as the VDs. Next, we conduct backward data dependency analysis, encompassing
both intraprocedural and interprocedural aspects, starting from each VD. This analysis helps us
reconstruct the function CCs leading to these VDs (details in Section 5.1). Function CCs are defined
as below.

Definition 4.1 (CC). A CC is a sequence of functions [51, 52, · · · , 5=], where 5= contains a VD and
∀8 ∈ [1, =) : 58 calls 58+1.

Phase 2: DF Generation. The second phase focuses on identifying external input sources and
matching them to the previously generated function CCs to generate DFs. To achieve this, we
once again rely on the LLM to identify sources from external functions and determine their calls.
Then, we match the caller of the sources within the function CCs. If the caller exists in a chain,
we consider the chain as a Candidate DF (CDF) whose starting point is the caller. By applying a
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83:12 P. Liu et al.

sequence-sensitive filtering process, we eliminate repeated flows among candidate CDFs, resulting
in a set of distinct DFs (details in Section 5.2).

Definition 4.2 (DF). A DF is a CC = [51, 52, · · · , 5=], where 51 contains at least one call to a taint
source, 58 (1 < 8 ≤ =) may contain calls to taint sources, 5= contains a VD, and the external data
obtained from any of the taint sources called on the chain can possibly flow to the VD.

Phase 3: PS Construction. The third phase involves constructing PSs by combining the identified
DFs with specific analysis tasks. For each DF, we create the corresponding PS using functions as
units. To be applicable to various binaries, we design three PTs to complete the construction of
prompts. The first PT is used to initiate a conversation, which combines with the first function
in the flow to clarify the source of analysis, and instructs the LLM to perform data aliasing, data
dependency, and taint analysis. We then use a second template combined with each function in the
DF to recursively construct prompts for dataflow analysis until reaching the end of the DF. The last
prompt instructs the LLM to initiate the final vulnerability analysis (details in Section 5.3).

5 LATTE Design
We introduce a novel technique for PS construction based on DF analysis, which enables LLMs to
conduct effective vulnerability inspections in binaries. DFs are obtained by performing backward
data dependency slicing from calls to sinks and matching sources. The analysis of DFs focuses
solely on data dependency analysis and does not involve taint sanitation or vulnerability inspection.
Based on the extracted DFs, combined with the task of program analysis, the LLM inspects DFs for
potential vulnerabilities. Combined with Algorithm 1, we next explain the specific design of the
program slicing and prompt construction process.

5.1 Function CC Extraction
In the function CC extraction phase, we focus on extracting function CCs that are relevant to
potential vulnerabilities in the binary. This process involves two main steps: identification of VDs
and backward slicing.

5.1.1 Identification of VDs. The first step is to find the call sites of sinks within the binary. To
inspect all potential vulnerabilities, we need to locate all sinks present in the binary. Sinks often
depend on external libraries linked to the binary, as mentioned in Section 3. To identify sinks, we
leverage the power of the LLM. Specifically, we extract externally linked functions from the DB
into a list named Fexternal. For dynamically linked libraries, the names of external functions are
preserved in the function table of the binary, so we can provide the function names to the LLM for
analysis. For statically linked libraries, the body of the function is included in the binary. We utilize
the LLM for code summary analysis of the external library function to identify sinks. As shown
in Figure 7, we take dynamic linking as an example to illustrate this process. The form of static
linking is just to replace the function name with the function body. The prompt first assigns the
program analyst persona, because the role setting performs better in statistical results [93]. Then,
the prompt clearly describes the purpose of the analysis, i.e., determine whether the function can
be used as a sink in taint analysis. Moreover, we use the one-shot approach to give an example
to standardize the output of LLMs. The output of LLMs is not necessarily completely accurate or
stable. We can remove the “without additional explanation” indication in the prompt to use the
description of the function in the response to assist in the judgment of sinks. For any functions 5
that is determined to be a sink, we store the pair (5 ;Para) of the function name and parameter
that needs to be checked, into a set named sinks on line 5 in Algorithm 1 for subsequent use. It is
worth noting that the analysis results of (sink; Para) can be reused if another binary uses the same
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LLM-Powered Static Binary Taint Analysis 83:13

Algorithm 1: Program Slicing and Prompt Construction.
Input: DB: decompiled binary
Input: PTs: prompt templates
Output: PSs: prompt sequences for vulnerability inspection
// Function Call Chain Generation

1 Fexternal ← ExtractExternalFunc(DB)
2 sinks← ∅
3 foreach f ∈ Fexternal do
4 if LLM thinks 5 is a taint sink with the parameter(s) Para causing the vulnerability then
5 sinks← sinks ∪ {(5 ;Para)}

6 vulnerable destinations VDs← ∅
7 foreach (sink;Para) ∈ sinks do
8 callsites← find all the call sites of sink
9 foreach Loc ∈ callsites do
10 Arg← find the actual argument for the parameter Para
11 VDs← VDs ∪ {(Loc; sink;Arg)}

12 call chains CCs← ∅
13 foreach VD 8= VDs do
14 CC1,CC2, ...← BackwardSlicing (DB, VD)
15 CCs← CCs ∪ {CC1,CC2, ...}

// Dangerous Flow Generation
16 sources← ∅
17 foreach f ∈ Fexternal do
18 if LLM thinks 5 is a taint source with the parameter(s) Para storing external data then
19 sources← sources ∪ {(5 ;Para)}

20 candidate dangerous flows CDFs← ∅
21 dangerous flows DFs← ∅
22 foreach CC ∈ CCs do
23 if the source of sources exists in CC and has data dependency with the VD then
24 CDF← change the starting function to the caller of source
25 CDFs← CDFs ∪ CDF

26 DFs← Deduplicate (CDFs)
// Prompt Sequence Construction

27 prompt sequences PSs← ∅
28 foreach DF ∈ DFs do
29 PS← ConstructPromptSeq (PTs, DF)
30 PSs← PSs ∪ PS
31 return PSs

dynamic library. This analysis is only necessary when the binary uses a different dynamic library
that has not been analyzed before.

The output result is a set of pairs (sink; Para), as shown on line 5 in Algorithm 1. For example,
(printf; 1), (printf; 2), · · · indicate that every parameter of the printf function needs to
be checked for potential vulnerabilities. After identifying the sinks and the corresponding Para,
we traverse the binary to locate the call sites of each sink, forming the VD list of the triplet
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83:14 P. Liu et al.

Fig. 7. Use GPT-4.0 to identify sinks.

(Loc; sink; Arg). For example, the first parameter in the printf calls in Figure 2 is a constant
and does not need to be checked, so Figure 2 contains three VDs: (9; printf; e), (15; printf;
c), and (18; printf; d).

5.1.2 Backward Slicing. The second step, backward slicing, involves obtaining the operations
performed on the VD’s arguments before the call to the sink. This step relies on both intraprocedural
and interprocedural dataflow analyses. We adopt a depth-first backward approach to traverse the
call graph and analyze dataflows backward from each VD = (Loc; sink;Arg) to generate CCs, as
shown on lines 12–15 in Algorithm 1.

LATTE relies on Ghidra [62] to perform call graph analysis. Specifically, we obtain the address of
each function2 by traversing the functions identified by Ghidra. Then, call and jump instructions
are found in each function, and the memory addresses used in these instructions are matched
with the function addresses to identify the relationship between callers and callees and further
build the call graph. Based on the call graph, we first perform flow-insensitive and path-insensitive
intraprocedural data dependency analysis within the function 5 where VD is located. For loops
within 5 , if duplicate paths are found, the loop is exited. In addition, we perform pointer alias
analysis with the help of variable description definitions and addressing methods [11]. If direct
data dependencies are detected between the VD’s vulnerability trigger-related arguments (i.e., arg)
and the 5 ’s parameters, we extend our analysis to an interprocedural level. The calling context is
considered by recording the function names of different callers to form multiple CCs. Therefore,
we recursively analyze the dependencies until there are no dependencies on caller parameters or
no caller. To manage the complexity of recursive calls and path explosion, we limit the context call
depth to 50. Finally, we add the CCs corresponding to different VDs to the set CCs.

We use an example to demonstrate the above analysis process. CCs, as shown in Figure 8, show
a partial call graph, where the library function system is the sink. The VD = (10; system; a) is in
fun1, and we initialize its CC = [fun1]. There is a data dependency between a and para2 of fun1.
So we continue to analyze the call sites of fun1 and update CCs to {[fun2, fun1], [fun3, fun1]}. In
fun3, the argument corresponding to the parameter para2 of fun1 is 1, and 1 has a data dependency
with para2 of fun3. Therefore, we continue to analyze the callers of fun3 until there is no caller or
no dependency on the parameters.
2A function address refers to the memory location where the code of the function begins in memory.
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LLM-Powered Static Binary Taint Analysis 83:15

Fig. 8. An example call graph of a program, where each node is a function definition. Black arrows represent
function call relationships. Blue arrows represent data dependency relationships. The figure directly shows
the two CCs of VD = (10; system; a), namely, {[fun2, fun1], [· · · , fun3, fun1]}.

5.2 DF Generation
In the DF generation phase, our goal is to identify CCs in which external input can reach a VD.
This process involves two main steps: We first need to identify the external input source in the
program and then perform matching and deduplication in CCs to determine DFs.

5.2.1 Source Identification. The first step is to identify sources in the binary. Similar to the
identification of sinks in Section 5.1.1, we also utilize the LLM for this task. In this case, the analysis
task is changed to find functions that can directly receive external inputs. We extract external link
functions in the binary and provide the function name or function body so that LLM can perform
auxiliary analysis to determine whether the function can be used as a taint source. For any function
5 that is determined to be a source, we store the pair (5 ;Para) of the function name and parameter
that needs to be checked into a set named sources on line 5 in Algorithm 1 for subsequent use.
For instance, Figure 9 indicates that the fscanf function is used as the source, and the second
parameter stores the external input data. Obviously, this response is not entirely accurate. External
input should be stored in the corresponding pointer parameter after the format string. Therefore,
we need to make corrections based on slight expert experience. We use (fscanf; > 2) to indicate
that we need to analyze the parameters after the second parameter of the fscanf function. Like
the identification of sinks, the source identification results can also be reused for different binaries
that uses the same dynamic library.

5.2.2 Matching and Deduplication. With the identified set of sources {(source;Para)}, we pro-
ceed to match them in the extracted CCs to identify DFs. Specifically, for each CC, we check
whether the function 5 of the CC call the identified sources. If so, we further analyze whether the
argument corresponding to Para of the source overlaps with the dataflow of the VD. If there is
overlap, the functions from 5 to the end in the CC are considered a CDF. As a CC may generate
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83:16 P. Liu et al.

Fig. 9. Use GPT-4.0 to identify sources.

multiple CDFs due to multiple sources, we only keep the longest CDF within the same CC. Addi-
tionally, different CCs may produce the same CDF or subchain. To avoid redundancy and reduce
unnecessary inspection requests, we filter out CDFs that are subchains of other CDFs. Finally, we
obtain a set of DFs for the next step to construct PSs.

We use CCs = {[fun2, fun1], [· · · , fun3, fun1]} in Figure 8 to illustrate the above pro-
cess. In fun2, the taint source fgets is called and the first argument a has a data depen-
dency with the argument b of func1 (the snprintf in line 18 of Figure 8 stores a in b).
Therefore, [fun2, fun1] is a CDF. We assume that CC = [· · · , fun3, fun1] forms {[fun5,
fun4, fun3, fun1], [fun6, fun4, fun3, fun1]} after the recursive analysis. If the taint source is called
in fun4 and fun6, the corresponding CDFs is {[fun4, fun3, fun1], [fun6, fun4, fun3, fun1]}. But
[fun4, fun3, fun1] is a subchain of [fun6, fun4, fun3, fun1], so the former is discarded. The final
DFs are {[fun2, fun1], [fun6, fun4, fun2, fun1]}.

5.3 PS Construction
In the PS construction phase, our objective is to create PSs that instruct the LLM to perform
vulnerability inspection based on identified DFs. To ensure that the PS effectively instructs the LLM
and remains valid and effective for different, diverse programs, we propose PTs that are applicable
to all DFs and can be instantiated to fit each DF. We follow a rigorous iteration and optimization
process that ranged from initial prompt design to testing and feedback analysis. The final PTs
include the following key elements for effective analysis:

—Clearly state the analysis tasks. Precise instructions for vulnerability analysis are essential to
prevent irrelevant content.

—Enrich the context of tasks. Additional instructions related to vulnerability analysis, such as
alias analysis and focusing on tainted dataflows, enhance accuracy.

—Persona assignment. Assigning appropriate roles improves the professionalism of LLMs in
responding to descriptions.

—Splitting of analysis tasks or data. For large data to be analyzed, splitting or preprocessing the
data helps improve accuracy.

—The specified output format. The determined output format facilitates analysis for downstream
tasks.
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Fig. 10. The PTs for constructing the PS that instruct the LLM to inspect vulnerabilities.

According to these elements, we design three templates shown in Figure 10. The PTs are inspired
by the general approach of manual code auditing. Specifically, data dependency analysis starts
from the function containing the external data source and progresses through the function CC
until the last function in the DF. If a DF contains only one function, then the PS for it includes
a start prompt and an end prompt. For a DF consisting of more than one function, the middle
template is used recursively to complete the PS construction. This structured approach ensures
that LATTE performs vulnerability analysis effectively and consistently across different scenarios.
The detailed explanation of PTs design is as follows.
Start Template (Figure 10(a)). Initializes the analysis by specifying the task and context clearly.
The start prompt assigns the persona of the LLM and explains the analysis background and tasks.
Specifically, we instruct the LLM to conduct the following conversion in the role of program analyst.
Then, we clarify the taint source of program analysis. For example, for the DF = [fun2, fun1]
shown in Figure 8, the pair (<function>, <parameter>) in Figure 10(a) is replaced with (fgets,
first). At the same time, the body of first function fun2 is appended at the end of the prompt for
analysis. In the description of the analysis task, we mainly focus on the propagation of tainted data,
so we emphasize the analysis of data dependencies. To conduct more accurate analysis, we also
emphasize the focus on data aliases and tainted data operations.
Middle Template (Figure 10(b)). Recursively used to handle intermediate steps in the DF, enriching
the context and focusing on relevant dataflows. Specifically, the middle prompts are reused to
describe functions in a DF other than the first function. Thanks to the short-term memory capability
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of the LLM itself, we can complete data dependency analysis between functions. Therefore, the
middle prompt needs to indicate that the taint analysis is continued based on the analysis results of
the previous function. Similarly, we put the function body to be analyzed at the end of the prompt.
For example, for the DF = [fun2, fun1] shown in Figure 8, the body of function fun1 is appended
at the end of the prompt for analysis. Moreover, if there is a source in the current function, we fill
in the source name and the corresponding parameter at <function> and <parameter> as in the
start template. Otherwise, taint propagation analysis is performed based on the analysis results of
the previous function and the prompt does not include the content in parentheses (i.e., “(Note the
new taint source … as the taint label.” in Figure 10(b)).
End Template (Figure 10(c)). Concludes the analysis, ensuring that all necessary information is
captured and formatted correctly. Specifically the end template is used after all functions in have
been analyzed. The main task of the end template is to perform vulnerability inspection based on
the analysis results of allDF functions. At the same time, to facilitate vulnerability identification and
analysis, we also let the end template classify vulnerabilities based on CWE. It is worth mentioning
that this not only provides a more detailed vulnerability analysis description, but also provides
patching suggestions based on the code context.

Assuming that the DF only contains the foo function in Figure 2, the running example of LATTE
instructing the LLM to perform vulnerability analysis is shown in Figure 11. First, the output of
LLM clearly describes the taint propagation process. The model then gives the location and reason
why the vulnerability was triggered in the output of the vulnerability analysis. Therefore, we can
not only see the vulnerability check results but also further verify the vulnerability or patch the
vulnerability based on the analysis process in the response of LLMs.

6 Evaluation
The evaluations of LATTE are designed to address the following five RQs:
RQ1: How well does LATTE inspect vulnerabilities in binaries? Explain from the following three
perspectives:

(1) How effective is LATTE in identifying security vulnerabilities?
(2) How stable is LATTE in vulnerability inspection result?
(3) How efficient is LATTE in terms of processing time and monetary cost?

RQ2 : How effective is the identification of security sensitive functions (sinks) and external input
sources (sources)?
RQ3: How effective is the extraction of DFs?
RQ4: What is the performance impact of PS on LATTE?
RQ5: Does LATTE scale to real-world binary vulnerability analysis?

6.1 Evaluation Setup
Implementation. The implementation of LATTE is based on the reverse engineering framework
Ghidra [62, 76] and the LLM GPT-4.0 [63]. Below, we outline the overall implementation process.
The first step involves loading the target binary into Ghidra, where the custom Ghidra plugin is
utilized to automate extraction tasks. Through the plugin, LATTE retrieves critical information
from the binary, such as decompiled code, the call graph, control flow graph, import table, and
additional metadata necessary for in-depth analysis. Once the binary data are collected, LATTE
conducts detailed program analysis to extract DFs that are relevant to vulnerability triggering. Using
predefined PTs, LATTE constructs PSs that correspond to each DF. Each PS is specifically designed
to interact with GPT-4.0, setting up a session in which the LLM conducts a vulnerability assessment
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Fig. 11. Based on the foo function in Figure 2, the process of using GPT-4.0 to analyze and check bugs is
shown. The final model output correctly identifies that the 3 = 2 + 1 operation of the foo has a potential
integer overflow vulnerability.

of the associated DF. As GPT-4.0 processes each PS, it evaluates the corresponding DF for potential
vulnerability issues. Once the analysis across all DFs within a binary is completed, LATTE saves
the results generated by GPT-4.0. These results, stored as individual files, are organized for further
verification and validation, supporting a comprehensive review of any identified vulnerabilities.
Benchmarks. To thoroughly and fairly evaluate the capabilities of LATTE, we used the Juliet Test
Suite [23] and Karonte dataset [74]. We first selected the benchmarks included in the standard
dataset Juliet Test Suite (v1.3) according to Table 1 to evaluate RQ1–RQ4 (Juliet has no benchmarks
for CWE-120 and we used the Karonte dataset for CWE-120). To ensure that our evaluation
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Table 2. Evaluation Results of Vulnerability Inspection Based on Juliet

CWE-78 (960/960)a CWE-134 (1,200/1,200)a CWE-190 (2,860/2,860)a CWE-606 (240/240)a
Emtaint Arbiter LATTE Emtaint Arbiter LATTE Emtaint Arbiterb LATTE Emtaint Arbiter LATTE

TP 820 408 892 1,115 1,166 1,151 5 2,091 1,773 5 5 210
FN 140 552 68 85 34 49 5 769 1,087 5 5 30
TN 960 430 960 1,132 30 1,102 5 444 1,779 5 5 142
FP 0 530 0 68 1,170 98 5 2,416 1,081 5 5 98
Accuracy 92.7% 43.64% 96.46% 93.63% 49.83% 93.88% 5 44.32% 62.1% 5 5 73.33%
Precision 100% 43.5% 100% 94.25% 49.91% 92.15% 5 46.39% 61.12% 5 5 65.26%
Recall 85.42% 42.5% 92.92% 92.92% 97.17% 95.92% 5 74.68% 68.19% 5 5 87.5%
F1 score 92.14% 43.25% 96.33% 93.58% 65.95% 93.99% 5 56.76% 62.05% 5 5 74.24%
Avg. time (seconds) 5.2 122 13.5 5.6 73.6 14.2 5 7.8 15.1 5 5 13.9

5 indicates that the vulnerability type is not supported.
aNumber of test subjects containing vulnerabilities/Number of test subjects not containing vulnerabilities.
bArbiter relies on symbol table, such as printIntLine, printHexCharLine, and printLongLongLine, to assist in overflow judgment. If
LATTE is also analyzed based on the binary with the symbol table, TP is 2,576, FN is 284, TN is 1,939, FP is 921, Precision is 73.66%, Accuracy
is 78.93%, Recall is 92%, F1 is 81.04%.

mirrors real-world scenarios, we removed debug information and symbol tables from the compiled
benchmark programs. Furthermore, since LATTE aims to detect vulnerabilities caused by external
inputs, test subjects with internal data as a source have been removed. The number of test subjects
used for evaluation is listed in Table 2. Second, we performed RQ5 evaluation on real firmware
dataset provided by Karonte to illustrate LATTE’s ability to find vulnerabilities in the real world.
Since the source code of firmware in Karonte is not publicly accessible, and thus not in the training
sets of LLMs. The evaluation on Karonte helps to investigate whether LATTE suffers from the data
leakage problem [94].
Baselines. We selected Emtaint [12] and Arbiter [88] for comparison on the Juliet Test Suite.
These techniques represent the state of the art as shown in Table 1. For the Karonte dataset, we
used Karonte [74] as another baseline for comparison, because Karonte is designed specifically for
analyzing firmware. We did not include CodeQL [27], QueryX [33], or Joern [29] as baselines due
to their reliance on customized queries for bug detection [33].
Metrics. In the evaluation based on the Juliet Test Suite, we measured the effectiveness of LATTE
using six indicators: True Positive (TP), FN, True Negative (TN), FP, accuracy ( TP+TN

TP+TN+FP+FN ),
and F1 score ( 2∗precision∗recallprecision+recall , where precision = TP

TP+FP , recall =
TP

TP+FN ). For the evaluation on the
real-world firmware dataset provided by Karonte, since there are no labels, we mainly measured
the TP and FP in the analysis alerts.
Running Environment. All experiments were performed on a Linux workstation with an Intel
Core i7-8750H CPU and 64 G RAM.

6.2 Vulnerability Inspection (RQ1)
6.2.1 Effectiveness. LATTE performs vulnerability inspection on stripped binaries compiled from

Juliet. The name of the test subject describes the CWE vulnerability types it contains. However,
there are overlaps between CWE vulnerability types (Section 2.1). To facilitate the verification of
the results, we only determine whether the CWE vulnerability type specified by the test subject
exists. In evaluating LATTE, we performed five rounds of testing to ensure robustness and accuracy.
As shown in Table 2, the inspection accuracies of the four types of vulnerabilities CWE-78, CWE-
134, CWE-190, and CWE-606 are 96.46%, 93.88%, 62.1%, and 73.33%, respectively, and the average
accuracy is 77%.

LATTE outperforms both Emtaint and Arbiter, in terms of accuracy and F1 score. Note that in the
case of CWE-190 (Integer Overflow or Wraparound), Arbiter can detect 318 more TPs than LATTE.
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Table 3. Comparison of
Vulnerability Checking Accuracy

of LATTE Based on GPT-4.0
and GPT-3.5

GPT-4.0 GPT-3.5
CWE-78 96.46% 78.2%
CWE-134 93.88% 75.9%
CWE-190 62.1% 54.5%
CWE-606 73.33% 61.2%
Average 81.44% 67.45%

However, this is attributed to the fact that Arbiter relies on the symbol table for inspection, and if
this information is provided to LATTE, LATTE can outperform Arbiter by detecting 485 more TPs.
Analysis of FNs and FPs. We further analyzed the reasons behind FNs and FPs in LATTE vulnera-
bility checks. The first reason is that the DFs of test subjects are not always correctly extracted.
This may occur due to program analysis problems, such as indirect calls and pointer aliases, which
can lead to false or failed extraction of DFs (details in Section 6.4). The second reason is related to
the creativity of GPT-4.0 which can lead to different responses to the same PS, resulting in unstable
analysis results. However, the vulnerability inspection task itself has the property of exploration
rather than simple rule matching. Therefore, the instability brought about by the creativity of
GPT-4.0 is not necessarily bad for vulnerability inspection. We further analyzed the stability of the
LATTE result (details in Section 6.2.2).
GPT-4.0 vs. GPT-3.5. LATTE based on GPT-4.0 can perform effective taint-style vulnerability
inspection. We further used GPT-3.5 to conduct an ablation experiment on the model. Table 3 shows
that LATTE based on GPT-4.0 performs better than GPT-3.5 on each vulnerability type. The average
accuracy of LATTE based on GPT-4.0 is better than that of GPT-3.5 13.99%. This illustrates that the
ability of the model itself directly affects the analysis effect of LATTE. With the development of
LLMs, the effectiveness of vulnerability checks will also increase. The design of LATTE allows easy
switching between different LLMs.

6.2.2 Stability. As an artificial intelligence generation model, GPT-4.0 exhibits a certain degree
of randomness in the generated response. The temperature parameter plays a significant role
in controlling the creativity and diversity of the content produced by GPT-4.0. The temperature
value is a floating-point number between 0 and 1, where higher values result in more diverse and
random outputs, while lower values produce more conservative and deterministic outputs. We
conducted two sets of experiments to evaluate the stability of LATTE analysis results and the effect
of temperature on the results.
Analysis Stability at Temperature 0.5. To strike a balance between creativity and stability, we
used a median temperature value of 0.5 in the five rounds of testing in Section 6.2.1. We measured
the stability by evaluating the intersection of TPs among the five rounds. Figure 12 shows small
fluctuations in the number of TPs in different rounds of the same CWE type. From left to right
in Figure 12, the recall rates of five-round intersection are 90.42%, 88.42%, 58.04%, and 82.5%,
respectively (the average recall rate is 79.85%).This indicates that the stability of LATTE is acceptable.
However, we noticed relatively large fluctuations in the CWE-190. The reason for the fluctuation
of CWE-190 is consistent with the problem mentioned above (Section 6.2.1), which is caused by
incorrect data type judgments without the assistance of function names.
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Fig. 12. The TP intersection among the five test rounds indicates the stability of LATTE. The intersection
numbers of the four vulnerability types are 868, 1,061, 1,660, and 198.

Fig. 13. Accuracy of CWE-78 analysis for LATTE at different temperatures.

Impact of Temperature on Analytical Results. To explore the impact of temperature on LATTE,
we conducted 11 experiments with different temperature values. Each experiment was performed
five rounds to ensure reliability. Figure 13 shows the accuracy results of CWE-78, where the trend
generally follows a normal distribution, including the median, minimum, and maximum values.
Moreover, we observe that when the temperature is less than 0.4, the inspection results have a
smaller distribution range. Conversely, when the temperature is greater than 0.6, the inspection
results are more scattered. The temperature of 0.4–0.6 can achieve a balance between stability
and inspection effect. Similar trends were observed for the analysis of CWE-134, CWE-190, and
CWE-606.

6.2.3 Efficiency. We analyzed the time overhead and the monetary cost of LATTE when in-
specting for vulnerabilities. This process refers to the overhead of binary loading, DF extraction,
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and conversation with GPT-4.0 for vulnerability inspecting. Source and sink results can be reused
between different binaries so they are preconfigured (evaluated in Section 6.3).

The average time taken to analyze different test subjects is summarized in Table 2. The results
indicate that LATTE can complete the analysis of a test subject within 20 seconds. Preprocessing
the test subject and extracting the DFs takes about 2 seconds, which is a relatively efficient process.
The majority of the analysis time is spent on the conversation with GPT-4.0, as this step involves
instructing the model and waiting for its response. The time taken for this step can be influenced by
network quality and the response speed of GPT-4.0. Comparing LATTE with Emtaint and Arbiter,
we find that the time overhead of LATTE is slightly greater than that of Emtaint, with a difference
of about 8 seconds. This difference is considered acceptable given the automation that comes with
using GPT-4.0.

Regarding the monetary cost, the evaluated cost of LATTE analyzing a DF is $0.35, which is
considered acceptable compared to the expenditure of hiring a program analysis expert for manual
inspection. Moreover, with the development of LLM technology, the cost of using such models is
expected to decrease over time, while the performance is likely to improve, making it an even more
attractive option for vulnerability analysis.

Answer to RQ1: The average accuracy of LATTE vulnerability inspection is 77%. Compared
to the state-of-the-art techniques Emtaint and Arbiter, LATTE outperforms them in different
vulnerability types. Moreover, the average recall of the TP intersection across different test
rounds is 79.85%, which shows that the inspection results of LATTE are stable.

6.3 Sink and Source Identification (RQ2)
LATTE reasonably identified sinks and sources as necessary for DF extraction. As shown in Table 4,
we verified the results of sink and source identified by LATTE. For each test subject, the vulnerability
is triggered by a specific pair of sink and source, such as system and recv. The expected pair of
the test subject is indicated by its name. LATTE accurately covers both the sink and source of the
target scenario in the test subject with 100%. The time overhead for identifying sinks and sources
is proportional to the number of library functions. For the test subject in Juliet, 48 queries were
required, with each query taking approximately 1 second. Furthermore, these results can be cached
for all test subjects from Juliet without the need for further queries.

There are other functions in a test subject that can be used as sinks and sources, but they do not
cause a vulnerability in the current test subject. The identified functions can be used as sinks and
sources with average precision up to 82.1%. FPs are mainly attributed to the instability of GPT-4.0.
For example, sometimes recv is mistakenly treated as an sink. This highlights the challenge of
managing the creativity and diversity of the LLM, which can sometimes result in unintended
outcomes. To alleviate this situation, we can analyze function semantics to filter FPs and utilize TPs
to form sink and source collections to assist analysis. When evaluating real programs in Section 6.6,
we use the correct sink and source results identified from the test subjects to analysis.

Compared with the state-of-the-art binary taint analysis techniques, such as Emtaint and Arbiter,
LATTE improves the automation of taint analysis. Previous techniques primarily relied on manual
analysis of function semantics to identify sinks and sources, making it difficult to compare identifi-
cation results. However, the ability of LLMs to understand code and generate function summaries
can be used to assist manual analysis and reduce manual effort. LATTE simplifies the analysis
process and improve the efficiency of existing techniques by providing analysts with more program
information.
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Table 4. Sink and Source Identification Results

Avg. # Sink Precision Coveragea Avg. # Source Precision Coveragea

CWE-78 6.12 85.42% 100% 4.72 76.17% 100%
CWE-134 6.71 86.2% 100% 4.52 80.21% 100%
CWE-190 5.2 90.21% 100% 5.63 72.14% 100%
CWE-606 6.79 85.18% 100% 4.46 81.11% 100%
aThe proportion of identification results covering the test subject target scenario.

Fig. 14. DF extraction results.

Answer to RQ2 : LATTE automatically identifies the sink and the source with an average
precision of 82.1%. The identification results correctlycover the expected sink and source
pairsof the test subjects 100%.

6.4 DF Extraction (RQ3)
The effectiveness of DF extraction affects the accuracy of GPT-4.0 vulnerability checking. The FN
of DFs directly leads to the FN of LATTE vulnerability checks. To evaluate the effectiveness of DF
extraction, we analyzed vulnerable test subjects (labeled as “bad”) in Juliet. Vulnerable test subjects
contain a potential vulnerability. We check whether the DF extraction is successful and whether
the vulnerability triggering path between source and sink can be covered.

Figure 14 shows that among different types of vulnerable test subjects, LATTE successfully
extracted the DF for more than 95% of the vulnerable test subjects. Moreover, the DF of each
successfully extracted test subject is correct, i.e., covering the code snippets between source and sink
that causes the test subject to trigger the vulnerability. The detailed numbers of DFs corresponding
to each CWE type are 920, 1,178, 2,731, and 230, respectively. Each successfully extracted test
subject corresponds to a unique DF. This indicates that LATTE’s DF extraction is effective, as LATTE
correctly captures potential paths leading to vulnerabilities in the most of vulnerable test subjects.

However, there are test subjects where LATTE did not successfully extract DFs (FNs). We inves-
tigated these test subjects and identified two primary reasons: 1 Ghidra decompilation error. The
decompilation engine may have problems parsing function call arguments, such as three arguments
being mistaken for two. This leads to the breakage of taint data dependencies in the callee function,
ultimately affecting the extraction of DFs. 2 Pure virtual function calls. Pure virtual functions
have no function body and must be implemented in derived classes. Test subjects with pure virtual
function calls prevent LATTE from extracting the DF because there is no concrete implementation
to analyze.
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Fig. 15. Comparison of the impact of PS construction on vulnerability analysis.

Answer to RQ3: LATTE successfully and correctly extracts DFs covering more than 95 of
test subjects containing potential vulnerabilities. This demonstrates the ability of LATTE to
effectively extract DFs.

6.5 PS Construction (RQ4)
To evaluate the effectiveness of PS construction, we designed five sets of comparative experiments
based on the factors that affect prompt construction: code slicing granularity and analysis task
description granularity. Specifically, keeping the same analysis task description as LATTE, we
perform prompt construction on 1 the entire program and 2 the entire DF, respectively. Moreover,
we construct PSs based on more fine-grained slicing, that is, 3 only retaining the code lines related
to the data dependency of the sink trigger argument. For analysis task description, we use functions
in DF as units to construct PS consistent with LATTE, but we 4 cancel the persona assignment
(i.e., the first prompt in PS does not indicate that the conversation will be conducted in the role of a
program analyst) and 5 do not split tasks (i.e., directly instruct the GPT-4.0 to perform vulnerability
analysis without mentioning subtasks such as taint analysis and data dependency analysis).

Based on the above principles, we construct corresponding prompts (or PSs) for vulnerability
analysis on the test subjects in Table 2. As shown in Figure 15, LATTE outperforms the other five
methods. Moreover, the p-values for the comparison pairs calculated using the Mann-Whitney
U Test [83] shown in Table 5 are all less than 0.05, indicating that the comparison results are
statistically significant. Specifically, LATTE outperforms the approach on larger-grained slices
(the entire program and the entire DF) and smaller-grained slices (code lines involved in tainted
data) by an average accuracy of 28.7%, 13.3%, and 46.4%, respectively. In large-granularity slices,
the entire DF is also better than the entire program with an average accuracy of 15.4%, which
shows that directly providing a large number of code snippets at one time leads to a decrease
in analysis accuracy. For smaller-grained slicing, GPT-4.0 produced responses that vulnerability
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Table 5. The p-Values Calculated by Mann-Whitney U Test to Illustrate the
Statistical Significance of LATTE and Comparative Sets

Entire Program Entire DF Code Line No Persona
Assignment

No Task
Splitting

CWE-78 0.008 0.008 0.008 0.008 0.012
CWE-134 0.008 0.008 0.008 0.012 0.012
CWE-190 0.008 0.008 0.008 0.008 0.012
CWE-606 0.008 0.008 0.008 0.012 0.012

Table 6. Vulnerability Inspection Results Based on Real-World Firmware Dataset Collected by Karonte

Vendor Samples Karonte Emtaint Arbiter LATTE

Alerts TP FP Unique
Bugs

Avg.
Time Alerts TP FP Unique

Bugs
Avg.
Time Alerts TP FP Unique

Bugs
Avg.
Time Alerts TP FP Unique

Bugs
Avg.
Time

NETGEAR 17 36 23 13 19 17:13 849 849 0 47 00:05 131 63 68 26 02:20 142 124 18 54 00:38
D-Link 9 24 15 9 10 14:09 299 234 65 29 00:02 99 48 51 14 03:18 65 59 6 42 00:21
TP-Link 16 2 2 0 2 01:30 73 73 0 3 00:05 21 18 3 6 02:40 29 23 6 10 00:33
Tenda 7 12 6 6 6 01:01 362 362 0 19 00:05 49 22 27 6 03:25 19 16 3 13 00:29
Total 49 74 46 28 37 451:06 1,583 1,518 65 98 03:38 300 151 149 52 135:57 255 222 33 119 26:06

Alerts: the number of bugs considered by the technique.
TP: the vulnerability trigger location is reachable by user-controllable data.
FP: the vulnerability trigger location is unreachable or not caused by user-controllable data.
Unique Bugs: different pairs of user-controllable data receiving locations and vulnerability triggering locations in TPs.
Avg. Time: average time spent analyzing a firmware represented by hh:mm.

analysis cannot be performed due to lack of sufficient context. This is due to the lack of associated
code snippets that prevent syntax analysis such as dataflow and control flow. Regarding the task
description granularity, LATTE performs better than the method without persona assignment and
task splitting, with an average accuracy improvement of 2.78% and 6.4%, respectively. Compared
to the granularity of code slicing, changes in the task description have a relatively small impact
on the accuracy of the results. The main reason is that the LLM itself has sufficient understanding
capability to reason and understand according to the task requirements, so persona assignment or
task splitting does not have a significant impact on the results. However, providing richer context
is still helpful for task understanding.

Answer to RQ4: Compared with prompts (prompt sequences) constructed based on different
code slicing granularitiesand analysis task description granularities,LATTE demonstrates
higher accuracy in detecting binary vulnerabilities.

6.6 Real-World Vulnerability Inspection (RQ5)
RQ1–RQ4 evaluations demonstrated the vulnerability analysis capabilities of LATTE on standard
datasets. To further illustrate LATTE’s ability to analyze unknown and real-world data, we evaluated
LATTE on 49 embedded device firmware samples from Karonte. LATTE issued a total of 255 alerts
for 3,678 DFs. As shown in Table 6, the 255 alerts found after verification include 222 TPs of which
there are 119 unique CWE-78 and CWE-120 bugs.
LATTE outperforms advanced binary taint analysis techniques. Karonte and Arbiter found 46

and 151 TPs, respectively, while LATTE found 222 TPs. Moreover, LATTE’s precision 87.1% is higher
than Karonte’s 62.16% and Arbiter’s 48.67%. For analysis time, Karonte and Arbiter rely on the
heavyweight technique symbolic execution, so LATTE spends 425 and 109 minutes less time on
analysis, respectively. Although Emtaint found 1,296 more TPs than LATTE, many of TPs were the
same bugs caused by different dataflows. It takes a lot of work for analysts to verify the results.
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Fig. 16. Unique bugs discovered by different tools.

As shown in Figure 16, the unique bugs found by LATTE cover the results of Karonte and Arbiter,
while 16 unique bugs found by Emtaint were not found by LATTE. The reason is that the pointer
alias in LATTE is not accurate, resulting in no relationship between variables pointing to the same
memory. Therefore, the CC extracted by LATTE is incomplete, causing the corresponding DF to be
missed. However, LATTE found 119 unique bugs, 21 more than Emtaint. Moreover, LATTE found 37
previously unknown bugs, and 10 CVE numbers have been obtained due to the high threat.

Answer to RQ5 : LATTE effectively found 119 unique bugs (including 37 previously unknown
bugs)in the real-world firmware dataset,outperforming the state-of-the-art techniques
Karonte, Emtaint, and Arbiter.

7 Discussion
7.1 Limitations on Vulnerability Types
LATTE faces challenges in handling certain types of vulnerabilities, such as logic vulnerabilities [57],
race condition vulnerabilities [58], and vulnerabilities involving complex mathematical calculations
[56, 69]. These vulnerabilities often involve intricate code snippets with complex nesting and
jumping, making them difficult for the LLM to effectively analyze. Therefore, the under/over-
tainting problem is prone to occur. Moreover, these vulnerabilities are also difficult to detect
by using taint analysis alone. Complex vulnerabilities require the extraction of more context
information such as resource locks, interrupt vector tables, shared memory addresses, and so on
to assist in analysis. Collecting more valuable context information and providing it to LLMs for
vulnerability analysis is a direction worthy of further research.

7.2 Limitations on Binary Analysis
LATTE implements binary analysis based on Ghidra [62], including reverse engineering, function
structure recovery, and calling relationship analysis. Ghidra provides relatively complete analysis
algorithms and APIs for developers to use.

However, binary analysis itself is inherently complex and poses several challenges [52]. Many
issues remain partially or entirely unsolved. For example, Ghidra’s analysis can struggle to deter-
mine when two pointers refer to the same memory location, leading to potential inaccuracies in
dataflow tracking and alias analysis. Additionally, Ghidra sometimes has difficulty resolving virtual
calls, which can obscure the true calling relationships in the binary. This limitation is especially
problematic in C++ programs with extensive use of polymorphism, where the inability to accurately
resolve virtual calls can hinder the understanding of control flow and data dependencies. LLM
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excels at identifying patterns in code and dataflow, and it would be worth exploring further in the
future to assist in identifying common indirect control flow patterns.

Moreover, when the compiler inlines a function, the original boundary between the caller function
and the callee function is eliminated, making it difficult to reconstruct the original function structure
and understand the precise calling relationship. Fortunately, if a callee is inlined, the caller becomes
larger by incorporating the implementation of the callee. Therefore, it does not affect the analysis
of the code with LLMs. Moreover, function inlining affects the identification of statically linked
source and sink functions. But in most cases, the source and sink are provided by the system library
[31, 88]. In order to ensure the size and compatibility of the program, the system library is usually
dynamically linked, e.g., glibc [74, 88].

7.3 Importance of Metrics for Evaluating Vulnerability Analysis
Precision and recall are two key metrics for real program vulnerability analysis. Analytical methods
often require a balance between FPs and FNs [88]. Precise analysis algorithms can reduce FPs, but
may overlook diverse potential vulnerabilities, thus increasing FNs. Conversely, over-approximation
analysis algorithms may identify more potential vulnerabilities, but also increase the number of
FPs. Therefore, security engineers need to choose the appropriate method based on specific analysis
contexts and objectives. Furthermore, identifying unique bugs is crucial for both precision and recall
metrics. Duplicate TPs not only add no value to security analysis but also increase the overhead
involved in validating vulnerabilities [12, 74].

The following guidelines provide tool selection recommendations based on analysis costs, busi-
ness scenarios, and security requirement standards [36, 50, 61]. The recall score is particularly
important when resources such as time and labor are sufficient. Additionally, using high-recall tools
to find as many vulnerabilities as possible is especially useful in the early stages or when reviewing
new code. On the other hand, when dealing with a large number of subjects and limited resources,
security engineers should prioritize high-precision tools to ensure that reported vulnerabilities are
genuine, thus minimizing the time spent on FPs. For systems requiring stringent security measures,
use a combination of tools to balance precision and recall, ensuring comprehensive coverage and
accurate identification of vulnerabilities.

According to the evaluation results in Section 6.2.1, LATTE outperforms other tools in both of
precision and recall. Meanwhile, LATTE found more unique bugs in the evaluation of real firmwares
in Section 6.6, and covered the bug results of Arbiter and Karonte. Based on the above guidelines,
engineers should give priority to LATTE. However, the cost of LLM tokens for using LATTE is
unavoidable. Therefore, if engineers have sufficient token resources, LATTE is recommended to be
used over traditional methods.

7.4 Impact of Binary Protection on LATTE
LATTE performs binary analysis based on the intermediate representation P-Code of Ghidra,
enabling binary analysis across different architectures such as X86, X64, ARM, and MIPS. Consistent
with other binary vulnerability analysis techniques [10, 12, 74, 88], LATTE cannot directly analyze
binaries that have been obfuscated or encrypted. Additional steps are needed to ensure the binary
can be processed by Ghidra. There is ongoing research focused on deobfuscation and decryption,
which can aid subsequent vulnerability analysis [25, 48, 86, 89].

Moreover, the performance of LATTE was evaluated on binaries lacking debugging information,
symbol tables, and comments. Maliciously tampered semantics can interfere with LATTE’s analysis.
For example, renaming a function containing a vulnerability to “no_vulnerability” might increase
the likelihood of misjudgment. However, by instructing LLMs to ignore such semantic information,
the impact can be significantly reduced. Offensive and defensive techniques in binary analysis
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remain an ongoing challenge, and our findings contribute to understanding the capabilities and
limitations of LLMs in this context.

7.5 Identification of Sources and Sinks
The specification of sources and sinks is necessary to initiate LATTE analysis. If the analyst already
has the identified sources and sinks, the source and sink identification stage can be skipped and
DF extraction and PS construction can be performed directly by setting the sources and sinks. If
not, the analyst can use LATTE to help identify sources and sinks. We evaluated source and sink
identification based on the Juliet test suite in Section 6.3. The identification results of sources and
sinks can be reused if another binary uses the same dynamic library. We conducted vulnerability
inspections using these identification results in real-world firmwares in Section 6.6.

In the real world, identifying sources and sinks is a complex problem. First, real programs require
more queries due to the presence of various linked libraries. For example, the glibc requires about
3,000–4,000 queries, and the OpenGL requires several hundred queries. Therefore, even with LATTE
to assist in identifying sources and sinks for caching, it requires a certain amount of time overhead.
Second, as described in Section 7.2, although most binary programs use dynamic linking, static
linking and inliningmake it more difficult to identify sources and sinks. LATTE needs to be combined
with program analysis techniques such as code summarization and dynamic analysis to further
determine the source and sink. Third, some custom functions in real-world binaries may also be
used as tainted sources and sinks [46], which further complicates the identification of sources and
sinks. LLMs can recognize well-known functions like recv and printf, its performance is limited
when encountering previously unseen functions. Meanwhile, the hallucination of LLMs seriously
affects the identification of sources and sinks. Continuously refining and optimizing prompts or
models based on expert feedback, code information, and specification data is critical to meeting the
challenges of various libraries and custom functions.

7.6 Applicability to Source Code
While LATTE is designed for vulnerability analysis of binary code, its underlying concept is
adaptable for source code analysis as well. If source code analysis is required, three components
of the LATTE workflow (outlined in Figure 6) would need adjustment. First, source code analysis
bypasses the need for disassembly or decompilation, allowing for direct code analysis to identify
DFs. Second, the algorithm for extracting DFs must be modified to work with source code. For
example, in decompiled code, the analysis relies on registers and memory addresses, whereas, in
source code, it focuses on variable analysis. Furthermore, binary code typically integrates all calling
relationships and dependencies into a single file, while source code requires parsing dependencies
across multiple files. Third, the PTs need to be optimized. The start template in binary analysis states
that the code is “generated by decompilation,” which provides helpful context. When analyzing
source code, removing this statement or indicating that the code is source code can help LLMs
analyze the source code more directly, benefiting from explicit variable names and comments.
Providing additional descriptive information further aids LLMs in analyzing the code effectively.

To demonstrate the feasibility of the concept of LATTE for source code, we utilized SVF [81] to
extract DFs from the source code of the Juliet test cases (Section 6) and removed the “generated by
decompilation” statement from the start prompt. As shown in Table 7, the accuracy of detecting
vulnerabilities in source code for CWE-78, CWE-134, CWE-190, and CWE-606 improved by 1.64%,
2.91%, 17.9%, and 5.07%, respectively, compared to stripped binary analysis. The p-values for
these comparisons, calculated using the Mann-Whitney U Test, were all less than 0.1, indicating
statistical significance. This improvement results from the semantic clarity in source code, with
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Table 7. Comparison of Vulnerability Checking Accuracy on Source Code
and Decompiled Code

Stripped Binary Source Code Improvement p-Value
CWE-78 96.46% 98.1% 1.64% 0.095
CWE-134 93.88% 96.9% 3.02% 0.008
CWE-190 62.1% 80% 17.9% 0.008
CWE-606 73.33% 78.4% 5.07% 0.004

function names, variable names, and type definitions providing critical context that aids LLMs in
understanding and analyzing vulnerabilities.

However, when combined with LLMs, there may be more effective approaches than LATTE
for source code analysis. For instance, integrating LLMs with advanced program analysis tools
such as CodeQL [34, 84, 90] could provide a more comprehensive understanding of code structure
and semantics. Additionally, pointer analysis and other techniques could be applied directly to
source code, rather than decompiled code, to further enhance the accuracy and effectiveness of
vulnerability detection.

8 Related Work
Taint Analysis. Taint analysis is a software security analysis method that aims to identify and
analyze potential security vulnerabilities in programs. It is widely used for analysis in source
code, Web applications, and Android programs. VulSlicer [75] and FICS [2] performed dataflow
analysis on the source and sink pairs in the source code. Merlin [47], Thomé et al. [85], and JOZA
[60] summarized artificial experience into rules and used heuristic methods to discover taint-style
vulnerability in Web applications. DroidSafe [30], SCANDAL [39], and AndroidLeaks [26] identified
some API calls or callback functions as taint sources in Android programs to perform taint analysis.
The main difference between taint analysis of binary programs and the above program types is the
loss of information such as program semantics and code structure. Therefore, when implementing a
binary taint analysis engine, more expert experience and more manual work are required. Specific
binary taint analysis techniques are introduced in the next paragraph.
Binary Vulnerability Analysis. For vulnerability analysis of binary, there are both dynamic and
static techniques. Dynamic techniques monitor unexpected behaviors of test targets as they execute
test cases, such as fuzzing [8, 22, 44, 77, 103], concolic execution [15, 68, 80, 101], and emulation
analysis [14, 21, 35, 40, 53]. The results of dynamic analysis are reliable, but the test code coverage
is low and the test execution depends on the specific operating environment. Binary execution
environments vary depending on the operating system, architecture, and even peripherals. As
a result, the application and performance of dynamic analysis is often limited. Static analysis
techniques are suitable for binary analysis due to their high code test coverage and not limited
to the execution environment. BootStomp [73], Saluki [31], Dtaint [11], Karonte [74], SATC [10],
Arbiter [88], and Emtaint [12] techniques primarily leverage taint analysis combined with program
analysis, symbol execution, and machine learning to analyze binary vulnerabilities. However, these
methods commonly rely on human experience to define propagation and inspection rules. LATTE,
on the other hand, is the first to propose a taint analysis technique combined with LLMs for binary
vulnerability inspection, offering a novel approach that avoids the need for manual rule definition.
LLM-Assisted Code Analysis. The LLM is a class of deep learning models that have significantly
impacted natural language processing. In recent years, with the excellent code understanding
ability of LLMs, they have been widely applied in code-related tasks, such as code generation
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[1, 24, 65, 100], patch generation [70, 79, 95, 96], and code summarization [3]. For code vulnerability
analysis, it is often necessary to combine various program analysis techniques on the basis of LLMs’
code understanding to conduct effective vulnerability auditing. For instance, FuzzGPT [18] and
TitanFuzz [17] utilize the LLM to analyze existing code snippets and generate test cases to assist in
API fuzzing. CODAMOSA [42] uses the LLM to analyze code coverage information and modify
test cases to improve test coverage. Moreover, LLMDFA [91], inspired by summary-based dataflow
analysis, introduced the dataflow analysis framework supported by LLM and explored the idea
of LLM-assisted source code analysis. LLMSAN [92] further used the ideas of few-shot chain-of-
thought and program properties to reduce the impact of LLM hallucination on the reliability of
dataflow analysis. Unlike these LLM-assisted analysis techniques, LATTE utilizes the LLM to assist
static analysis and works on binaries that provide less code information than source code.
Security Slicing. Obtaining code snippets from a program for vulnerability analysis is a popular
security analysis method. To reduce the time overhead of verifyingwarnings and improve inspection
accuracy, the results of code slicing are often combined with other analysis and testing techniques
for further verification. FuzzSlice [59] and Helium [37] used static analysis technology to construct
compilable harnesses from source code slices, which are then subjected to vulnerability verification
through fuzzing. SFuzz [9] implemented fuzzing on independent code snippets extracted from
real-time operating systems binaries. These techniques must ensure that the code snippets not only
contain the entire input processing flow but also that the slicing result is compilable and executable.
To address the constraints on the execution conditions of code snippets, Ramos and Engler [72]
proposed under-constrained symbolic execution, allowing symbolic execution of any function
without initializing any of its data structures or setting up any environment. However, this technique
still faces challenges with loops, pointers, and library function calls, affecting analysis accuracy. Our
approach, LATTE, leverages the idea of taint analysis to slice the program and then utilizes LLMs
for vulnerability analysis. By using LLMs, our approach reduces the dependency on the execution
environment, alleviating the need for comprehensive environment setup and initialization. LLMs
provide a deeper semantic understanding of the code, improving the identification and analysis
of vulnerabilities within the sliced snippets. Combining taint analysis with LLMs allows for a
more focused and relevant slicing, ensuring that the critical parts of the code related to potential
vulnerabilities are included in the analysis.

9 Conclusion
This article proposes LATTE, the first LLM-powered static binary taint analysis. Traditional taint
analyzers rely on human expertise to manually define patterns and rules, and this manual nature
severely limits the effectiveness and performance of the taint analysis technique. LATTE performs
DF slicing by slicing VDs back to external input sources. LATTE then combines code snippets to con-
struct PSs, leveraging LLMs’ context-aware assistance and human-like understanding capabilities
for code vulnerability inspection. Based on the substantial evaluations, LATTE outperforms the state
of the art across all taint-style vulnerability types, such as buffer overflow and command injection.
LATTE sheds light on the combination of program analysis and LLMs for vulnerability analysis.
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